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The Riemannian and Lorentzian Splitting
Theorems

José Luis Flores

Abstract In these notes we are going to briefly review some of the main ideas
involved in the formulation and proof of the Riemannian and Lorentzian Splitting
Theorems. We will try to emphasize the similarities and differences appeared when
passing from the Riemannian to the Lorentzian case, and the way in which these
difficulties are overcome by the authors.

1 Introduction

The splitting problem in Riemannian and Lorentzian Geometry is closely related to
the idea of “rigidity” in Geometry. So, in order to introduce this problem, first we
are going to dedicate some lines to recall this important notion.

Assume that we are interested in studying some Riemannian manifold (M, g).
Usually, it is very useful to compare it with some model space MK , i.e. a complete 1-
connectedRiemannianmanifold of constant sectional curvature K . In fact, there are a
series of results which ensure that (M, g)will retain global geometrical properties of
MK under certain strict curvature bounds for (M, g) in terms of K . Even more, under
these conditions, it is usually possible to conclude that M will also retain topological
properties of MK . A natural question which arises from this situation is, what happen
when one relaxes the condition of “strict” curvature inequality to some “weak”
curvature inequality? It is not difficult to realize that, under these new hypotheses,
the conclusion may not hold any more. This is clearly illustrated by the following
simple observation: there is a crucial difference between the topology of the sphere
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2 J.L. Flores

(K > 0) and that of the Euclidean space (K ≡ 0), even for spheres of radius very
big, and so, with curvature very close to the null curvature of the Euclidean space.
However, a relevant property still holds: a conclusion which becomes false when one
relaxes the “strict” curvature condition to a “weak” curvature condition usually can
be shown to fail only under very special circumstances! This important idea, usually
referred as “rigidity” in Geometry, is roughly summarized in the following prototype
result:

Prototype Rigidity Theorem: If M satisfies a “weak” curvature condition, and the
geometric restriction derived from the corresponding “strict” curvature condition
does not hold any more, then M must be “very special”.

In order to relate the splitting problem to this prototype rigidity theorem, let us
recall the following result by Gromoll and Meyer [17]:

Theorem 1.1 (Gromoll, Meyer) A complete Riemannian manifold (M, g) of dimen-
sion n ≥ 2 such that Ric(v, v) > 0 for all v ∈ T M is connected at infinity.

This is a typical result where a strict curvature inequality (Ric(v, v) > 0) implies
a topological restriction on the manifold (connectedness at infinity). Now, suppose
that we replace the strict curvature condition Ric(v, v) > 0 by the weak curvature
condition Ric(v, v) ≥ 0 and, consequently, we assume that (M, g) fails to be con-
nected at infinity. Since M is complete, now one can ensure the existence of a line
joining any two different ends of M . Under these new hypotheses, Cheeger and
Gromoll proved that (M, g) must be isometric to a product manifold. So, this is a
typical rigidity theorem in the sense described above. This result and its Lorentzian
version constitute the central subject of these notes.

In the next section we will establish with precision the Riemannian Splitting
Theorem. We will also provide some brief comments about the initial motivation
and the precedents of the theorem. Finally, we will introduce some basic notions and
results which will be used later in the proof. In Sect. 3 we will outline the main ideas
involved in the original proof by Cheeger and Gromoll. This proof strongly uses the
theory of elliptic operators, and, indeed, it is stronger than actually needed. So, in
Sect. 4 we will describe an alternative proof of the same result, given by Eschenburg
and Heintze, which minimizes the use of the elliptic theory. This second approach
will be relevant for us because it introduces a new viewpoint useful for the proof of
the Lorentzian version of the theorem. In Sect. 5, we will recall some basic notions
and results from Lorentzian Geometry. After that, we will establish the Lorentzian
Splitting Theorem in Sect. 6, providing some brief comments about the main hits
in the history of its solution. The proof of this result will be studied in Sect. 7. We
will essentially follow the arguments given by Galloway in [14]: after some previous
technical lemmas in Subsects. 7.1–7.3, the proof will be delivered in six steps in
Subsect. 7.4. Finally, in Sect. 8 we will recall a related open problem with a physical
significance, the Bartnik’s Conjecture.
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2 Riemannian Splitting Theorem

The Riemannian Splitting Theorem can be stated in the following way [7]:
Riemannian Splitting Theorem (Cheeger, Gromoll) Suppose that the

Riemannian manifold (M, g), of dimension n ≥ 2, satisfies the following conditions:

(1) (M,g) is geodesically complete,
(2) Ric(v, v) ≥ 0 for all v ∈ T M ,
(3) M has a line (i.e. a complete unitary geodesic γ : R → (M, g) realizing the

distance between any two of its points).

Then M is isometric to the product (M, g) ∼= (Rk × M1, g0 ⊕ g1), k > 0, where
(M1, g1) contains no lines and g0 is the standard metric on R

k .
This is a very important result which has been extensively used in Riemannian

Geometry in the last decades. An important precedent of this result is due to
Topogonov [23], who obtained the same thesis under the more restrictive curva-
ture assumption of nonnegative sectional curvature. The proof of the Topogonov’s
result lies on the Triangle Comparison Theorem by the same author. The original
motivation for the Cheeger andGromoll’s result was the necessity to extend the exist-
ing results concerning the fundamental group of manifolds of nonnegative sectional
curvature [8] to the case of nonnegative Ricci curvature. In particular, they needed
a splitting theorem under the weaker hypothesis of nonnegative Ricci curvature, for
which the Topogonov’s Triangle Comparison Theorem does not work. A first split-
ting result of this type were obtained by Cohn-Vossen in [9]. However, the general
result required totally new arguments, which were not developed till the publication
of the remarkable paper [7].

In order to describe the proof of the Cheeger–Gromoll Splitting Theorem, firstly
we need to introduce some previous notions, which are of interest by itself:

By a rayγwewill understand anunitary geodesic definedon [0,∞)which realizes
the distance between any of its points. Then, the Busemann function (associated to
γ) is defined as the function bγ : M → R

3 obtained from the limit

bγ(·) := lim
r→∞(r − d(·, γ(r))), (1)

where d is the distance associated to the Riemannian metric g. It is not difficult to
prove that previous limit always exists (is finite) and the resulting function is contin-
uous. In fact, the limit (1) exists and is finite because, from the triangle inequality,
the map

r 	→ br (p) = r − d(p, γ(r))

is nondecreasing

r2 − r1 = d(γ(r1), γ(r2)) ≥ d(p, γ(r2)) − d(p, γ(r1)) if r1 ≤ r2

and bounded above
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r − d(p, γ(r)) ≤ r + d(p, γ(0)) − d(γ(0), γ(r)) = r + d(p, γ(0)) − r = d(p, γ(0)).

On the other hand, the Busemann function bγ is continuous because bγ(·) =
limr→∞ br (·), being {br (·)}r a family of uniformly equicontinuous functions:

|br (p) − br (q)| = |r − d(p, γ(r)) − r + d(q, γ(r))| ≤ d(p, q).

In particular:

|bγ(p) − bγ(q)| = lim
r→∞ |br (p) − br (q)| ≤ d(p, q). (2)

Given a ray γ, we say that α : [0,∞) → M is an asymptote from p to γ if it
is a ray which arises as limit of minimal geodesic segments αn from p to γ(rn),
rn → ∞. A simple limit argument on the initial velocities of αn shows that any ray γ
in a complete Riemannian manifold (M, g) admits some asymptote from any point
p, even though it is not necessarily unique.

In general, Busemann functions bγ are not necessarily differentiable. However,
they admit very simple expressions when evaluated on any asymptote α with respect
to γ. In fact, from the uniform convergence of αn to γ over compact subintervals
[0, t] for every t ∈ (0,∞), it easily follows:

bγ(α(t)) = t + bγ(α(0)) ∀t ∈ [0,∞). (3)

Given a line γ, there are two natural rays associated to γ: the restriction
γ+ := γ |[0,∞) and the curve γ−(t) := γ(−t), t ∈ [0,∞). We will denote by b±
the corresponding Busemann functions associated to γ±.

3 Cheeger and Gromoll’s Proof

In this section we are going to review the Cheeger and Gromoll’s proof of the
Riemannian Splitting Theorem (see [7] for details). The main step in the argument
will be the proof that Busemann functions b± are sub-harmonic. This remarkable
property joined to some basic relations for b± will imply that b± are, indeed, har-
monic. Then, the integral curves of grad b+ will be shown to be geodesics, and
grad b+ parallel. From here, the de Rham Decomposition Theorem will provide the
global splitting of M in terms of the level surfaces and the integral curves of b+.

Let γ be the line ensured by the hypotheses of the theorem. One easily deduces
the following relations for the Busemann functions:

b+ + b− ≤ 0 onM and b+ + b− ≡ 0 on γ. (4)

In fact, from the triangle inequality it is
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b+(p) + b−(p) = limr→∞(r − d(p, γ+(r)) + r − d(p, γ−(r)))
= limr→∞(r − d(p, γ(r)) + r − d(p, γ(−r)))
≤ limr→∞(2r − d(γ(−r), γ(r)))
= limr→∞(2r − 2r)
= 0

for any p ∈ M , being the inequality “≤” an equality “=” if p ∈ γ (recall that γ is a
line).

As commented above, the main ingredient in the Cheeger and Gromoll’s proof
is the sub-harmonic character of the Busemann functions b±. This property requires
the nonnegative character of the Ricci curvature:

Theorem 3.1 If the Ricci curvature is nonnegative then functions b± are sub-
harmonic.

Recall that, in principle, Busemann functions are not necessarily differentiable on
M . So, in Theorem 3.1 we are implicitly assuming the following well-known notion
of sub-harmonicity for continuous functions: a continuous function f : M → R is
sub-harmonic if, given any connected compact region D in M with smooth boundary
∂D, one has f ≤ h on D, being h the continuous function on D which is harmonic
on int D and satisfies h |∂D≡ f |∂D .

Sketch of proof of Theorem 3.1.Denote by dp(·) := d(·, p) the distance function
on M with respect to p. By using the nonnegative character of the Ricci curvature
and the fundamental inequality for the index form, one deduces the following upper
bound estimate for the Laplacian of dp(·):

�dp(q) ≤ (n − 1)/dp(q) for any q outside the cut locus of p. (5)

In particular:

�dγ(r)(q) ≤ (n − 1)/dγ(r)(q) for any q outside the cut locus of γ(r).

From here, a simple limit argument suggests that bγ(·) = limr (r − dγ(r)(·)) has non-
negative Laplacian whenever it is differentiable. In particular, one is tempted to
deduce that bγ is sub-harmonic. But notice that dγ(r) is not differentiable on the cut
locus of γ(r), and so, bγ may not be differentiable anywhere. Moreover, even though
bγ were differentiable almost everywhere with �bγ ≥ 0, the conclusion is not clear
at all, as illustrated by the simple example f (x) = −x2/3 (which is differentiable
everywhere up to x = 0, with nonnegative Laplacian, but it is not sub-harmonic
according to the definition above). Therefore, the conclusion follows after a sophis-
ticated analysis of the behavior of the gradient near the points of non-differentiability,
in order to avoid pathological behaviors as that showed by function f (x) at x = 0
(see [7] for details). �

The next step consists of showing that relations (4) joined to the sub-harmonic
character of b± imply that b± are differentiable and harmonic on M . To this aim,
consider any point q ∈ γ and any connected region D with q ∈ intD. Let h± be the
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continuous functions on D which are harmonic on intD and satisfy h± |∂D= b± |∂D .
In particular, h+ + h− = b+ + b− ≤ 0 on ∂D. From theMaximumPrinciple applied
to h+ + h− on D, we deduce h+ + h− ≤ 0 on D, and thus,

h+(q) + h−(q) ≤ 0 = b+(q) + b−(q). (6)

Since b± are sub-harmonic, it is also b± ≤ h± on D. Hence b±(q) ≤ h±(q). This
joined to (6) implies b±(q) = h±(q), or equivalently, (b± − h±)(q) = 0. But recall
that b± − h± is sub-harmonic and b± − h± ≤ 0 on ∂D, hence b± = h± on D.
Since D is arbitrary, we have proved that b± are differentiable and harmonic on M .

Now thatwe have the differentiability of b+, we are going to show that |grad b+| ≡
1. From (2) we have |grad b+| ≤ 1. From (3) we also have |b+(p) − b+(q)| =
d(p, q) for all p, q over an asymptote σ to γ. Hence, |grad b+| = 1. In particu-
lar, the integral curves of grad b+ must coincide with the asymptotes σ to γ, and so,
they are geodesics.

Finally, denote by N the gradient of b+. Since the integral curves of N are
geodesics, it is ∇N N = 0. On the other hand, recall that b+ is harmonic. Let
{N , E1, . . . , En−1} be a parallel orthonormal base along the asymptote. Then, a
direct computation gives:

Ric(N ) = ∑n−1
i=1 〈R(Ei , N )N , Ei 〉

= ∑n−1
i=1 〈∇Ei ∇N N − ∇N∇Ei N − ∇[Ei ,N ]N , Ei 〉

= −N (�b+) − |∇N |2
= −|∇N |2.

Since Ric(N ) ≥ 0, it is ∇N ≡ 0. Whence N is parallel, and the de Rham Decom-
position Theorem ensures that the map

I : (b+)−1(0) × R → M, (p, t) 	→ exp(t · N (p))

is an isometry. The conclusion follows after a finite induction on the lines
of (M, g). �

Remark 3.2 Aswe have seen, the approach followed byCheeger andGromoll in his
proof strongly uses the existence and regularity theory of elliptic equations. In par-
ticular, it is far from being adaptable to the Lorentzian case, since the d’Alambertian
(i.e. the Lorentzian Laplacian) operator is hyperbolic, not elliptic.

4 Eschenburg and Heintze’s Proof

In this section we are going to review the Eschenburg and Heintze’s alternative proof
of the Riemannian Splitting Theorem. The key point consists of minimizing the use
of the elliptic theory of equations by using a Calabi’s version of the Hopf Maximum
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Principle. As we will see later, this accurate approach introduces an useful viewpoint
for spacetimes.

First, the same relations for b± as in the Cheeger andGromoll’s proof are deduced.
Concretely:

b+ + b− ≤ 0 on M and b+ + b− ≡ 0 on γ. (7)

For any p ∈ M , r ∈ R, define the functions

b±
p,r : M → R, b±

p,r (x) := b±(p) − r + d(x, exp(rv)),

where v is the direction of some asymptote to γ± from p. It can be proved that b±
p,r

are lower support functions of b± at p, i.e.

b±
p,r (q) ≤ b±(q) for all q ∈ M and b±

p,r (p) = b±(p), (8)

which areC∞ around p (where the points x remain out of the cut locus of exp(rv)) and
satisfies |grad b±

p,r | = 1. From the nonnegative Ricci curvature hypothesis, one can
estimate the following lower bound for the Laplacian of the sum of these functions:

�(b+
p,r + b−

p,r ) ≥ −2(n − 1)/r for all p ∈ M, r ∈ R.

Under this inequality, a Calabi’s version of the Hopf Maximum Principle
([12][Sect. 6]; see also [6, 19]) ensures that b+ + b− attains no maximum unless
it is constant. But, according to (7), the function b+ + b− does attain a maximum on
γ. Hence:

b+ + b− ≡ 0 on M. (9)

From (8) and (9), one can write the following sandwich expression for b± in terms
of the lower support functions b±

p,r :

b+
p,r ≤ b+ = −b− ≤ −b−

p,r on M, with “=” at p.

From this sandwich expression and the differentiability of b±
p,r , one deduces that

Busemann functions b± must be once differentiable at p, and grad b±(p) =
grad b±

p,r (p). In particular,
|grad b±| = 1.

Therefore, the asymptotes to γ± at any p are uniquely determined and fit together to
a line.

On the other hand, by using the estimate (5) for the Laplacian of the distance
function out of the cut locus, one can deduce the following limit for the Hessian of
the lower support functions:
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lim
r→∞Hess b±

p,r (p) = 0.

Thus, for any geodesic c, the composition of b±
p,r ◦ c provides lower support functions

at any t ∈ R for b± ◦ c with arbitrarily small 2nd derivative at t . Observe that this
remains true for b± ◦ c − l, being l any affine function. Therefore, by the (trivial 1-
dimensional)MaximumPrinciple, the functions b± ◦ c are convex. Since b+ = −b−,
they are also concave. Hence, for any geodesic cwith initial velocity tangent to a level
surface of b+, the composition b+ ◦ c is constant. This means that any such c remains
contained in the level surface, and so, b+ has totally geodesic level sets. Consequently,
N = grad b+ is a parallel vector field, and, by the de RhamDecomposition Theorem,
the map

I : (b+)−1(0) × R → M, (p, t) 	→ exp(t · N (p))

is an isometry. The conclusion follows after a finite induction on the lines
of (M, g). �

Next, we are going to study the Lorentzian version of the Splitting Theorem. But,
first, let us recall some basic notions and results from Lorentzian Geometry. Our
notation and conventions follow the standard ones (see, for example, [3, 21]).

5 Preliminaries on Lorentzian Geometry

By a spacetime (M, g) we understand a (connected) oriented smooth manifold
M endowed with a metric tensor g of signature (−,+, . . . ,+). A tangent vector
v ∈ TpM , p ∈ M is named timelike (resp. lightlike; causal) if g(v, v) < 0 (resp.
g(v, v) = 0, v �= 0; v is either timelike or lightlike). Accordingly, a smooth curve
γ : I → M (I real interval) is called timelike (resp. lightlike; causal) if γ̇(s) is time-
like (resp. lightlike; causal) for all s. Spacetimes are assumed to be time-oriented,
i.e. they are endowed with a continuous, globally defined, timelike vector field X .
Fixed a time-orientation X , causal tangent vectors v ∈ TpM are distributed in two
cones, each one containing future g(v, X (p)) < 0 or past-directed g(v, X (p)) > 0
causal vectors. So, a causal curve γ(s) is said future-directed (resp. past-directed) if
g(γ̇(s), X (γ(s))) < 0 (resp. g(γ̇(s), X (γ(s))) > 0) for all s. Future-directed causal
curves represent all the physically admissible trajectories for material particles and
light rays in the universe.

A (smooth) spacelike hypersurface is a smooth codimension one submanifold
with everywhere timelike normal. A spacelike hypersurface is said maximal if the
mean (extrinsic) curvature vanishes identically.

Two events p, q ∈ M are chronologically related p � q (resp. causally related
p ≤ q) if there exists some future-directed timelike (resp. causal) curve from p to q
(the case p = q is also allowed in p ≤ q). The chronological past (resp. future) of
p, I−(p) (I+(p)) is defined as:
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I−(p) = {q ∈ M : q � p} (resp. I+(p) = {q ∈ M : p � q}).

On the other hand, the causal past (resp. future) of p, J−(p) (resp. J+(p)) is defined
as:

J−(p) = {q ∈ M : q ≤ p} (resp. J+(p) = {q ∈ M : p ≤ q}).

We will denote by I±(p,U ) the chronological past and future of p defined with
respect to an open set U ⊂ M .

A subset A ⊂ M is said achronal (resp. acausal) if it does not contain points
chronologically (causally) related between them. The edge of an achronal set A ⊂ M
is the set of points p ∈ A satisfying that every neighborhood U of p contains a
timelike curve from I−(p,U ) to I+(p,U ) which does not meet A.

A spacetime is chronological if it does not admit closed timelike curves, causal if
it does not admit closed causal curves, and strongly causal if it does not admit neither
closed nor “almost closed” causal curves. A spacetime is globally hyperbolic if it
is strongly causal and J+(p) ∩ J−(q) is compact for any p, q ∈ M . Here, global
hyperbolicity is the most restrictive causality condition, while chronological is the
most general one. Global hyperbolicity is equivalent to the following condition: the
spacetime admits a Cauchy hypersurface, i.e. a topological hypersurface that is met
exactly once by every inextensible timelike curve.

A very useful tool in Lorentzian Geometry is the notion of temporal separation or
Lorentzian distance (even though it is not a distance in a formal way, as we will see
in a moment). The Lorentzian distance is defined as the map d : M × M → [0,∞]
given by:

d(p, q) =
{
0, if Cc

pq = ∅
sup{L(α) = ∫ √−g(α̇, α̇), α ∈ Cc

pq}, if Cc
pq �= ∅,

where Cc
pq denotes the family of future causal curves (possibly piecewise smooth)

which connect p toq. TheLorentzian distance satisfies the followingbasic properties:

1. d(p, q) > 0 ⇔ p ∈ I−(q) ⇔ q ∈ I+(p). In particular, two different points may
have distance equal to zero.

2. The Lorentzian distance from some point to itself may be different from zero. In
fact, d(p, p) = ∞ if there exists some piecewise smooth timelike curve joining
p to itself; otherwise, d(p, p) = 0.

3. If 0 < d(p, q) < ∞ then d(q, p) = 0. Therefore, d is not symmetric in general.
4. The Lorentzian distance satisfies a sort of reverse triangle inequality:

d(p, q) + d(q, r) ≤ d(p, r) if p ≤ q ≤ r.

More sophisticated properties involving the Lorentzian distance are the following
ones:

5. In general, d is not continuous, but only lower semicontinuous, i.e. if {pn} → p
and {qn} → q then
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lim inf
n

d(pn, qn) ≥ d(p, q).

If the spacetime is globally hyperbolic, the Lorentzian distance presents a better
behavior, as showed by the following two properties:

6. A sort of Hopf-Rinow Theorem holds: if (M, g) is globally hyperbolic and p ≤ q
then there exists a maximal geodesic joining p to q (Avez-Seifert’s result).

7. If (M, g) is globally hyperbolic, d is continuous and finite valued.

The proof of the Lorentzian Splitting Theorem will also require some additional
notions analogous to those ones introduced in Sect. 2 for the Riemannian case:

By a timelike line (resp. timelike ray) γ wewill understand an unitary timelike geo-
desic defined onR (resp. [0,∞)) which realizes the Lorentzian distance between any
of its points. Then, the Busemann function (associated to a timelike ray γ) is defined
as the function bγ : I [γ] ⊂ M → [−∞,∞), with I [γ] = I+(γ(0)) ∩ I−[γ], given
by

bγ(·) := lim
r→∞(r − d(·, γ(r))).

In fact, the reverse triangle inequality ensures that limit above cannot be ∞. An
important difference with respect to the Riemannian case is that now bγ may take
values at −∞ (because the Lorentzian distance d may be ∞; recall property 2.
above) and may also be discontinuous (recall that, even, d may be discontinuous –
property 5.). Again from the reverse triangle inequality one can deduce the following
restriction for the growth of Busemann function:

bγ(q) ≥ bγ(p) + d(p, q) for all p, q ∈ I [γ], p ≤ q. (10)

From here, one deduces that level sets of Busemann functions are achronal in I [γ].
Another concept which can be also defined for spacetimes is the notion of asymp-

tote. Given a timelike ray γ, an asymptote from p ∈ I [γ] to γ is a causal ray
α : [0,∞) → M which arises as limit of maximal timelike geodesic segments αn

from p to γ(rn), rn → ∞ (assumed the spacetime is globally hyperbolic). It is not
difficult to realize that they need not be timelike, since the limit vector of a sequence
of timelike vectors may be lightlike. On the other hand, by using the uniform con-
vergence of αn to γ over compact subintervals [0, t] for every t ∈ (0,∞), one can
deduce:

bγ(α(t)) = t + bγ(α(0)) ∀t ∈ [0,∞). (11)

6 Lorentzian Splitting Theorem

In view of the interest of the Riemannian Splitting Theorem, in the early eighties Yau
posed the problem of obtaining the Lorentzian analogue of this result. Concretely,
he formulated the following conjecture [24]:
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Yau’s Conjecture Suppose that the spacetime (M, g), of dimension n > 2, satisfies
the following conditions:

(1) (M,g) is timelike geodesically complete,
(2) Ric(v, v) ≥ 0 for all timelike v ∈ T M ,
(3) M has a timelike line.

Then M splits isometrically along the line, (M, g) ∼= (R × M1,−dt2 ⊕ g1), where
(M1, g1) is a complete Riemannian manifold.

The timelike character imposed on the hypotheses of this conjecture are required
in order to successfully apply Lorentzian tools analogous to the Riemmannian case,
as the Lorentzian distance (see Sect. 5).

The proof of this conjecture constitutes one of most important hits in the history
of Lorentzian Geometry. It has involved multiple leading authors, sometimes in a
joint effort, during more than one decade: Beem, Ehrlich, Markovsen, Galloway,
Eschenburg, Heintze and Newman. The main contributions to the proof of the Yau’s
Conjecture can be outlined as follows:

The first relevant progress in the solution of this conjecture appeared two years
later. In 1984, Galloway solved the problem under the assumption that M admits
a smooth function whose level sets are compact spacelike Cauchy hypersurfaces
[13]. Afterwards, Beem, Ehrlich, Markovsen and Galloway solved the problem by
assuming global hyperbolicity instead of timelike completeness, and the sectional
curvature inequality K ≤ 0 instead of the Ricci curvature inequality Ric ≥ 0 [4, 5].
The assumption of global hyperbolicity is not a big restriction, and, in certain sense,
can be considered a more natural condition than timelike geodesic completeness.
However, the sectional curvature inequality is significatively more restrictive than
that for Ricci curvature, and does not admit a clear interpretation from a physical
point of view. Actually, this strong curvature hypothesis is assumed in order to
apply a Lorentzian adaptation of the Topogonov’s argument [23], via the Harris’
Lorentzian Triangle Comparison Theorem (see [1, Appendix A], [18]). By the same
year Eschenburg and Heintze gave their proof of the Riemannian Splitting Theorem
(see Sect. 4), which provided an alternative viewpoint helpful for the Lorentzian case.

In 1988, Eschenburg solved the problem for Ric ≥ 0, by assuming both, global
hyperbolicity and timelike completeness [10]. The key point was the observation that
the geometry of a neighborhood of the timelike line is so well-behaved that allows
certain arguments to be successfully modified from K ≤ 0 to Ric ≥ 0.

In 1989, Galloway removed the assumption of timelike completeness from
Eschenburg’s work [14]. The main ingredient was the use of a result by Bartnik
on the existence of maximal spacelike hypersurfaces [2].

In 1990 Newman obtained a proof assuming timelike completeness instead of
global hyperbolicity, and thus, solved the Yau’s Conjecture [20].

Finally, in 1996 Galloway and Horta revisited the whole problem making impor-
tant simplifications in the proof [16]. The new idea was to replace the use of causal
geodesic connectedness ensured by global hyperbolicity by certain limiting argu-
ments within a tubular neighborhood of the given ray.



12 J.L. Flores

These results can be summarized in the following general statement of the
Lorentzian Splitting Theorem, which, in particular, contains Yau’s Conjecture:
Lorentzian Splitting Theorem: Suppose that the spacetime (M, g), of dimension
n > 2, satisfies the following conditions:

(1) (M,g) is either timelike geodesically complete or globally hyperbolic,
(2) Ric(v, v) ≥ 0 for all timelike v ∈ T M ,
(3) M has a timelike line.

Then M splits isometrically along the line (M, g) ∼= (R × M1,−dt2 ⊕ g1), where
(M1, g1) is a complete Riemannian manifold.

In order to simplify the exposition, in these notes we are going to restrict our
attention to the case where both hypotheses, timelike geodesic completeness and
global hyperbolicity, are assumed simultaneously. So, the theorem whose proof we
are going to study in the next section is the following one:
(Weak) Lorentzian Splitting Theorem: Suppose that the spacetime (M, g), of
dimension n > 2, satisfies the following conditions:

(1) (M,g) is timelike geodesically complete and globally hyperbolic,
(2) Ric(v, v) ≥ 0 for all timelike v ∈ T M ,
(3) M has a timelike line.

Then M splits isometrically along the line (M, g) ∼= (R × M1,−dt2 ⊕ g1), where
(M1, g1) is a complete Riemannian manifold.

7 Proof of the Lorentzian Splitting Theorem

We will essentially follow the arguments given by Galloway in [14]. As we have
commented before, the main difficulty in the proof of the Lorentzian Splitting Theo-
rem is the lack of ellipticity of the d’Alambertian operator. The key idea to overcome
this problem consists of restricting Busemann functions to a maximal hypersurface
� having edge(�) contained in the level set b+ = 0. The existence of this hyper-
surface is ensured by a result by Bartnik, and has the remarkable advantage that the
induced d’Alambertian becomes elliptic there. Then, a series of maximum principle
type arguments ensure that the level sets b± = 0 are smooth spacelike hypersurfaces
which agree near γ(0), providing a posteriori the splitting of a tubular neighborhood
of γ. Finally, the global splitting is deduced by applying a continuation type argument
which consists of extending flat strips.

We have divided this section in four parts. The first three ones are devoted to study
some technical results needed for the proof: the super-harmonicity of the Busemann
functions, the nice properties of certain neighborhoods, and a key convexity result.
Then, in the forth subsection we outline the proof in six steps.
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7.1 Super-Harmonicity of Busemann Functions

We begin with a result which ensures the super-harmonic character of Busemann
functions when they are differentiable.

Lemma 7.1 Assume (M, g) obeys Ric(v, v) ≥ 0 for all timelike v ∈ T M. Let bγ

be the Busemann function associated to the ray γ. Assume bγ is smooth on an open
set U ⊂ I [γ] with unitary timelike gradient. Then �bγ ≤ 0 on U.

In this lemma we have restricted our attention to a domain U where bγ is differ-
entiable, and so, the Laplacian has sense. Notice also that, here, the nonnegative
character of the Ricci curvature implies the super-harmonicity of the Busemann
function, in contraposition to the sub-harmonicity ensured in the Riemannian case.

Sketch of proof of Lemma 7.1. Assume by contradiction �bγ(p) = H > 0
for some p ∈ U . Denote � = {bγ = c} ∩U0, where c = bγ(p) and U0 = U ∩
I−(γ(r0)), for some r0 > 0. From the properties of the Busemann function, ∇bγ

is past and unitary. Hence, the mean curvature of � becomes H� = �bγ along
�. Choose some q ∈ I+(p) ∩U0 close enough to p so that H�(x) ≥ H/2 for all
x ∈ � ∩ I−(q). Let �′ be a smooth spacelike hypersurface resulting from a small
deformation of � around p such that A ∩ I−(p) �= ∅. This deformation can be cho-
sen to additionally ensure H�′(x) ≥ H/3 for all x ∈ A := �′ \ � ⊂ I−(q). Then,
for r sufficiently large, br |�′ achieves an inferior minimum c′ < c at some point
z ∈ A, and hence �′ ⊂ {br ≥ c′}. Define the function βr : I−(yr ) → R by

βr (x) = r − ((r − c′)/2 + d(x, yr )),

where yr = ηr (
r−c′
2 ) and ηr : [0, r − c′] → M is maximal geodesic segment from

z to γ(r). Near z, the level set �r = {βr = c′} is a smooth spacelike hypersurface
which meets �′ tangentially at z, and lies at I−[�′]. Therefore, from the Maximum
Principle

H�r (z) ≥ H�′(z) ≥ H/3. (12)

On the other hand, from the nonnegative Ricci hypothesis the estimate (5) holds.
This provides the estimate:

H�r (z) < 2(n − 1)/(r − c). (13)

The contradiction is obtained from (12) and (13) by taking r → ∞. �

7.2 Nice Neighborhoods

A concept which will be crucial in the proof of the Lorentzian Splitting Theorem is
the notion of nice neighborhood.
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Definition 7.2 An open set U ⊂ I [γ] is said to be nice with respect to γ if there
exist constants K > 0 and T > 0 such that, for each q ∈ U and r > T , any maximal
unit speed geodesic segment σ from q to γ(r) satisfies

g0(σ
′(0),σ′(0)) ≤ K , g0 some fixed Riemannian metric on M.

Properties:

1. For each t , γ(t) is contained in a nice neighborhood.
2. Asymptotes to γ from points in nice neighborhoods are always timelike.
3. {br } converges locally uniformly to bγ on nice neighborhoods, and hence bγ is

continuous on nice neighborhoods.

The following lemma states that level sets of Busemann functions present a “nice”
structure when restricted to a nice neighborhood:

Lemma 7.3 The level set �c = {bγ = c} of a Busemann function bγ is a partial
Cauchy surface at any nice neighborhood U, i.e. �c is closed, edgeless and acausal.

Proof The closed character of�c inU directly follows from the continuity of bγ inU .
In order to prove that�c is edgeless, assume by contradiction that p ∈ edge(�c) �= ∅.
For every neighborhood U of p, there exists a timelike curve in U which goes from
I−(p,U ) to I+(p,U ) and does not meet�c. In particular, bγ does not take the value
c along that curve. This contradicts the continuity of bγ , since bγ takes values smaller
and greater than c at the extremes of the curve (recall (10)).

It remains to show that �c is acausal. We already know that it is achronal. By
contradiction, assume that �c is not acausal. Then, there exists p, q ∈ �c, p ≤ q,
p �� q. FromAvez-Seifert’s result (property 6. in Sect. 5), there exists a null geodesic
η connecting p, q. Let {αn}n be a sequence of maximal timelike segments connecting
q with γ(rn) and let α be a limit timelike geodesic. Let η̃ · αn be the resulting curve
from cutting the corner to the convolution η · αn . By making the cuts of the curves
appropriately, and after comparing them with the corner of η · α, we deduce

d(p, γ(rn)) ≥ length(η̃ · αn) ≥ length(αn) + ε = d(q, γ(rn)) + ε.

In particular,

brn (q) − brn (p) = d(p, γ(rn)) − d(q, γ(rn)) ≥ ε,

in contradiction with bγ(p) = bγ(q) = c. �

7.3 Key Convexity Result

The proof of the Lorentzian Splitting Theorem requires the following convexity
result.
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Lemma 7.4 Assume (M, g) obeys Ric(v, v) ≥ 0 for all timelike v ∈ T M. Let � be
a connected smooth spacelike hypersurface contained in a “sufficiently small” nice
neighborhood of γ(t). Assume the mean curvature of � is nonnegative, H� ≥ 0. If
bγ achieves a minimum along � then bγ is constant along �.

Remark 7.5 By a “sufficiently small” neighborhood we will understand a neigh-
borhood small enough to ensure that all properties along the argument below are
satisfied.

Sketch of proof. Assume by contradiction that bγ achieves a minimum along �,
but bγ is not constant along �. Let B be an open coordinate ball B ⊂ � centered
at q such that bγ |∂B is not constantly equal to the minimum value. Choosing B
sufficiently small, we can construct a smooth function h on � conveniently chosen
such that, in particular, fε,r = br + εh achieves a minimum on B, at p, for large
r . Define βp,r (x) = r − (l/2 + d(x, yr )), where yr = ηr (l/2) and ηr : [0, l] → M
is maximal geodesic segment from p to γ(r). The restrictions on h ensure that
ϕε,r = βp,r + εh is an upper support function of fε,r at p. Hence, ϕε,r is smooth
in some neighborhood of p, and achieves minimum at p. On the other hand, it
can be proved that Hess ds

q,r (w,w) is bounded from below uniformly in q and r ,
where ds

q,r (·) = d(·, ηq,r (s)). From this property, the nonnegative mean curvature
assumption and the restrictions on h, we deduce that ��ϕε,r (p) must be negative
for ε small and r large, in contradiction to the fact that ϕε,r achieves a minimum
at p. �

As a direct consequence of this convexity result we deduce:

Corollary 7.6 Let � be a smooth maximal spacelike hypersurface whose closure is
contained in a sufficiently small nice neighborhood U of γ(t). Assume� is achronal
in U and � is compact. If edge(�) ⊂ {bγ ≥ c} then � ⊂ {bγ ≥ c}.
Proof Otherwise, bγ achieves a minimum value c′ < c. From Lemma 7.4, it is bγ ≡
c′, in contradiction with the hypothesis edge(�) ⊂ {bγ ≥ c}. �

7.4 Proof of the Theorem

We are now in conditions to prove the Lorentzian Splitting Theorem. This will be
overcome in six steps.
Step 1: Existence of some spacelike hypersurface � with b± |�= 0.

By using a similar argument to the Riemannian case (see Sect. 3), one deduces
the following relations for the Busemann functions:

b+ + b− ≥ 0 on I [γ] and b+ + b− ≡ 0 on γ. (14)

Denote S± = {b± = 0} ∩U , with U a nice neighborhood for γ±. From Lemma7.3,
S+ is a partial Cauchy surface in U ; in particular, it is an imbedded topological
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hypersurface (see [21, pp. 413–415]). LetW be a small coordinate ball in S+ centered
at γ(0), withW ⊂ S+. By a fundamental existence result by Bartnik, concerning the
existence and regularity of solutions to the Dirichlet problem for the prescribedmean
curvature equation with rough boundary data [2, Theorem 4.1], there exists a smooth
maximal spacelike hypersurface � which is achronal in U , � compact, edge(�) =
edge(W ), and � meets γ. (In principle, � may present a singularity set as defined in
[2], where � can fail to be smooth, but the acausality of S+ ensures that it must be
empty). In particular, edge(�) ⊂ {b± ≥ 0} (recall (14)). By applyingCorollary 7.6 to
both b+ and b− we conclude � ⊂ {b+ ≥ 0} ∩ {b− ≥ 0}. This joined to (14) implies
b± |γ= 0, and so, � is forced to meet γ at γ(0). Since b+(γ(0)) = b−(γ(0)) = 0,
Lemma 7.4 implies b+ = b− = 0 on �.
Step 2: There is a line α with b+(α(t)) = t , b−(α(t)) = −t .

Let B ⊂ � be a geodesic ball in� centered at γ(0) of radius R. From each point of
B, there exist timelike asymptotes α± to γ±, resp. Let α : R → M be the (possibly)
broken geodesic given by:

α(t) =
{

α−(−t) −∞ < t ≤ 0
α+(t) 0 ≤ t < ∞.

From (11) and the fact that b± |�= 0, we have:

b+(α+(t)) = b+(α+(0)) + t = t
b−(α−(t)) = b−(α−(0)) + t = t

if t ≥ 0. (15)

From (15), (10) and the fact that α is a ray, we have:

t = b+(α+(t)) ≥ b+(α−(t)) + d(α−(t),α+(t)) = b+(α−(t)) + 2t.

Hence,
b+(α−(t)) ≤ −t, if t ≥ 0. (16)

From (14), (15), (16):

0 ≤ b+(α−(t)) + b−(α−(t)) ≤ −t + t = 0.

Therefore,
b+(α−(t)) = −b−(α−(t)) = −t, if t ≥ 0.

Summarizing:

b+(α(t)) = b+(α+(t)) = t if t ≥ 0
b+(α(t)) = b+(α−(−t)) = −(−t) = t if t ≤ 0.

(17)

The expression b−(α(t)) = −t is deduced similarly.
Finally, in order to show that α is a line, we deduce from (17) and (10):
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length(α |[t1,t2]) = t2 − t1 = b+(α(t2)) − b+(α(t1)) ≥ d(α(t1),α(t2)).

Therefore, α realizes the distance, and so, it is an (unbroken) line.
Step 3: The line α is normal to B.

From inequality (10) we deduce that functions

b+
q,r (x) = r − d(x,α(r)), b−

q,r (x) = −r + d(α(−r), x)

are upper and lower support functions, respectively, of b+ at q = α(0) for r > 0
sufficiently small, i.e.

b+
q,r ≥ b+ ≥ b−

q,r and b+
q,r (q) = b+(q) = b−

q,r (q).

Since b±
q,r are smooth at q, and∇b±

q,r = −α̇(0), necessarily b+ is once differentiable
at q, and ∇b+(q) = −α̇(0). Therefore, the claim follows by noting that ∇b+(q) is
perpendicular to B ⊂ �.
Step 4: The map E : U → E(U ), U = R × B, E(t, q) = exp(t Nq), Nq unitary
normal to B at q, is a diffeomorphism.

It suffices to show that E is injective and nonsingular. Notice that E injective if and
only if the normal geodesics to B do not intersect. The future normal geodesics from
B are asymptotes toγ+. Then, by applying a standard “rounding the corner” argument
we deduce that they do not intersect. The same happens for the past normal geodesics
from B. Finally, future and past normal geodesics cannot intersect either, since,
otherwise, a convolution of them at the intersection point violates the achronality of
the level surface b+ = 0.

In order to prove that E is nonsingular, assume by contradiction that α(a),
a > 0, is the first focal point to p ∈ B along some asymptote α. Then, there
exists some neighborhood V ⊂ R × B of [0, a) × {p} such that E : V → V ′ is dif-
feomorphism. Moreover, b+(expt Nq) = t on V . Hence, b+ is smooth on V , and
�b+ = H�t , �t = {b+ = t} ∩ V . On the one hand, we deduce from Lemma 7.1
that H�t = �b+ ≤ 0 along α |[0,a). On the other hand, since α(a) is a focal point,
necessarily lim supt→a H�t = ∞, a contradiction.
Step 5: The map E : U → E(U ) given above is an isometry (Local Splitting).

Wehave proved that b±(expt Nq) = ±t . Therefore, functions b± are smooth. From
Lemma 7.1, we also have�b± ≤ 0 onU . Hence, taking into account that b+ = −b−,
we deduce �b+ = 0 on U . Notice also that ∇b+ is the (past directed) unit vector
field tangent to the normal geodesics from B. Therefore, b+ obeys the well-known
formula

−∇b+(�b+) = Ric(∇b+,∇b+) + |Hess b+|2.

This equation, together with condition Ric(v, v) ≥ 0 for all timelike v and the van-
ishing of �b+, implies Hess b+ = 0 on U . Hence, ∇b+ is parallel on U , and thus,
E is an isometry.
Step 6: The Local Splitting can be extended to a Global Splitting.
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Finally, one needs to achieve the global splitting from the local one. To this aim,
some previous definitions are needed:

A flat strip is a totally geodesic isometric immersion f of (R × I,−dt2 + ds2)
into (M, g) such that f |R×{s} is line for all s ∈ I . Two lines γ1, γ2 are said strongly
parallel if they bound a flat strip. They are said parallel if there exists a finite sequence
of consecutively strongly parallel lines such that γ1 = β0,β1, . . . ,βk = γ2.

Let c : [0, 1] → M be any geodesic starting from a line γ. By using the local
splitting provided by step 5, there exists a flat strip containing both, γ and c. On
the other hand, if γ1, γ2 are parallel lines then I [γ1] = I [γ2] and the corresponding
Busemann functions agree. Denote by Pγ ⊂ M the set of points which lie on a line
which is parallel to γ. From previous property and (10), one deduces that b+ is
differentiable at Pγ and there exists one parallel line γq passing through any q ∈ Pγ .
From the local splitting, Pγ is open, and indeed, it becomes a connected component
of M . Hence, there exists one line γq parallel to γ, through every q ∈ M . Again by
the local splitting, this defines a parallel timelike vector field V on M . Therefore, V⊥
is a parallel distribution, and so, it is integrable. In conclusion, let H be the maximal
integral leave through p = γ(0). The map

I : R × H → M, I (t, q) = γq(t)

is the desired isometry. �

8 Open Problem: Bartnik’s Conjecture

In this last section we are going to recall an open problem, which is closely related
to the Splitting Lorentzian Theorem and has implications in Relativity. First, let us
consider the following prototype singularity theorem:

Prototype Singularity Theorem. Suppose that the spacetime (M, g), of dimension
n > 2, satisfies the following conditions:

(1) (M,g) contains a compact Cauchy surface,
(2) Ric(v, v) ≥ 0 for all timelike v ∈ T M ,
(3) every inextendible causal geodesic satisfies the generic condition.1

Then (M, g) contains an incomplete causal geodesic.
This is a typical singularity theorem because it ensures the causal geodesic incom-

pleteness of the spacetime (whichuses to be associated to the existenceof a singularity
in the universe) under certain physically reasonable conditions. Here, condition (3)
plays the role of “strict curvature condition”. So, reasoning as in the Introduction,
we can ask what happen if we suppress this condition and additionally assume that

1Certain curvature quantity is nonzero at some point of each inextendible causal geodesic [3,
Definition 12.7, Theorem 12.18].
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the thesis of the singularity theorem does not hold. In 1988, Bartnik conjectured that
under these new conditions a rigidity behavior arises. Concretely, he established [1]:
Bartnik’s Conjecture. Suppose that the spacetime (M, g), of dimension n > 2,
satisfies the following conditions:

(1) (M,g) contains a compact Cauchy surface,
(2) Ric(v, v) ≥ 0 for all timelike v ∈ T M .

Then either (M, g) is timelike geodesically incomplete, or else (M, g) splits isomet-
rically as a product (R × M1,−dt2 ⊕ g1),where (M1, g1) is a compact Riemannian
manifold.

This conjecture has been proved under some additional assumptions in [1, 11,
15] and, more recently, in [22], where the authors apply some new results about the
level sets of Busemann functions for spacetimes. However, as far as we know, the
conjecture remains unsolved in its full generality.
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Periodic Trajectories of Dynamical Systems
Having a One-Parameter Group
of Symmetries

Roberto Giambò and Paolo Piccione

Abstract We study a class of dynamical systems on a compact (semi-)Riemannian
manifold endowedwith a non trivial 1-parameter (pre-compact) groupof symmetries,
and we determine the existence of a class of periodic trajectories of these systems.

1 Introduction

The present was originally meant to be the note of an invited lecture given by the
second author at the International Research School “Differential Geometry and Sym-
metry”, held at theUniversidad deMurcia, Spain, inMarch 2009. During that lecture,
emphasis was given mostly to the study of topological and geometrical properties of
compact Lorentzian manifolds endowed with a Killing vector field which is time-
like somewhere. The main results presented concern some questions of compactness
for 1-parameter subgroups of the isometry group of such manifolds, and a proof of
existence of non trivial periodic geodesics. The material of the talk is almost entirely
contained in references [8, 20].

Actually, some of the techniques employed in [8] to prove the existence of non
trivial periodic geodesics in compact Lorentzian manifolds, apply as well in the
more general case of periodic solutions of dynamical systems. In this note we will
show how to extend the results of [8] to this more general situation using suitable
notions of symmetry, thus fitting in the general theme of the Research School. We
will consider here two types of dynamical systems whose configuration space is a
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(compact) Riemannian or semi-Riemannian manifold (M, g), namely, conservative
systems, i.e., of the type kinetic energy plus potential, and exact magnetic dynamical
systems. Trajectories of these systems are curves x : [0, L] → M that are solutions
of a certain second order differential equation of the type D

dt ẋ = F(x, ẋ), where D
dt is

the operator of covariant differentiation for vector fields along x induced by the Levi–
Civita connection of g, and F : T M → R is a smooth map defined by the potential
energy or the magnetic field. When F ≡ 0, then solutions of the dynamical system
are geodesics of (M, g). A trajectory x : [0, L] → M of the system is periodic if
x(0) = x(L) and ẋ(0) = ẋ(L).

We will define a notion of symmetry for such systems (Definitions 2.1, 3.1),
which is an isometry of the base manifold that preserves the potential energy or the
magnetic field. The first key observation here is that when the dynamical systems
admits a non trivial 1-parameter group of isometries, or, equivalently, a Killing vector
field whose flow preserves the potential energy or the magnetic field, then some of
the flow lines of the group are trajectories of the system. Such special flow lines
have a variational characterization, i.e., they are those flow lines passing through the
critical point of some natural smooth function on the basemanifold (Propositions 2.6,
2.7, 3.6). In particular, being solutions of a first order differential equation, such
special trajectories do not have self-intersections. It is interesting to observe that
infinitesimal symmetries of dynamical systems produce conservation laws for the
solutions of such systems (Lemmas 2.4 and 3.4); these are special cases of Noether’s
theorem first theorem on conserved quantities from symmetries, see [18].

When the base manifold (M, g) is compact and Riemannian, then its isometry
group is compact. The second important observation is that the compactness of the
isometry group implies that when the dynamical system admits a non trivial one-
parameter group of symmetries, then it also admits a non trivial one-parameter group
of symmetries all of whose flow lines are closed (Proposition 4.5). The proof of this
fact is based on elementary Lie group techniques; it implies in particular that if there
exists a non trivial one-parameter group of symmetries, then the manifold M has the
topology of a generalized Seifert space, i.e., it admits a smooth circle action without
fixed points (Proposition 5.1). Using these two observations, periodic trajectories
of dynamical systems on compact Riemannian manifolds are obtained from flow
lines of the group of symmetries. Multiplicity of periodic trajectories can be studied
using equivariant Ljusternik–Schnirelmann category theory, which provides a lower
bound for critical orbits of a smooth function on a compact manifold invariant by
the action of a compact group of transformations (Sect. 5).

The very same conclusions can be drawn for dynamical systems on arbitrary com-
pact semi-Riemannian manifolds (M, g) having a non trivial one-parameter group
of symmetries which is pre-compact in the isometry group of (M, g). Also in this
situation one has the existence of a non trivial 1-parameter group of symmetries all
of whose flows lines are closed. Recall that, unlike the Riemannian case, the (con-
nected component of the identity of the) isometry group of an arbitrary compact
semi-Riemannian manifold is in general not compact, and thus the pre-compactness
of 1-parameter subgroups has to be explicitly assumed. However, there are important
situations where this property is satisfied. For instance, when the compact manifold


