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Núria Fagella
Universitat de Barcelona

Joan Verdera
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and José M. Mazón
Parabolic Quasilinear Equations Minimizing
Linear Growth Functionals, PM 223

2004 Guy David
Singular Sets of Minimizers for the
Mumford-Shah Functional, PM 233

2005 Antonio Ambrosetti and Andrea Malchiodi
Perturbation Methods and Semilinear
Elliptic Problems on Rn, PM 240
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Preface

Over the millennia Diophantine equations have supplied an extremely fertile source
of problems. Their study has illuminated ever increasing points of contact between
very different subject areas, including algebraic geometry, mathematical logic, er-
godic theory and analytic number theory. The focus of this book is on the interface
of algebraic geometry with analytic number theory, with the basic aim being to
highlight the rôle that analytic number theory has to play in the study of Dio-
phantine equations.

Broadly speaking, analytic number theory can be characterised as a subject
concerned with counting interesting objects. Thus, in the setting of Diophantine
geometry, analytic number theory is especially suited to questions concerning the
“distribution” of integral and rational points on algebraic varieties. Determining
the arithmetic of affine varieties, both qualitatively and quantitatively, is much
more complicated than for projective varieties. Given the breadth of the domain
and the inherent difficulties involved, this book is therefore dedicated to an explo-
ration of the projective setting.

This book is based on a short graduate course given by the author at the
I.C.T.P School and Conference on Analytic Number Theory, during the period
23rd April to 11th May, 2007. It is a pleasure to thank Professors Balasubrama-
nian, Deshouillers and Kowalski for organising this meeting. Thanks are also due
to Michael Harvey and Daniel Loughran for spotting several typographical errors
in an earlier draft of this book. Over the years, the author has greatly benefited
from discussing mathematics with Professors de la Bretèche, Colliot-Thélène, Fou-
vry, Hooley, Salberger, Swinnerton-Dyer and Wooley. A sincere debt of thanks is
owed to them all. Finally, it is essential to single out Professor Heath-Brown for
special gratitude, both as a mathematical inspiration and for the generosity of his
explanations.



Chapter 1

Introduction

The study of integer solutions to Diophantine equations is a topic that is almost
as old as mathematics itself. Since its inception at the hands of Diophantus of
Alexandria in 250 A.D., it has been found to relate to virtually every mathematical
field. Suppose that we are given a polynomial f ∈ Z[x1, . . . , xn] and write

Sf := {x = (x1, . . . , xn) ∈ Zn \ {0} : f(x) = 0} (1.1)

for the corresponding locus of non-zero integer solutions. There are a number of
basic questions that can be asked about the set Sf .

• When is Sf non-empty?

• How large is Sf when it is non-empty?

• When Sf is infinite can we describe the set in some way?

Much of our progress has been driven by trying to understand the situation for
equations in only n = 2 or 3 variables, with the arithmetic of curves being central
in our understanding of Diophantine equations. The terrain for equations in 4
or more variables remains relatively obscure, however, with only a scattering of
results and conjectures available.

The focus of this book will be on quantitative aspects of the arithmetic
of higher-dimensional projective varieties. Thus our interest lies with the second
and third questions posed above, for Diophantine equations f = 0 in which f is
homogeneous and the corresponding zero locus Sf is infinite. The main goal is to
understand how the counting function

N(f ;B) := #{x ∈ Sf : ‖x‖ � B} (1.2)

behaves, as B →∞. Here ‖ · ‖ : Rn → R>0 is an arbitrary choice of norm. We will
always reserve | · | for the norm |x| := max1�i�n |xi|, for any x ∈ Rn.

Aside from being intrinsically interesting in their own right, the study of
functions like N(f ;B) often helps determine whether or not the equation f = 0
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has any non-trivial integer solutions at all. In many applications of the Hardy–
Littlewood circle method, for example, one is able to prove that Sf is infinite by
showing thatN(f ;B)→∞ as B →∞. In addition to the solubility of Diophantine
equations, there are a number of other situations where a proper understanding
of N(f ;B) is extremely desirable. We will return to this topic in Section 1.3.

During the course of this work we will meet numerous estimates of one kind
or another. It seems worthwhile recording some of the basic notation here. We will
write A(x) = O(B(x)) to mean that there exists a constant c > 0 and x0 ∈ R
such that |A(x)| � cB(x) for all x � x0. We will often use the alternative notation
A(x) � B(x) or B(x) � A(x). Furthermore, we will take A(x) � B(x) to mean
A(x)� B(x)� A(x) and A(x) = o(B(x)) to mean

lim
x→∞

A(x)
B(x)

= 0.

Finally the relation A(x) ∼ B(x) will mean

lim
x→∞

A(x)
B(x)

= 1.

The implied constants in our work will be uniform unless explicitly indicated
otherwise by an appropriate subscript. We will occasionally find it convenient to
depart from this convention, but such deviations will be clearly highlighted.

1.1 A naive heuristic

Given our discussion above, it is useful to have a general idea of which homogeneous
polynomials f , hitherto called forms, might have an infinite zero locus Sf . Suppose
that f ∈ Z[x1, . . . , xn] is a form of degree d � 1. Then for the vectors x ∈ Zn

counted by N(f ;B), the values of f(x) will all be of order Bd. In fact a positive
proportion of them will have exact orderBd. Thus the probability that a randomly
chosen value of f(x) should vanish might be expected to be of order B−d. Since
the number of x to be considered has order Bn, this leads us to the following
general expectation.

Heuristic. When n � d we have

Bn−d � N(f ;B)� Bn−d. (1.3)

As a crude first approximation, therefore, this heuristic tells us that we might
expect polynomials whose degree is less than the number of variables to have
infinitely many solutions. Unfortunately there are a number of things that can
conspire to upset this heuristic expectation. First and foremost, local conditions
will often provide a reason for N(f ;B) to be identically zero no matter the values
of d and n. By local obstructions we mean that the obvious necessary conditions
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for Sf to be non-empty fail. These are the conditions that the equation f(x) = 0
should have a non-zero real solution x ∈ Rn, and secondly, that the congruence

f(x) ≡ 0 (mod pk)

should be soluble for every prime power pk, with p � x.
It is quite easy to construct examples that illustrate the failure of these local

conditions. For example, the equation

x2d
1 + · · ·+ x2d

n = 0

does not have any integer solutions, since it patently does not have any real solu-
tions. Let us now exhibit an example, due to Mordell [94], of a polynomial equation
that fails to have integer solutions because it fails to have solutions as a congru-
ence modulo prime powers. Let K be a number field of degree d over Q, with ring
of integers OK , such that the rational prime p is inert in OK . Write

N(y1, . . . , yd) := NK/Q(y1ω1 + · · ·+ ydωd)

for the corresponding norm form, where ω1, . . . , ωd is a basis for K over Q. Then
N is a homogeneous polynomial of degree d, with coefficients in Z. Exercise 1.1
shows that p | N(y) if and only if p | y, for any y ∈ Zd. We define the form

f1 := N(x1, . . . , xd) + pN(xd+1, . . . , x2d) + · · ·+ pd−1N(xd2−d+1, . . . , xd2), (1.4)

which has degree d and d2 variables. We claim that the only integer solution to
the equation f1(x) = 0 is the trivial solution x = 0. To see this we argue by
contradiction. Thus we suppose there to be a vector x ∈ Zd2

such that f1(x) = 0,
with gcd(x1, . . . , xd2) = 1. Viewed modulo p we deduce that p | N(x1, . . . , xd),
whence p | (x1, . . . , xd). Writing xi = pyi for 1 � i � d, and substituting into the
equation f1 = 0, we find that

pd−1N(y1, . . . , yd) +N(xd+1, . . . , x2d) + · · ·+ pd−2N(xd2−d+1, . . . , xd2) = 0.

But then we deduce in a similar fashion that p | (xd+1, . . . , x2d). We may clearly
continue in this fashion, ultimately concluding that p | (x1, . . . , xd2), which is a
contradiction.

The polynomial (1.4) illustrates that for any d it is possible to construct
examples of homogeneous polynomials in d2 variables that have no non-zero in-
teger solutions. The construction is purely local, relying upon showing that the
polynomial fails to have a non-zero solution in Qd2

p . It was conjectured by Artin
that Qp is a C2 field, so that f should have a non-trivial p-adic zero as soon as
n > d2. The latter property is certainly true of forms of degree at most 3. However,
Artin’s conjecture is now known to be false, with Terjanian [118] having provided
a counterexample with p = 2, d = 4 and n = 18. In a positive direction, Ax and
Kochen [1] have used methods from mathematical logic to show that for every d
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there is a number p(d) such that f has a non-trivial p-adic zero provided n > d2

and p > p(d). When no restriction is placed on the size of p we know that there is
a number vd such that the form f has a non-trivial p-adic zero as soon as n > vd.
Brauer [8] achieved the first result in this direction using an elementary argument
based on multiply nested inductions. The resulting value of vd was too large to
write down, but the central ideas have since been revisited and improved upon by
Wooley [124], with the outcome that we may take vd � d2d

.
So far we have only seen examples of polynomials f for which the zero locus

Sf is empty. In this case the corresponding counting function N(f ;B) is partic-
ularly easy to estimate! There are also examples which show that N(f ;B) may
grow in quite unexpected ways, even when n � d. An equation that illustrates
excessive growth is provided by the polynomial

f2 := xd
1 − x2(xd−1

3 + · · ·+ xd−1
n ). (1.5)

Here there are trivial solutions of the type (0, 0, a3, . . . , an) which already con-
tribute � Bn−2 to the counting function N(f ;B), whereas (1.3) predicts that we
should have exponent n− d.

It is also possible to construct examples of varieties which demonstrate in-
ferior growth, as observed by Wooley [125]. Let n > d2 and choose any d2 linear
forms L1, . . . , Ld2 ∈ Z[x1, . . . , xn] that are linearly independent over Q. Consider
the form

f3 := f1(L1(x1, . . . , xn), . . . , Ld2(x1, . . . , xn)),

where f1 is given by (1.4). Then it is clear that N(f3;B) has the same order
of magnitude as the counting function associated to the system of linear forms
L1 = · · · = Ld2 = 0. Since these forms are linearly independent we deduce that
N(f3;B) has order of magnitudeBn−d2

, whereas (1.3) led us to expect an exponent
n− d.

We have seen several reasons why (1.3) might fail — how about some evidence
supporting it? One of the most outstanding achievements in this direction is the
following very general result due to Birch [6].

Theorem 1.1. Suppose f ∈ Z[x1, . . . , xn] is a non-singular homogeneous polyno-
mial of degree d in n > (d− 1)2d variables. Assume that f(x) = 0 has non-trivial
solutions in R and each p-adic field Qp. Then there is a constant cf > 0 such that

N(f ;B) ∼ cfBn−d,

as B →∞.

We will discuss the proof of this result for the case d = 4 in Section 8.2.
Birch’s result does not apply to either of the polynomials f2, f3 that we consid-
ered above, since both of these contain a rather large singular locus. Since generic
homogeneous polynomials are non-singular, Birch’s result answers our initial ques-
tions completely for typical forms with n > (d− 1)2d. It would be of considerable
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interest to reduce the lower bound for n, but except for d � 4 this has not been
done. Theorem 1.1 is established using the Hardy–Littlewood circle method, and
exhibits a common feature of all Diophantine problems successfully tackled via
this machinery: the number of variables involved needs to be large compared to
the degree. In particular, there is an obvious disparity between the range for n in
Birch’s result and the range for n in (1.3).

Before coming to the Hardy–Littlewood circle method, we will also discuss
some of the other technology that has been brought to bear on the quantitative
analysis of homogeneous Diophantine equations. Whereas the circle method is
geared towards forms for which the number of variables n is large compared to
the degree d, we will also meet machinery to deal with equations in which n is
comparable in size with d, in addition to those equations for which n is much
smaller than d.

1.2 The basic counting function

It turns out that phrasing things in terms of single homogeneous polynomial equa-
tions is far too restrictive. It is much more satisfactory to work with arbitrary pro-
jective algebraic varieties V ⊆ Pn−1. All of the varieties that we will work with are
assumed to be cut out by a finite system of homogeneous equations defined over Q.
Moreover, whenever we speak of a variety as being irreducible we will henceforth
take this to mean that the variety is geometrically reduced and irreducible. In the
case of varieties cut out by a single equation this is equivalent to the underlying
polynomial being irreducible over the complex numbers.

Our main interest lies with those varieties V for which we expect the set
V (Q) = V ∩ Pn−1(Q) to be infinite. Let x = [x] ∈ Pn−1(Q) be a projective
rational point, with x ∈ Zn chosen so that gcd(x1, . . . , xn) = 1. Then we define
the height of x to be

H(x) := ‖x‖.
This therefore defines a function H : Pn−1(Q)→ R>0, and is none other than the
exponential height function metrized by the choice of norm ‖ ·‖. Given any locally
closed subset U ⊆ V , we may then define the counting function

NU (B) := #{x ∈ U(Q) : H(x) � B}, (1.6)

for each B � 1. All known examples of asymptotic formulae for the counting
function NU (B) take the shape

NU (B) ∼ cBa(logB)b,

as B → ∞, for a, b, c � 0 such that a ∈ Q and b ∈ 1
2Z. In Chapter 2 we will

encounter an attempt to interpret these quantities in terms of the underlying
geometry of V .
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The main difference between the counting function NU (B) and the quantity
introduced in (1.2) is that we are now only interested in primitive integer solutions,
by which we mean that the components of the vector x ∈ Zn should share no
common prime factors. This formulation has the advantage of treating all scalar
multiples of a given non-zero integer solution as a single point. We will henceforth
write Zn

prim for the set of primitive vectors in Zn.
Recall the definition of the Möbius function μ : N → {0,±1}, which is given

by

μ(n) :=

⎧⎪⎨⎪⎩
0, if p2 | n for some prime p,

1, if n = 1,
(−1)r, if n = p1 · · · pr for distinct primes p1, . . . , pr.

The Möbius function is a multiplicative arithmetic function that is of fundamental
importance in analytic number theory. It is frequently engaged via the simple
identity ∑

d|n
μ(d) =

{
1, if n = 1,
0, if n ∈ Z>1.

It is through this rôle as a characteristic function that it figures in the quantitative
study of Diophantine equations. We illustrate the procedure by showing how it
allows us to relate the counting function (1.6) to our earlier counting function
N(f ;B) in (1.2), when U = V and V ⊂ Pn−1 is a hypersurface with underlying
form f ∈ Z[x1, . . . , xn]. On noting that x and −x represent the same point in
Pn−1, it follows that

NV (B) =
1
2
#{x ∈ Zn

prim : f(x) = 0, ‖x‖ � B}

=
1
2

∞∑
k=1

μ(k)#{x ∈ Zn : f(x) = 0, k | x, ‖x‖ � B}.

But then a simple change of variables furnishes

NV (B) =
1
2

∞∑
k=1

μ(k)N(f ; k−1B). (1.7)

This process of using the Möbius function will henceforth be termed Möbius in-
version.

The simplest sort of subvariety in Pn−1 is obtained by taking f to be identi-
cally zero. This corresponds to taking V = Pn−1. Schanuel [107] has obtained an
asymptotic formula for NPn−1(B). There is a natural way to define a height func-
tion on Pn−1(K) for any algebraic number field K, and it is to this more general
context that Schanuel’s result applies. It will be instructive to present a proof of
this result in the case K = Q.


