
123

S PR I N G E R  B R I E FS  I N  M AT H E M AT I C AL  PH Y S I C S 18

Thomas Weiss
Patrik Ferrari
Herbert Spohn

Reflected 
Brownian 
Motions in the 
KPZ Universality 
Class



SpringerBriefs in Mathematical Physics

Volume 18

Series editors

Nathanaël Berestycki, Cambridge, UK
Mihalis Dafermos, Cambridge, UK
Tohru Eguchi, Tokyo, Japan
Atsuo Kuniba, Tokyo, Japan
Matilde Marcolli, Pasadena, USA
Bruno Nachtergaele, Davis, USA



SpringerBriefs are characterized in general by their size (50-125 pages) and fast
production time (2-3 months compared to 6 months for a monograph).

Briefs are available in print but are intended as a primarily electronic publication to
be included in Springer’s e-book package.

Typical works might include:

• An extended survey of a field
• A link between new research papers published in journal articles
• A presentation of core concepts that doctoral students must understand in order
• to make independent contributions
• Lecture notes making a specialist topic accessible for non-specialist readers.

SpringerBriefs in Mathematical Physics showcase, in a compact format, topics of
current relevance in the field of mathematical physics. Published titles will
encompass all areas of theoretical and mathematical physics. This series is intended
for mathematicians, physicists, and other scientists, as well as doctoral students in
related areas.

More information about this series at http://www.springer.com/series/11953



Thomas Weiss • Patrik Ferrari
Herbert Spohn

Reflected Brownian Motions
in the KPZ Universality Class

123



Thomas Weiss
Zentrum Mathematik
Technische Universität München
Garching
Germany

Patrik Ferrari
Institut für Angewandte Mathematik
Universität Bonn
Bonn
Germany

Herbert Spohn
Zentrum Mathematik, M5
Technische Universität München
Munich
Germany

ISSN 2197-1757 ISSN 2197-1765 (electronic)
SpringerBriefs in Mathematical Physics
ISBN 978-3-319-49498-2 ISBN 978-3-319-49499-9 (eBook)
DOI 10.1007/978-3-319-49499-9

Library of Congress Control Number: 2016958720

© The Author(s) 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

In our notes, we study a model of interacting one-dimensional Brownian motions in
considerable detail. At first sight, the dynamics look simple: the Brownian motions
are ordered, and Brownian motion with label j is reflected from the one with label
j� 1. This model belongs to the Kardar–Parisi–Zhang universality class. Adding
to the results as presented in our notes a recent contribution by Kurt Johansson,
this model allows for the so far most complete asymptotic analysis. The limiting
expressions are likely to be valid for all models in the KPZ class.

The notes are based on two joint publications and the Ph.D. Thesis of Thomas
Weiss. Our research was partially supported by the DFG under the grant numbers
SP181/29-1 and SFB1060, project B04.

Bonn, Germany Thomas Weiss
Munich, Germany Patrik Ferrari
September 2016 Herbert Spohn
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Chapter 1
Introduction

Back in 1931 Hans Bethe diagonalized the hamiltonian of the one-dimensional
Heisenberg spin chain through what is now called the “Bethe ansatz” (Bethe 1931).
At that time physicists were busy with other important developments and hardly real-
ized the monumental step: for the first time a strongly interacting many-body system
had been “solved exactly”. In the 1960s Lieb and Liniger (1963), Yang (1967), and
many more (Sutherland 2004) discovered that other quantum systems can be handled
via Bethe ansatz, which triggered a research area known as quantum integrability.
More details on the history of the Bethe ansatz can be found in Batchelor (2007).
Even with the Bethe ansatz at one’s disposal, it is a highly non-trivial task to arrive at
predictions of physical interest. This is why efforts in quantum integrability continue
even today, reenforced by the experimental realization of such chains through an
array of cold atoms (Simon et al. 2011).

On a mathematical level, quantum hamiltonians and generators of Markov
processes have a comparable structure. Thus one could imagine that the Bethe ansatz
is equally useful for interacting stochastic systems with many particles. The first
indication came somewhat indirectly from the Kardar-Parisi-Zhang equation (Kar-
dar et al. 1986), for short KPZ, in one dimension. We refer to books (Barabasi and
Stanley 1995; Meakin 1998), lecture notes (Johansson 2006; Spohn 2006; Quastel
2011; Borodin and Gorin 2012; Borodin and Petrov 2014; Spohn 2015), and sur-
vey articles (Halpin-Healy and Zhang 1995; Krug 1997; Sasamoto and Spohn 2011;
Ferrari and Spohn 2011; Corwin 2012; Takeuchi 2014; Quastel and Spohn 2015;
Halpin-Healy and Takeuchi 2015). The KPZ equation is a stochastic PDE governing
the time-evolution of a height function h(x, t) at spatial point x and time t , h ∈ R,
x ∈ R, t ≥ 0. The equation reads

∂t h = 1
2 (∂xh)2 + 1

2∂2
x h + W (1.1)

with W (x, t) normalized space-time white noise. We use here units of height, space,
and time such that all coupling parameters take a definite value. For a solution
of (1.1), the function x �→ h(x, t) is locally like a Brownian motion, which is
too singular for the nonlinearity to be well-defined as written. This difficulty was
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T. Weiss et al., Reflected Brownian Motions in the KPZ Universality Class,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-49499-9_1

1



2 1 Introduction

resolved through the regularity structures of Hairer (2013), see also Gubinelli and
Perkowski (2015) for a somewhat different approach. Kardar (1987) noted one link to
quantum integrability. He considered the moments of eh and established that they are
related to the δ-Bose gas with attractive interactions, which is an integrable quantum
many-body system (Lieb and Liniger 1963). More precisely, one defines

E

( n∏
α=1

eh(yα,t)
)

= ft (�y) (1.2)

with �y = (y1, ..., yn). Then
∂t ft = −Hn ft , (1.3)

where Hn is the n-particle Lieb-Liniger hamiltonian

Hn = − 1
2

n∑
α=1

∂2
yα

− 1
2

n∑
α �=α′=1

δ(yα − yα′). (1.4)

Almost thirty years later the generator of the asymmetric simple exclusion process
(ASEP) was diagonalized through the Bethe ansatz. In case of N sites, the ASEP
configuration space is {0, 1}N signalling a similarity with quantum spin chains. In
fact, the ASEP generator can be viewed as the Heisenberg chain with an imagi-
nary XY-coupling. For the totally asymmetric limit (TASEP) and half filled lattice,
Gwa and Spohn (1992) established that the spectral gap of the generator is of order
N−3/2. The same order is argued for the KPZ equation. This led to the strong belief
that, despite their very different set-up, both models have the same statistical prop-
erties on large space-time scales. In the usual jargon of statistical mechanics, both
models are expected to belong to the same universality class, baptized KPZ univer-
sality class according to its most prominent representative.

The KPZ equation is solved with particular initial conditions. Of interest are
(i) sharp wedge, h(x, 0) = −c0|x | in the limit c0 → ∞, (ii) flat, h(x, 0) = 0,
and (iii) stationary, h(x, 0) = B(x) with B(x) two sided Brownian motion. The
quantity of prime interest is the distribution of h(0, t) for large t . More ambitiously,
but still feasible in some models, is the large time limit of the joint distribution of
{h(xα, t),α = 1, ..., n}.

In our notes we consider an integrable system of interacting diffusions, which is
governed by the coupled stochastic differential equations

dx j (t) = βe−β(x j (t)−x j−1(t))dt + dBj (t), (1.5)

where {Bj (t)} a collection of independent standard Brownian motions. For the para-
meter β > 0 we will eventually consider only the limit β → ∞. But for the purpose
of our discussion we keep β finite for a while. In fact there is no choice, no other
system of this structure is known to be integrable. The index set depends on the prob-
lem, mostly we choose j ∈ Z. Note that x j interacts only with its left index neighbor
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x j−1. The drift depends on the slope, as it should be for a proper height function.
But the exponential dependence on x j − x j−1 is very special, however familiar from
other integrable systems. The famous Toda chain (Toda 1967) is a classical integrable
system with exponential nearest neighbour interaction. Its quantized version is also
integrable (Sutherland 1978).

Interaction with only the left neighbor corresponds to the total asymmetric version.
Partial asymmetry would read

dx j (t) = (
pβe−β(x j−x j−1) − (1 − p)βe−β(x j+1−x j )

)
dt + dBj (t) (1.6)

with 0 ≤ p ≤ 1. These are non-reversible diffusion processes. Only in the symmetric
case, p = 1

2 , the drift is the gradient of a potential and the diffusion process is
reversible. Then the model is no longer in the KPZ universality class and has very
distinct large scale properties, see Guo et al. (1988); Chang and Yau (1992), for
example.

Equations (1.5) and (1.6) should be viewed as a discretization of (1.1). The inde-
pendent Brownian motions are the natural spatial discretization of the white noise
W (x, t). For the drift one might have expected the form (x j − x j−1)

2 + x j+1 −
2x j + x j−1, but integrability forces another dependence on the slope. For p = 1 the
similarity with the KPZ equation is even stronger when considering the exponential
moments

E

( n∏
α=1

eβxmα (t)
)

= ft ( �m), (1.7)

�m ∈ Z
n . Differentiating in t one obtains

β−2 d

dt
ft ( �m) =

n∑
α=1

∂α ft ( �m) + 1
2

n∑
α,α′=1

δ(mα − mα′) ft ( �m) − n ft ( �m), (1.8)

where δ is the Kronecker delta and ∂α f ( �m) = f (...,mα, ...) − f (...,mα − 1, ...).
When comparing with (1.4), instead of ∂α one could have guessed the discrete Lapla-
cian �α = −∂T

α∂α with T denoting the transpose. To obtain such a result, the drift
in (1.5) would have to be replaced by βe−β(x j−x j−1) + βe−β(x j−x j+1). But the linear
equations for the exponential moments are no longer Bethe integrable. Note however
that the semigroups exp[∂αt] and exp[�αt] differ on a large scale only by a uniform
translation proportional to t . With such a close correspondence one would expect
system (1.5) to be in the KPZ universality class for any β > 0, as has been verified to
some extent (Amir et al. 2011; Sasamoto and Spohn 2010; Borodin et al. 2015). Also
partial asymmetry, 1

2 < p < 1, should be in the KPZ universality class. In fact, the
true claim is by many orders more sweeping: the exponential in (1.6), p �= 1

2 , can be
replaced by “any” function of x j − x j−1, except for the linear one, and the system is
still in the KPZ universality class. There does not seem to be a promising idea around
of how to prove such a property. Current techniques heavily rely on integrability.
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This is a good opportunity to reflect another difficulty. Bethe ansatz is like a
first indication. But an interesting asymptotic analysis is yet another huge step. This
is well illustrated by the KPZ equation. Solving the n-particle Eq. (1.2) yields the
exponential moment E

(
enh(0,t)

)
. However these moments grow rapidly as exp(n3),

much too fast to determine the distribution of h(0, t). Because of the underlying
lattice, for system (1.5) the exponential moments grow only as exp(n2), still too
fast. In replica computations one nevertheless continues formally, often with correct
results (Calabrese et al. 2010; Imamura and Sasamoto 2013; Dotsenko 2010). A proof
must exploit integrability, but cannot use exponential moments directly (Borodin and
Corwin 2013).

The system (1.5) simplifies substantially in the limit β → ∞. Then one arrives at
interacting Brownian motions, where the Brownian motions maintain their ordering
and Brownian motion with label j is reflected from its left neighboring Brownian
motion with label j − 1, see Sasamoto and Spohn (2015), Appendix B. These are
the reflected Brownian motions of the title. The proper definition of their dynamics
requires martingales involving local time, as will be discussed in Chap. 2. Our note
discusses exclusively this limit case. Thereby we arrive at a wealth of results on
universal statistical properties. Only for the TASEP a comparably detailed analysis
has been carried out (Ferrari and Spohn 2011), which does not come as a surprise,
since in the limit of low density, under diffusive rescaling of space-time and switching
to a moving frame of reference, the TASEP converges to system (1.5) (Karatzas et al.
2016). We will not exploit this limit. Our philosophy is to work in a framework which
uses only interacting diffusions.

The limit β → ∞ is meaningful also for p �= 0, 1. Then the order of Brownian
particles is still preserved, but the reflection between neighbors is oblique. The sym-
metric version, p = 1

2 , corresponds to independent Brownian motions, maintaining
their order, a case which has been studied quite some time ago (Harris 1965). The
partially asymmetric version of the model is still Bethe integrable, but less tractable.
Only for the half-Poisson initial condition, an expression sufficiently compact for
asymptotic analysis has been obtained (Sasamoto and Spohn 2015).

The notion of integrability was left on purpose somewhat vague. In the β = ∞
limit for (1.5), integrability can be more concretely illustrated. For this case, let us set
j = 2, ..., n with x1(t) a standard Brownian motion. Then the transition probability
from �x to �y at time t is given by

P
(�x(t) ∈ d�y∣∣�x(0) = �x ) = det{Φ(i− j)

t (y j − xi )}1≤i, j≤n d�y, (1.9)

where

Φ
( j)
t (ξ, t) = 1

2πi

∫

iR+δ

dw etw
2/2+ξww− j (1.10)

with δ > 0 as first established by Sasamoto and Wadati (1998). There is a similar
formula for the TASEP (Schütz 1997). Such formuli nourish the hope to uncover
interesting features of the model.

http://dx.doi.org/10.1007/978-3-319-49499-9_2
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The three initial conditions of particular interest, wedge, flat, and stationary, are
easily transcribed to system (1.5) and become (i) packed, half-infinite system with
x j (0) = 0 for j = 1, 2, ..., (ii) periodic, x j (0) = j for j ∈ Z, (iii) Poisson,
{x j (0), j ∈ Z} is a Poisson process with constant density. According to our discus-
sion, in the latter case one might think that the quantity of prime interest is x1(t). But
the reflection induces a propagation of statistical fluctuations, as can also be seen
from (1.7) together with (1.8). Their propagation speed is 1 and the correct quantity
is x�t�(t) with �t� denoting integer part. Along other space-time observation rays a
central limit type behavior would be observed.

As for other models in the KPZ universality class, our asymptotic analysis is lim-
ited to a single time and arbitrary number of spatial, resp. index points. Only recently
Johansson (2016) posted a result on the joint distribution of (x�t�(t), x�αt�(αt)),
α > 0, and identified its universal limit. Possibly such progress will lead eventually
to a complete understanding of the Airy sheet and the KPZ fixed point (Corwin et al.
2015).

Following the format of Springerbriefs, there is a short summary for each chapter.
But let us still explain of how our material is organized as a whole. The following
three chapters provide background material. In Chap. 2 we properly define the infinite
system of reflected Brownian motions as the solution of a martingale problem and
provide a variational formulation of this solution. Also the uniform Poisson process is
identified as stationary measure. In Chap. 3 we introduce the theory of determinantal
point processes and some related material on Fredholm determinants. At first sight
this looks unconnected. But to study the quantities of prime interest one first identifies
a “hidden” signed determinantal process which leads to an analytically more tractable
representation. In the long time limit we will arrive at a stochastic process which
describes the limiting spatial statistics. Such a process has been baptised Airy process,
in analogy to the Airy kernel and Airy operator which are one of the defining elements.
In fact there are several Airy processes depending on the initial conditions and on
the window of observation. The literature on Airy processes is somewhat dispersed.
Chapter 4 provides a streamlined account.

In Chap. 5 we investigate the two deterministic initial data, packed and periodic,
while in Chap. 6 we study random initial data as defined through a Poisson process.
These results will be used to discuss more general initial data, which should be
viewed as an open ended enterprise. One natural choice is to have in the left half
lattice either packed, periodic, or Poisson join up with either one of them in the right
half lattice. An example would be to have periodic to the left and Poisson to the
right. This then leads to distinct cross over processes. The mixed cases are studied
in Chap. 7. Slow decorrelation, referring to space-like paths more general than fixed
time, is a further topic. Each core chapter builds on a suitable asymptotic analysis.
In the early days the required techniques were developed ad hoc for the particular
model. Over the years a common strategy based on contour integrations has been
established, which will be also used here. Thus on the basis of a specific example
one can learn a technique applicable also to other models.

http://dx.doi.org/10.1007/978-3-319-49499-9_2
http://dx.doi.org/10.1007/978-3-319-49499-9_3
http://dx.doi.org/10.1007/978-3-319-49499-9_4
http://dx.doi.org/10.1007/978-3-319-49499-9_5
http://dx.doi.org/10.1007/978-3-319-49499-9_6
http://dx.doi.org/10.1007/978-3-319-49499-9_7


6 1 Introduction

References

H. Bethe. Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette.
Zeitschrift für Physik 71, 205–226 (1931)

E.H. Lieb, W. Liniger, Exact analysis of an interacting Bose gas. I. the general solution and the
ground state. Phys. Rev. 130, 1605–1616 (1963)

C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-
function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

B. Sutherland, Beautiful Models. 70 Years of Exactly Solved QuantumMany-Body Problems (World
Scientific Publishing, New Jersey, 2004)

M.T. Batchelor, The Bethe ansatz after 75 years. Phys. Today 60, 36 (2007)
J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Quantum simulation of antiferro-

magnetic spin chains in an optical lattice. Nat. 472, 307–312 (2011)
M. Kardar, G. Parisi, Y.Z. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56,

889–892 (1986)
A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press,

Cambridge, 1995)
P. Meakin, Fractals Scaling and Growth Far from Equilibrium (Cambridge University Press, Cam-

bridge, 1998)
K. Johansson, Random matrices and determinantal processes. Math. Stat. Phys. Sess. LXXXIII:

Lect. Notes Les Houches Summer Sch. 2005, 1–56 (2006)
H. Spohn, Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes

of crystals. Phys. A 369, 71–99 (2006)
J. Quastel, Introduction to KPZ. Curr. Dev. Math. 2011, 125–194 (2011)
A. Borodin and V. Gorin. Lectures on integrable probability, (2012). arXiv:1212.3351
A. Borodin, L. Petrov, Integrable probability: from representation theory to Macdonald processes.

Probab. Surv. 11, 1–58 (2014)
H. Spohn. The Kardar-Parisi-Zhang equation - a statistical physics perspective. in Stochastic
Processes and Random Matrices, École d’Été Physique, Les Houches (Oxford University Press,
2015). arXiv:1601.00499

T. Halpin-Healy, Y.-C. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers
and all that. Phys. Rep. 254, 215–414 (1995)

J. Krug, Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)
T. Sasamoto and H. Spohn, The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality

class. J. Stat. Mech. P01031 (2011)
P.L. Ferrari and H. Spohn. Random growth models. in The Oxford Handbook of Random Matrix
Theory, ed. By J. Baik, G. Akemann, P. Di Francesco (2011)

I. Corwin, The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl.
1, 1130001 (2012)

K. Takeuchi, Experimental approaches to universal out-of-equilibrium scaling laws: turbulent liquid
crystal and other developments. J. Stat. Mech. P01006 (2014)

J. Quastel, H. Spohn, The one-dimensional KPZ equation and its universality class. J. Stat. Phys.
160, 965–984 (2015)

T. Halpin-Healy, K. Takeuchi, A KPZ cocktail-shaken, not stirred: Toasting 30 years of kinetically
roughened surfaces. J. Stat. Phys. 160, 794–814 (2015)

M. Hairer, Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)
M. Gubinelli and N. Perkowski. KPZ reloaded, (2015). arXiv:1508.03877
M. Kardar, Replica Bethe ansatz studies of two-dimensional interfaces with quenched random

impurities. Nucl. Phys. B 290, 582–602 (1987)
L.-H. Gwa, H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers

equation. Phys. Rev. A 46, 844–854 (1992)
M. Toda, Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431 (1967)

http://arxiv.org/abs/1212.3351
http://arxiv.org/abs/1601.00499
http://arxiv.org/abs/1508.03877

