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PREFACE

The earlier incarnation of this book was aimed at describing the principles and operation
of delta-sigma ( ) modulators, as used in analog-to-digital (A/D) and digital-to-analog
(D/A) converters, in simple conceptual terms, without relying on complicated mathemat-
ics. It also provided practical design information for both industrial and academic design-
ers of converters. The book was well received, dubbed the green book, and sold many
copies internationally. It was translated into Japanese, and reprinted in China. It is cited
currently about 170 times annually in the literature. In view of this continued popularity,
why did we embark on creating this new avatar?

The answer is that twelve years have gone by since the green book was published.
The interest of converter designers has shifted significantly during this period, in the
wake of many new applications for data converters at the extreme ends of the frequency
spectrum. Continuous-time ADCs with GHz clocks, both for lowpass and bandpass
signals, were required for wireless applications. At the other extreme of the spectrum,
multiplexed ADCs with very narrow (sometimes only 10 Hz wide) signal bands, but very
high accuracy, were needed e.g. in the interfaces of biomedical or environmental sensors.
Often, the optimal converter for these specifications is the incremental ADC, which is
basically a ADC that is periodically reset and restarted.

To reflect the changed needs of designers, this book includes much new material on
both theory and design techniques. The emphasis of topics in the existing material has also
been changed. New chapters have been added on the cascade (MASH) architecture, on

Understanding Delta-Sigma Data Converters, R. Schreier and G. C. Temes, IEEE Press and Wiley-Interscience,
2005.
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DAC mismatch effects and their mitigation, as well as expanded chapters on continuous-
time ADCs and their nonidealities, on circuit design techniques for both sampled-data
and continuous-time ADCs, and on incremental ADCs.

During the past decade, several new books that deal with special aspects of ADCs
have been published. A recent book by de la Rosa and del Rio provides an encyclopedic
collection of practical information on ADCs. It is a valuable addition to the literature,
highly recommended for designers. By contrast, the purpose of our work (as the title
implies) is to give a basic understanding of the operation of these converters, and to provide
general design techniques. We can think of several possible scenarios for using this book
in a classroom setting. Chapters 1 through 6 form the core theory. A semester-long course
focusing on discrete-time ADCs should, in addition, cover chapters 7, 12, 13 and 14.
A course focusing on CT Ms would cover Chapters 1-6, 8-11, and 14.

Several colleagues, from academia and industry, reviewed drafts of the book at var-
ious stages. It is our pleasure to acknowledge their assistance. Thanks are due to Trevor
Caldwell (Analog Devices), Rakshit Datta (Texas Instruments), Ian Galton (University of
California at San Diego), John Khoury (Silicon Laboratories), Victor Kozlov (Analog De-
vices), Saurabh Saxena (Indian Institute of Technology Madras), and Nan Sun (University
of Texas at Austin). Their careful and astute comments have, in our opinion, helped im-
prove the quality of the book. Amrith Sukumaran’s editorial assistance is also appreciated.

To stick to limits imposed by space and time, some topics had to be omitted altogether,
while others had to be given short shrift. Nevertheless, we hope that this book will be useful
both for teaching and for self-education purposes.

SHANTHI PAVAN

Chennai, India

RICHARD SCHREIER

Toronto, Canada

GABOR C. TEMES

Corvallis, USA

CMOS Delta-Sigma Converters, J. M. de la Rosa and R. del Rio, IEEE Press and Wiley-Interscience, 2013.



CHAPTER 1

THE MAGIC OF DELTA-SIGMA
MODULATION

The aim of this introductory chapter is to motivate the need for oversampling data convert-
ers, and to give a bird’s-eye view of the topics covered in this book. Towards the end of the
chapter, we give a brief overview of the origins of data conversion and trends in this
exciting area.

1.1 The Need for Oversampling Converters

Computational and signal processing tasks are now performed predominantly by digital
means, since digital circuits are robust and can be realized by extremely small and sim-
ple structures that can in turn be combined to obtain very complex, accurate, and fast
systems. Every year, the speed and density (of transistors) of digital integrated circuits
(ICs) increase, thereby enhancing the dominance of digital methods in almost all areas of
communications and consumer products. Since the physical world nevertheless remains
stubbornly analog, data converters are needed to interface with the digital signal process-
ing (DSP) core. As the speed and capability of DSP cores increases, so too must the speed
and accuracy of the converters associated with them. This presents a continual challenge
to the lucky few engineers dedicated to the design of data converters!

Figure 1.1 illustrates the block diagram of a signal processing system with analog
input and output signals, plus a central digital engine. As shown, the analog input sig-
nal (usually after some amplification and filtering) enters an analog-to-digital converter

1
Understanding Delta-Sigma Data Converters, Second Edition. By Shanthi Pavan, Richard Schreier, and Gabor C. Temes. 
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published by John Wiley & Sons, Inc. 
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Figure 1.1 ADCs and DACs interface the real world to the virtual world.

(ADC), that transforms the input signal into a digital data stream. This stream is processed
by the DSP core, and the resulting digital output signal is reconverted into analog form by
a digital-to-analog converter (DAC). The DAC output is usually also filtered and amplified
to obtain the final analog output signal.

Data converters (both ADCs and DACs) can be classified into two main categories:
Nyquist-rate and oversampled converters. In the former category, there exists a one-to-one
correspondence between the input and output samples. Each input sample is separately
processed, regardless of the earlier input samples; in other words, the converter has no
memory. Applying a digital input word containing bits b1 b2 b to a Nyquist-rate
DAC ideally results in an analog output

Vout Vref (b12 1 b22 2 b 2 ) (1.1)

where Vref is the reference voltage, regardless of any previous input word. The accuracy
of conversion can be evaluated by comparing the actual value of V with the ideal value
given by (1.1).

As the name implies, the sampling rate f of a Nyquist-rate converter can be as low as
Nyquist’s criterion requires, i.e., twice the bandwidth B of the input signal. (For practical
reasons, the actual rate is usually somewhat higher than this minimum value.)

In most cases, the linearity and precision of a Nyquist-rate converter is determined
by the matching accuracy of the analog components (resistors, current sources, or capaci-
tors) used in the implementation. For example, in the N-bit resistor-string DAC shown in
Figure 1.2, the resistors must have a relative matching error less than 2 to guarantee an
integral nonlinearity (INL) less than 0.5 LSB. Similar matching requirements prevail for
ADCs and DACs constructed from current sources or switched-capacitor (SC) branches.

INL is simply the difference between the actual output and the ideal output.
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Vref

V

LSB
LSB 1

MSB

Figure 1.2 A resistor-string DAC. LSB denotes the least significant bit and MSB the most significant
bit of the digital input.

Practical conditions restrict the matching accuracy to about 0.02%, and hence the effective
number of bits (ENOB) to about 12, for such converters.

In many applications (e.g., digital audio), higher resolution and linearity are required,
even as much as 18 or 20 bits. The only Nyquist-rate converters capable of such accuracy
are the integrating or counting ones. These, however, require at least 2 clock periods to
convert a single sample, and hence, they are too slow for most signal processing applica-
tions.

Oversampling data converters are able to achieve over 20 ENOB resolution at rea-
sonably high conversion speeds by relying on a trade-off. They use sampling rates much
higher than the Nyquist rate, typically higher by a factor between 8 and 512, and generate
each output utilizing numerous preceding input values. Thus, the converter incorporates
memory elements in its structure. This property destroys the one-to-one relation between
input and output samples. With oversampling converters, only a comparison of the com-
plete input and output waveforms can be used to evaluate the converter’s accuracy, either
in the time or in the frequency domain.

A common measure of a converter’s accuracy is the signal-to-noise ratio (SNR) for a
sine-wave input. The relationship between ENOB and SNR (expressed in dB) for an ideal
Nyquist converter with a full-scale sine-wave excitation is SNR 6 02 ENOB 1 76. The
inverse relationship is often applied to oversampling converters to convert the SNR into an
effective number of bits.

As will be shown in later chapters, the implementation of oversampling converters
requires a considerable amount of digital circuitry, in addition to some analog stages. Both
need to be operated faster than the Nyquist rate. However, the accuracy requirements on the
analog components are relaxed compared to those associated with Nyquist-rate converters.
The price paid for high accuracy thus includes faster operation and added digital circuitry;
both of these are getting cheaper as digital IC technology advances. Hence, the trade-off
offered by converters continues to improve. As a result, they are gradually taking over
in many applications previously dominated by Nyquist-rate converters.

1.2 Nyquist and Oversampling Conversion by Example

To better understand the difference between Nyquist and oversampled analog-to-digital
conversion, consider the following illustrative examples.
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1.2.1 The Coffee Shop Problem

A student visits a coffee shop on campus every morning to get her fix of caffeine, so that
she can get through the day. A coffee grande at the campus cafe costs $3.47. What are the
ways in which the student can pay this rather inconvenient sum? (The old-fashioned cafe
does not accept credit cards). The “Nyquist” way of paying would be for the student to
carry coins of the right denominations every day. She could, however, pay with a $5 bill and
expect to shop assistant to return $1.53. The cafe, unfortunately, is severely short of small
coins, and the shop assistant is not in a position to entertain this practice. Nevertheless, the
shop assistant and the student come to an understanding that will allow the latter to pay
with a $5 bill, while at the same time not under or overpay the cafe. It exploits the fact that
the student visits the cafe every day. This is the way, described below.

The agreement between the two parties is the following. On any day, if the student
owes the cafe more than $2.50, she hands a $5 bill to the shop assistant. When instead, she
owes less than $2.50, she pays nothing. The student keeps track of how much she owes the
cafe. The transactions for the first three days are shown in Figure 1.3.

Paid : $5

Owes : $1 53

Paid : $0

Owes : $1 94

Owes : $1 53 Owes : $1 94

Owes : $0 41

$3 47 $3 47

Paid : $5

$3 47

Day 1 Day 2 Day 3

Figure 1.3 The way of paying $3.47 for a coffee grande, with only $5 bills.

On the first day, the student pays $5, as agreed upon. She notes, at the end of the day,
that she owes $1.53 to the cafe. The minus sign indicates that the student has overpaid.

While ordering at the cafe on the second day, the student reminds the shop assistant
of the overpayment the previous day. The student needs to only pay $(3.47 1.53)=$1.94.
As agreed upon, she pays nothing, again noting that the cafe is owed $1.94.

On the third day, the student needs to pay $5.41, and as per the understanding with the
shop assistant, hands over a $5 bill. She notes that the cafe is owed $0.41. This continues
every day ad infinitum.

u

z 1

Moving
Average

Filter
û

Figure 1.4 The algorithm of Figure 1.3. The u represents the cost of a coffee grande, and [n] is
the payment made by the student on the nth day.

When the scheme above is cast into a signal flow diagram, Figure 1.4 results. In the
figure, u presents the price of the coffee grande; [n], which is the input of the quantizer,
represents the total amount owed by the student while ordering on the nth day; [n], which
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is the quantizer output, represents the students payment on the nth day, and takes the value
0 or 5. Therefore, ( [n] [n]) is the amount owed by the student to the cafe after making
the payment on the nth day. The z 1 block in Figure 1.4 denotes a delay of one day.

20 40 60 80 100
0

1

2

3

4

5

u 3 47

n

u
,

ru
n

n
in

g
a

ve
ra

g
e

o
f

v

Figure 1.5 The running average of approaches u for large n.

Figure 1.5 shows the running average of , given by

1
n

1
[k] (1.2)

The running average represents the price paid by the student per unit coffee grande, on
average during the preceding days. As n becomes large, we see it approaches u, which is
$3.47.

In the beginning of this discussion, it might have seemed surprising that the student
would be able to pay an inconvenient sum of $3.47 with only $5 bills. The way exploits
the fact that u remains substantially the same from sample to sample. It uses feedback to
make approximate u on average. An individual sample of has no meaning – one can
determine u from only by averaging many samples. Why does this scheme work? It is
perhaps easier to see this by redrawing the diagram of Figure 1.4 as in Figure 1.6. We
see that [n] is the total amount owed by the student (from the beginning of time) after
grabbing her coffee for the day. As long as this is bounded, it must follow that the average
of the accumulator’s ( ) input must be close to zero. Since the input to the accumulator is
the difference ( ) between the input and feedback sequence, it should follow that and u

would be equal, on average. Thus, by embedding a (very coarse) 2-level quantizer into a
negative feedback loop, and sufficiently averaging the output sequence, the digital estimate
û can be a very good representation of u.

u 1
1 1

z 1

Moving
Average

Filter
û

Figure 1.6 The system of Figure 1.4, redrawn.
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The feedback loops of Figures. 1.4 and 1.6, both equivalent, represent a first-order
modulator. The first structure is called the error-feedback structure, while the latter is

the more traditional (and immediately recognizable) error accumulating structure.

1.2.2 The Dictionary Problem

A student visiting a bookstore begins to wonder about the thickness of that venerable tome,
the Webster’s International Dictionary of the English Language. An immediate way of
finding the thickness is to get hold of a 6-inch ruler (this is a bookstore, after all) and
measure the dictionary’s thickness, as illustrated in Figure 1.7. Since the ruler has markings
at every eighth of an inch, the worst-case error in measuring the thickness would amount to
one-sixteenth of an inch. This is the “Nyquist” way, where the distance between successive
marks on the ruler would correspond to the LSB. Measurement uncertainty (quantization
error, in data-conversion parlance) can only be reduced by using a ruler with more finely
spaced markings. The effort involved in making such a ruler is decidedly higher, not to
mention the difficulty in discerning the marking that best corresponds to the height of the
tome. Note, however, that the measurement is made in one shot – meaning that one use of
the ruler is sufficient for measurement.

u 3 42 in 1
2
3
4
5

Figure 1.7 Measuring the thickness of Webster’s Dictionary the Nyquist way.

The student finds focusing on the finely spaced levels a strain on the eyes, and he
begins to wonder if it is at all possible to measure the book’s thickness without having to
look at the marks on the ruler at all. In other words, is it possible to find the thickness
to within one-sixteenth of an inch (or even better) using only the fact that this is a 6-inch
ruler? At first, this may seem like an impossible task – how is it possible to measure to
within a fraction of an inch with a scale whose only “marking” is 6 in?

The student, being resourceful, exploits the fact that the bookstore has any number
of copies of the Webster’s Dictionary that he can put at his disposal. He contrives the
following algorithm, which, he reasons, should allow him to determine the dictionary’s
thickness to arbitrary precision. The algorithm involves a sequence of operations, and
proceeds as follows as illustrated in Figure 1.8.

Markings are made on the wall, from the floor up, at intervals of 6 inches using the (6-
inch) ruler. The student places a copy of the Webster’s Dictionary on the floor. The action
of placing the book causes the level corresponding to the top of the stack of dictionaries
(which contains just one instance at this time) to cross the lowest (6-inch) mark on the wall,
which is at the floor level. The result of this experiment, denoted by , is decreed to be 6
(corresponding to the 6-inch ticks on the wall).

A copy of Webster’s is placed on the first, as shown in Figure 1.8(b). Since the action
of adding the second copy causes the height of the stack to cross a marking on the wall,
the result of this experiment is also deemed to be 6. This mode of operation continues ad

infinitum. at the end of every step, therefore, is 6 if the addition of a new copy causes
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n 4 [4] 6 n 5 [5] 0 n 6 [6] 6

n 1 [1] 6 n 2 [2] 6 n 3 [3] 0

6 in

12 in 12 in

6 in

12 in

6 in

Figure 1.8 Measuring the thickness of Webster’s Dictionary the way.

the stack to cross a new 6-inch mark, and zero otherwise. Denoting the thickness by u, the
height of the stack in the nth instance is given by

1
u nu (1.3)

This is compared with the next 6-inch mark on the wall, whose height is given by

1

1
[k] (1.4)

Thus,

[n]
6 1 u 1

1 [k]
0 otherwise

The student argues that at the end of n operations,

0
1

[k]
1

u 6 (1.5)

since the height of the stack and the mark immediately above the top of the stack can differ
by at most 6 inches. This means that

1
n

1
[k]

6
n

u
1
n

1
[k] (1.6)

An estimate of u can therefore be obtained by simply averaging the sequence [n]. As n

approaches infinity, the average of the output sequence approaches the true height of our
venerable tome, which is about 3.42 inches.

When the student’s scheme is translated into the language of electrical engineering,
the diagram shown in Figure 1.9 results. The input u is summed in a delay-free integrator.
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1
1 1u

1

1 1

Moving
Average

Filter
û

Figure 1.9 Equivalent representation of the algorithm in Figure 1.8.

The output sequence is summed ( ) using a delayed integrator, since the current decision
depends on the sum of the previous decisions. The difference ( ) between the two accu-
mulated results is quantized to one of two levels (0 and 6 in our example). The resulting
output sequence is averaged (by a moving-average filter) to estimate the input u. The
averaging filter acts on a digital input and is, therefore, a digital filter.

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

3.5

4

u
û

n

u

û

Figure 1.10 First 100 samples of the output of the moving average filter in Figure 1.11, for
u 3 42. A 64-tap filter (with all taps equal) is assumed.

Figure 1.10 shows the first hundred samples of û at the output of a 64-tap moving-
average filter. In steady state, û happens to be within 0.05 inches of u. At first sight, it
indeed seems remarkable that one can resolve to a small fraction of an inch with a scale
marked only at 6 inches!

It is instructive to compare the Nyquist and ways of measurement. The former
is a one-shot process, with the accuracy of measurement depending on the fineness and
precision of the marks on the ruler. The latter, in contrast, is an iterative process. It involves
feedback, since the outcome [n] of the nth iteration depends on the results of previous
experiments. The method relies on the fact u does not change between successive
iterations. This means that u is heavily oversampled. Moreover, [n] is not representative
of u; u can only be inferred by averaging the outcomes of a large number of iterations.
Measurement accuracy generally improves as n is increased. Averaging 1000 samples
reduces the error to 0.006 inches.

A practical problem with the realization of Figure 1.9 is that the outputs of both in-
tegrators keep increasing with n. In our bookstore example, the pile of dictionaries in
Figure 1.8 would risk hitting the ceiling due to lack of headroom. Likewise, electronic
integrators have limits on their maximum allowable output. This can be circumvented by
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simply moving the integrators into the loop, as shown in Figure 1.11. In the figure, û is
a digital representation of u, and the system converts the continuous valued input u into a
quantized output. This is achieved by embedding a coarse quantizer (which, in our exam-
ple, has only two levels – 0 and 6 inches) in a negative feedback loop. The feedback loop
of Figure 1.11 is called a modulator (or converter). More precisely, it represents
a first-order, 2-level modulator. The integrator, whose output is quantized, is often
referred to as the loop filter.

The discussion in this section was a (hopefully) gentle introduction to the basic idea
behind modulation. A more detailed development of the first-order loop, its analy-
sis and alternative ways of realizing the same functionality are given in Chapter 2.

u 1
1 1

z 1

Moving
Average

Filter
û

Loop filter

Figure 1.11 Addressing “headroom problems” of the system of Figure 1.9 by moving the integrators
into the loop. Averaging yields an estimate û of u.

The reader might wonder why the measurement must proceed in the iterative fashion
shown in Figure 1.8. Why not stack 64 dictionaries, and measure the height of the stack
(to the nearest 6 inch mark) and divide by 64? To understand this, we denote the error
introduced by the quantizer of Fig 1.11 in the nth iteration by e[n]. It is easy to see that

[n] u[n] e[n] e[n 1] (1.7)

The output of the M-tap moving-average filter (with weights being equal) is given by

û
1
M

1
[k] u

1
M

(e[r M 1] e[r]) (1.8)

It is easy to see that û is what one would obtain by stacking up M dictionaries, measuring
the height of the stack to the nearest 6 inches, and dividing the result by M . From the
equation above, we observe that the estimation error in û is due to the e in the first and last
of the 64 (assuming M 64) samples being processed by the moving-average filter. This
suggests that quantization error can be reduced by weighting [n] non-uniformly – that
is, by attaching more importance to the middle set of samples than those toward the end.
This intuition is confirmed by filtering the output sequence of the modulator with a 64-tap
moving-average filter with a triangular impulse response. From Figure 1.12, we see that
the peak-to-peak excursion of the output of such a filter is much smaller than that in the
case where all the samples of [n] are equally weighted. Thus, there is merit to observing
the height of the stack every time an additional dictionary is added, as this enables the
use of arbitrary moving-average filters. Recall that measuring the height of a stack of
64 dictionaries (to the closest 6-inch mark) and dividing by 64 is equivalent to uniformly
weighting the samples of . To summarize, there is more to choosing the post-filter that
processes the modulator’s output than simply averaging the output. To understand how
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65 70 75 80 85 90 95

3.39

3.41

3.43

3.45

3.47

u
û

n

equal taps

triangularly weighted

Figure 1.12 Outputs of moving-average filters with equal weights, and a triangularly weighted
response.

one designs a post-filter, it is helpful to examine a modulator in the frequency domain,
which we will do going forward. Before that, we wish to draw the reader’s attention to the
following.

The example above considered the modulator’s input u to be constant. In practice,
the input to be digitized has a nonzero bandwidth (which is much smaller than the sam-
pling rate). Then, the output of the digital post-filter (which is a sequence at the sampling
rate) can be downsampled, so that the output sample rate can equal the Nyquist rate corre-
sponding to the input signal. Figure 1.13 shows the system model of an ADC employing

u
1

1 1
Digital
Filter û

Decimator

e

Figure 1.13 System model of an ADC with a first-order modulator.

a first-order modulator. The delay element in the feedback path of the modulator of
Figure 1.11 has been pushed into the forward path. The (benign) consequence of this is
to delay the input by one sample. The combination of the the digital post-filter and down-
sampler is called the decimation filter or decimator.

The output noise due to the quantization error in the modulator is q[n] e[n]
e[n 1]. In the z-domain, this becomes Q(z) (1 z 1)E(z), and in the frequency domain,
after z is replaced by e , the power spectral density (PSD) of the output noise is found to
be

S ( ) 4 sin2
2

S ( ) (1.9)

Here, S ( ) is the one-sided PSD of the quantization error (noise) of the internal ADC.
For “busy” (i.e., rapidly and randomly varying) input signals, one may approximate e with
white noise of mean-square value 2 12, where is the step size of the quantizer, and thus
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obtain

S ( )
2

12
(1.10)

The filtering function (1 z 1) is called the noise transfer function (NTF). The squared
magnitude of the NTF as a function of frequency is illustrated in Figure 1.14. As the

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

2 ( f f )

NT
F

2

Figure 1.14 Noise-shaping function for the modulator shown in Figure 1.13.

figure shows, the NTF of the modulator is a highpass filter function. It suppresses e at
frequencies around 0, but the NTF also enhances e at frequencies around .

We introduce next the oversampling ratio

OSR
f

2 f
(1.11)

where f is the maximum signal frequency, which is the signal bandwidth. OSR defines
how much faster we sample in the oversampled modulator than in a Nyquist-rate converter.

It turns out that the in-band component of quantization noise at the output of the
modulator is given by

q2
2

3
e2

OSR3 (1.12)

As expected, the in-band noise decreases with increasing OSR. However, this decrease is
relatively slow; doubling the OSR reduces the noise only by 9 dB, and hence it enhances
the ENOB by only about 1.5 bits.

The discussion in this chapter is intended merely as an introduction, a whetting of
the appetite – the topics of sampling, oversampling and the first-order modulator are
covered in detail in Chapter 2.

1.3 Higher-Order Single-Stage Noise-Shaping Modulators

As the reader might have anticipated, a way to increase the resolution (i.e., the ENOB) of
a modulator is to use a higher-order loop filter. By adding another integrator and feed-
back path to the modulator of Figure 1.13, the structure of Figure 1.15 results. Linearized
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1
1 1u

1

1 1

e

Figure 1.15 A second-order modulator.

analysis yields
V (z) z 1U (z) (1 z 1)2E(z) (1.13)

This indicates that the NTF is now (1 z 1)2 in the z-domain, which applies a shaping
function of (2 sin( 2))4 to the PSD of e. It follows that the in-band noise power is (to a
good approximation for OSR 1)

q2
4e2

5 OSR5 (1.14)

Doubling OSR, therefore, results in about 2.5 bits of additional resolution. This is a much
more favorable trade-off than that of the first-order modulator. A more detailed analysis
of second-order modulators, and alternative ways of realizing them, are discussed in
Chapter 3.

In principle, by adding more integrators and feedback branches to the loop, even
higher-order NTFs can be obtained. For an Lth-order loop filter resulting in NTF(z)
(1 z 1) , the in-band noise power is approximately

q2
2 e2

(2L 1) OSR2 1 (1.15)

and the number of bits added to the resolution by doubling the OSR is given by (L 0 5).

From the discussion above, it appears as if using a loop with an appropriately
chosen (very high-order) NTF can attain arbitrarily high SNRs, even for small OSR. This
sounds too good to be true, and as the wise reader should suspect, something that sounds

too good to be true is probably too good to be true. It turns out that for high-order loops,
stability considerations, which have thus far been ignored, reduce the achievable resolu-
tion to a lower value than that given by the equations above. For high-order single-bit
modulators, the difference is substantial, amounting to more than 60 dB for a fifth-order
modulator. Higher-order modulators, their stability, trade-offs involved in their design,
and various means of realizing them will be discussed in detail in Chapter 4.

1.4 Multi-Stage and Multi-Quantizer Delta-Sigma Modulators

The philosophy behind using a high-order loop to suppress in-band quantization noise is to
divide noise by a large loop-gain, obtained by incorporating more integrators in the loop.
An alternative strategy to accomplish the same objective is to cancel the quantization error
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by measurement and subtraction. It turns out that this approach eases the stability prob-
lems associated with high-order modulators. The resulting structures are called cascade
modulators, and also referred to as multi-stage or MASH (for Multi-stAge noise-SHaping)
modulators. This, and other techniques based on this fundamental idea, form the subject
of Chapter 5.

The basic concept behind a cascade modulator is illustrated in Figure 1.16. The output

1
L0

L1

u

H1

H2

1

e1

22
L0

L1

e2

e1

Figure 1.16 A multi-stage delta-sigma modulator.

signal of the first stage is given by

V1(z) STF1(z)U (z) NTF1(z)E1(z) (1.16)

where STF1 and NTF1 are the signal and noise transfer functions, respectively, of the first
stage. The second stage is added to improve the SNR beyond what NTF1 can provide.

As shown in Figure 1.16, the quantization error e1 of the input stage is found in
analog form by subtracting the input to its internal quantizer from its output. e1 is then fed
to another loop forming the second stage of the modulator, and converted into digital
form. Hence, the output signal of the second stage in the z-domain is given by

V2(z) STF2(z)E1(z) NTF2(z)E2(z) (1.17)

where STF2 and NTF2 are the signal and noise transfer functions, respectively, of the
second stage. The digital filter stages H1 and H2 at the outputs of the two modulator
loops are designed such that in the overall output of the system, the first-stage error e1 is
canceled. By the equations above, this is achieved if the condition

H1(z)NTF1(z) H2(z)STF2(z) (1.18)

holds. The simplest (and usually most practical) choice for H1 and H2 that satisfies (1.18)
is H1 k STF2 and H2 k NTF1, where k is constant chosen to give unity signal gain.
Since STF2 is often just a delay, H1 is easily realized. The overall output is then given by

V (z) k STF1(z)STF2(z)U (z) k NTF1(z)NTF2(z)E2(z) (1.19)
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In a typical case, both stages of the MASH modulator may contain a second-order loop,
and their transfer functions may be given by STF1 z 1, STF2 0 5z 2 and NTF1
NTF2 (1 z 1)2. Choosing k 2, the output we obtain is then

V (z) z 2U (z) 2(1 z 1)4E2(z) (1.20)

Thus, the noise-shaping performance is essentially that of a fourth-order single-loop con-
verter, but the stability behavior is that of a second-order one.

If the condition (1.18) is not exactly satisfied, for example, due to imperfections in the
realization of the analog transfer functions, then E1(z) will appear at the output multiplied
by k [STF2NTF1 NTF1STF2 ], where the subscript a denotes the actual value of the
analog transfer function. This is not surprising, since the efficacy of any technique based
on cancellation is always degraded by mismatch. As will be shown in Chapter 5, mismatch
can result in a serious deterioration of the noise performance of the converter.

1.5 Mismatch Shaping in Multi-Bit Delta-Sigma Modulators

ADC

DAC

u
1

1 1

e

Figure 1.17 The quantizer in a modulator is implemented as a cascade of ADC and DAC.

A quantizer is implemented as a cascade of an ADC and DAC, as shown in Fig-
ure 1.17. The DAC appears in the feedback path of the modulator, and its nonlineari-
ties result in comparable nonlinearities for the overall conversion. This occurs because the
in-band part of the DAC output signal is forced by the feedback loop to follow the input
signal u very accurately. Hence, if the DAC is nonlinear, its input will be distorted to give
an accurate output. Since the DAC input is the output of the converter, the converter output
is distorted.

It was this fact that forced early designers of modulators to use single-bit internal
DACs in the loops. A single-bit DAC has the immensely important virtue of inherent

linearity. Since the input to a one-bit DAC only takes on two values, the transfer charac-
teristic of the DAC can be represented by two points in the input–output plane. Thus, a
straight line that passes through those points models a 1-bit DAC exactly. In other words,
the DAC is exactly described by an equation of the form k offset, where k and
offset are constants. Since a system that obeys such a model does not introduce distortion,
a 1-bit DAC is said to be inherently linear.

In contrast, single-bit ADCs (which are essentially comparators) have an ill-defined
gain factor, as will be shown in Chapter 2. Also as Chapters 3 and 4 will show, loops
containing one-bit quantizers must remain stable over a wide range of loop gains. This


