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Preface

Norbert Hungerbühler

The idea to organize a conference in honour of Linda Rothschild emerged in 2006.
This idea began to substantiate in 2007 when the Swiss Mathematical Society as-
signed the traditional Spring Meeting to the University of Fribourg. An organizing
committee was quickly formed:

Organizing committee

Norbert Hungerbühler University of Fribourg, Switzerland
Frank Kutzschebauch University of Berne, Switzerland
Bernhard Lamel University of Vienna, Austria
Francine Meylan University of Fribourg, Switzerland
Nordine Mir Université de Rouen, France

In order to ensure a high-quality conference program, the search for a scien-
tific committee began. Soon after, a distinguished group was found who started
working right away:

Scientific committee

Peter Ebenfelt University of California, San Diego, USA
Franc Forstnerič University of Ljubljana, Slovenia
Joseph J. Kohn Princeton University, USA
Emil J. Straube Texas A&M University, USA

Spring Meeting of the Swiss Mathematical Society

Conference on Complex Analysis 2008
Several Complex Variables and Connections with PDEs and Geometry

In honour of Linda Rothschild, Fribourg, July 7–11
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Only a little while later it became clear that the subject and the top-class
speakers who agreed to participate in the conference called for a proceedings vol-
ume to make the presented results available shortly after the conference. This
project was carried out under the direction of the editorial board:

Editorial board

Peter Ebenfelt University of California, San Diego, USA
Norbert Hungerbühler University of Fribourg, Switzerland
Joseph J. Kohn Princeton University, USA
Ngaiming Mok The University of Hong Kong
Emil J. Straube Texas A&M University, USA

Focus on youth

The aim of the conference was to gather worldwide leading scientists, and to offer
the occasion to PhD students and postdocs to come into contact with them. The
committees explicitly encouraged young scientists, doctoral students and postdocs
to initiate scientific contact and to aim at an academic career. The topic of the
conference was apparently very attractive for young scientists, and the event an
ideal platform to promote national and international doctoral students and post-
docs. This aspect became manifest in a poster session where junior researchers
presented their results.

The conference was intended to have a strong component in instruction of
PhD students: Three mini courses with introductory character were held by Pengfei
Guan, Mei-Chi Shaw and Ngaiming Mok. These three mini courses have been very
well received by a large audience and were framed by the series of plenary lectures
presenting newest results and techniques.

The participation of junior female researchers, PhD students and mathemati-
cians from developing countries has been encouraged in addition by offering grants
for traveling and accommodation.

The subject

The conference Complex Analysis 2008 has been devoted to the subject of Several
Complex Variables and Connections with PDEs and Geometry. These three main
subject areas of the conference have shown their deep relations, and how techniques
from each of these fields can influence the others. The conference has stimulated
further interaction between these areas.

The conference was held in honor of Prof. Linda Rothschild who is one of the
most influential contributors of the subject during the last decades. A particular
aim was to encourage female students to pursue an academic career. In fact, female
mathematicians have been well represented among the speakers, in the organizing
committee and in the poster sessions.
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Several Complex Variables is a beautiful example of a field requiring a wide
range of techniques coming from diverse areas in Mathematics. In the last decades,
many major breakthroughs depended in particular on methods coming from Par-
tial Differential Equations and Differential and Algebraic Geometry. In turn, Sev-
eral Complex Variables provided results and insights which have been of fundamen-
tal importance to these fields. This is in particular exemplified by the subject of
Cauchy-Riemann geometry, which concerns itself both with the tangential Cauchy-
Riemann equations and the unique mixture of real and complex geometry that real
objects in a complex space enjoy. CR geometry blends techniques from algebraic
geometry, contact geometry, complex analysis and PDEs; as a unique meeting
point for some of these subjects, it shows evidence of the possible synergies of a
fusion of the techniques from these fields.

The interplay between PDE and Complex Analysis has its roots in Hans
Lewy’s famous example of a locally non solvable PDE. More recent work on PDE
has been similarly inspired by examples from CR geometry. The application of
analytic techniques in algebraic geometry has a long history; especially in recent
years, the analysis of the ∂̄-operator has been a crucial tool in this field. The
∂̄-operator remains one of the most important examples of a partial differential
operator for which regularity of solutions under boundary constraints have been
extensively studied. In that respect, CR geometry as well as algebraic geometry
have helped to understand the subtle aspects of the problem, which is still at the
heart of current research.

Summarizing, our conference has brought together leading researchers at the
intersection of these fields, and offered a platform to discuss the most recent de-
velopments and to encourage further interactions between these mathematicians.
It was also a unique opportunity for younger people to get acquainted with the
current research problems of these areas.

Organization

The conference was at the same time the 2008 Spring Meeting of the Swiss Math-
ematical Society. The event has profited from the organizational structures of the
SMS and the embedding in the mathematical community of Switzerland. The Uni-
versity of Fribourg has proven to be the appropriate place for this international
event because of its tradition in Complex Analysis, the central geographic location,
and its adequate infrastructure. In turn, its reputation and that of the region has
benefited from this conference.

The conference has been announced internationally in the most important
conference calendars and in several journals. Moreover, the event has been adver-
tised by posters in numerous mathematics institutes worldwide, by e-mails and in
the regular announcements of the Swiss Mathematical Society.
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Extended Curriculum Vitae of
Linda Preiss Rothschild

Linda Rothschild was born February 28, 1945, in Philadel-
phia, PA. She received her undergraduate degree, magna
cum laude, from the University of Pennsylvania in 1966 and
her PhD in mathematics from MIT in 1970. Her PhD the-
sis was “On the Adjoint Action of a Real Semisimple Lie
Group”. She held positions at Tufts University, Columbia
University, the Institute for Advanced Study, and Prince-
ton University before being appointed an associate professor
of mathematics at the University of Wisconsin-Madison in
1976. She was promoted to full professor in 1979. Since 1983 she has been professor
of mathematics at the University of California at San Diego, where she is now a
Distinguished Professor.

Rothschild has worked in the areas of Lie groups, partial differential equa-
tions and harmonic analysis, and the analytic and geometric aspects of several
complex variables. She has published over 80 papers in these areas. Rothschild
was awarded an Alfred P. Sloan Fellowship in 1976. In 2003 she won the Ste-
fan Bergman Prize from the American Mathematical Society (jointly with Salah
Baouendi). The citation read in part:

“The Bergman Prize was awarded to Professors Salah Baouendi and
Linda Rothschild for their joint and individual work in complex anal-
ysis. In addition to many important contributions to complex analysis
they have also done first rate work in the theory of partial differential
equations. Their recent work is centered on the study of CR manifolds to
which they and their collaborators have made fundamental contributions.

Rothschild, in a joint paper with E. Stein, introduced Lie group meth-
ods to prove Lp and Hölder estimates for the sum of squares operators
as well as the boundary Kohn Laplacian for real hypersurfaces. In later
joint work with L. Corwin and B. Helfer, she proved analytic hypoellip-
ticity for a class of first-order systems. She also proved the existence of
a family of weakly pseudoconvex hypersurfaces for which the boundary
Kohn Laplacian is hypoelliptic but does not satisfy maximal L2 esti-
mates.”



xii Extended Curriculum Vitae of Linda Preiss Rothschild

In 2005, Rothschild was elected a Fellow of the American Academy of Arts
and Sciences, and in 2006 she was an invited speaker at the International Congress
of Mathematics in Madrid.

Rothschild served as President of the Association for Women in Mathematics
from 1983 to 1985 and as Vice-President of the American Mathematical Society
from 1985 to 1987. She served on the editorial committees of the Transactions of
the AMS and Contemporary Mathematics. She is also an editorial board member
of Communications in Partial Differential Equations and co-founder and co-editor-
in-chief of Mathematical Research Letters. She has served on many professional
committees, including several AMS committees, NSF panels, and an organization
committee for the Special Year in Several Complex Variables at the Mathematical
Sciences Research Institute. She presented the 1997 Emmy Noether Lecture for
the AWM. Rothschild has a keen interest in encouraging young women who want
to study mathematics. A few years ago she helped establish a scholarship for
unusually talented junior high school girls to accelerate their mathematical training
by participating in a summer program.

Educational Background

B.A. University of Pennsylvania, 1966
Ph.D. in mathematics, Massachusetts Institute of Technology, 1970

Dissertation: On the Adjoint Action of a Real Semisimple Lie Group
Advisor: Isadore Manual Singer

Professional Employment

1982– Professor, University of California, San Diego
2001–05 Vice Chair for Graduate Affairs, Mathematics Dept., UCSD
1979–82 Professor, University of Wisconsin
1981–82 Member, Institute for Advanced Study
1978 Member, Institute for Advanced Study
1976–77 Associate Professor, University of Wisconsin
1975–76 Visiting Assistant Professor, Princeton University
1974–75 Member, Institute for Advanced Study
1972–74 Ritt Assistant Professor, Columbia University
1970–72 Assistant Professor, Tufts University
1970–72 Research Staff, Artificial Intelligence Laboratory, M.I.T.

Honors and Fellowships

2005 Fellow, American Academy of Arts and Sciences
2003 Stefan Bergman Prize
1976–80 Alfred P. Sloan Foundation Fellow
1966–70 National Science Foundation Graduate Fellow
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Selected Invited Lectures

• Invited address, International Congress of Mathematicians, Madrid, August
2006

• “Frontiers in Mathematics” Lecturer, Texas A&M University, September
1999

• Invited hour speaker, Sectional joint meeting of American Mathematical So-
ciety and Mathematical Association of America, Claremont, October 1997

• Emmy Noether Lecturer (Association for Women in Mathematics), Annual
Joint Mathematics Meetings, San Diego January 1997

• Invited hour lecturer, Annual Joint Mathematics Meetings, Orlando, January
1996

• Invited hour speaker, Annual Summer meeting of American Mathematics
Society, Pittsburgh, August1981

Students

Mark Marson University of California, San Diego, 1990
Joseph Nowak University of California, San Diego, 1994
John Eggers University of California, San Diego, 1995
Bernhard Lamel University of California, San Diego, 2000
Slobodan Kojcinovic University of California, San Diego, 2001
Robert Kowalski University of California, San Diego, 2002

Selected National Committees and Offices

National Science Foundation, Mathematics Division

• Advisory Panel, 1984–87 and other panels 1997–99, 2004

American Mathematical Society (AMS)

• Bocher Prize Committee 2001–04
• National Program Committee 1997–2000
Chair 1998–1999

• Nominating Committee, 1982–84, 1994–96
• Committee on Science Policy, 1979–82, 92–9
• AMS Vice President, 1985–87
• Committee on Committees, 1977–79, 1979–81
• Executive Committee, 1978–80
• Council of the AMS, 1977–80
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Association for Women in Mathematics (AWM)

• Noether Lecture Committee 1988–90, 1994–1997
Chair 1989–90

• Schafer Prize Committee 1993–94
• AWM President, 1983–85.

Mathematical Association of America

• Chauvenet Prize Committee, 1998–2000
Mathematical Sciences Research Institute

• Board of Trustees, 1996–1999
• Budget Committee 1996–1998

California Science Museum

• Jury to select California Scientist of the Year Award, 1995–1999
Institute for Pure and Applied Mathematics (IPAM)

• Board of Trustees, 2002–2005

Editorial Positions

• Co-Editor-in-Chief, Mathematical Research Letters, 1994–
• Editorial Board, Journal of Mathematical Analysis and Applications, 2001–
• Editorial Board, Communications in Partial Differential Equations, 1984–
• Editorial Board, Contemporary Mathematics, 1990–1994
• Editor for complex and harmonic analysis, Transactions of the American
Mathematical Society, 1983–1986
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Abstract. Existence of oblique polar lines for the meromorphic extension of
the current valued function

∫ |f |2λ|g|2μ� is given under the following hy-

potheses: f and g are holomorphic function germs in Cn+1 such that g is
non-singular, the germ Σ := {df ∧ dg = 0} is one dimensional, and g is
proper and finite on S := {df = 0} . The main tools we use are interaction
of strata for f (see [4]), monodromy of the local system Hn−1(u) on S for
a given eigenvalue exp(−2iπu) of the monodromy of f , and the monodromy
of the cover g|S . Two non-trivial examples are completely worked out.
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Introduction

Given an open subset Y in Cm , two holomorphic functions f, g on Y and a C∞
compactly support (m,m)-form φ in Y , the integral

∫
Y
|f |2λ|g|2μφ , for (λ, μ)

in C2 with �λ and �μ > 0, defines a holomorphic function in that region. As
a direct consequence of the resolution of singularities, this holomorphic function
extends meromorphically to C2 , see Theorem 1.1. The polar locus of this extension
is contained in a union of straight lines with rational slopes (see [8] for other results
on this integral). In this paper we look for geometric conditions that guarantee a
true polar line of this extension for at least one φ ∈ Λm,mC∞c (Y ), in other words
a true polar line of the meromorphic extension of the holomorphic current valued
function

(λ, μ) �→
∫
Y

|f |2λ|g|2μ�.

Since existence of horizontal or vertical polar lines follows directly from existence
of poles of

∫
Y |g|2μ� or

∫
Y |f |2λ� that have been extensively studied in [1], [2] and

[3], we will concentrate on oblique polar lines. Because desingularization is quite
hard to compute, it is not clear how to determine these polar lines. Moreover,
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only a few of the so obtained candidates are effectively polar and no geometric
conditions are known to decide it in general.

In Section 2, we expose elementary properties of meromorphic functions of
two variables that are used later for detecting oblique polar lines. Four examples
of couples (f, g) for which these results apply are given.

In Sections 3 and 4 we give sufficient criteria to obtain oblique polar lines in
rather special cases, but with a method promised to a large generalization. They
rely on results which give realization in term of holomorphic differential forms of
suitable multivalued sections of the sheaf of vanishing cycles along the smooth part
of the singular set S (assumed to be a curve) of the function f . The second function
g being smooth and transversal to S at the origin. The sufficient condition is then
given in term of the monodromy on S∗ := S \ {0} on the sheaf of vanishing cycles
of f for the eigenvalue exp(−2iπu) assuming that the meromorphic extension of∫
X |f |2λ� has only simple poles at −u− q for all q ∈ N (see Corollary 4.3).

To be more explicit, recall the study of
∫
|f |2λ� started in [4] and com-

pleted in [5], for a holomorphic function f defined in an open neighbourhood of
0 ∈ Cn+1 with one-dimensional critical locus S . The main tool was to restrict
f to hyperplane sections transverse to S∗ and examine, for a given eigenvalue
exp(−2iπu) of the monodromy of f , the local system Hn−1(u) on S∗ formed
by the corresponding spectral subspaces. Higher-order poles of the current valued
meromorphic function

∫
|f |2λ� at −u−m , some m ∈ N , are detected using the

existence of a uniform section of the sheaf Hn−1(u) on S∗ which is not extendable
at the origin. So an important part of this local system remained unexplored in
[4] and [5] because only the eigenvalue 1 of the monodromy Θ of the local system
Hn−1(u) on S∗ is involved in the exact sequence

0→ H0(S,Hn−1(u))→ H0(S∗, Hn−1(u))→ H1
{0}(S,H

n−1(u))→ 0.

In this paper, we will focus on the other eigenvalues of Θ.
Let us assume the following properties:

(1) the function g is non-singular near 0;
(2) the set Σ := {df ∧ dg = 0} is a curve;
(3) the restriction g|S : S → D is proper and finite;
(4) g|−1

S (0) = {0} and g|S∗ is a finite cover of D∗ := D \ {0} .
Condition (2) implies that the singular set S := {df = 0} of f has dimension
� 1. We are interested in the case where S is a curve.

Remark that condition (4) may always be achieved by localization near 0
when conditions (1), (2) and (3) are satisfied. These conditions hold in a neigh-
bourhood of the origin if (f, g) forms an isolated complete intersection singularity
(icis) with one-dimensional critical locus, assuming g smooth. But we allow also
the case where Σ has branches in {f = 0} not contained in S .

The direct image by g of the constructible sheaf Hn−1(u) supported in S
will be denoted by H ; it is a local system on D∗ . Let H0 be the fibre of H
at t0 ∈ D∗ and Θ0 its monodromy which is an automorphism of H0 . In case
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where S is smooth, it is possible to choose the function g in order that g|S is an
isomorphism and Θ0 may be identified with the monodromy Θ of Hn−1(u) on
S∗ . In general, Θ0 combines Θ and the monodromy of the cover g|S∗ .

Take an eigenvalue1 exp(−2iπl/k) �= 1 of Θ, with l ∈ [1, k−1] and (l, k) = 1.
We define an analogue of the interaction of strata in this new context. The auxiliary
non singular function g is used to realize analytically the rank one local system
on S∗ with monodromy exp(−2iπl/k). To perform this we shall assume that the
degree of g on the irreducible branch of S we are interested in, is relatively prime
to k . Of course this is the case when S is smooth and g transversal to S at the
origin. Using then a k th root of g we can lift our situation to the case where
we consider an invariant section of the complex of vanishing cycles of the lifted
function f̃ (see Theorem 4.2) and then use already known results from [4]. The
existence of true oblique polar lines follows now from results of Section 2.

The paper ends with a complete computation of two non-trivial examples
that illustrate the above constructions.

1. Polar structure of
∫

X
|f |2λ �

Theorem 1.1. Bernstein & Gelfand. For m and p ∈ N∗ , let Y be an open
subset in Cm , f : Y → Cp a holomorphic map and X a relatively compact open
set in Y . Then there exists a finite set P (f) ⊂ Np \ {0} such that, for any form
φ ∈ Λm,mC∞c (X) with compact support, the holomorphic map in the open set
{�λ1 > 0} × · · · × {�λp > 0} given by

(λ1, . . . , λp) �→
∫
X

|f1|2λ1 . . . |fp|2λpφ (1.1)

has a meromorphic extension to Cp with poles contained in the set⋃
a∈P (f),l∈N∗

{〈a | λ〉+ l = 0}.

Proof. For sake of completeness we recall the arguments of [10].
Using desingularization of the product f1 . . . fp , we know [12] that there

exists a holomorphic manifold Ỹ of dimension m and a holomorphic proper map
π : Ỹ → Y such that the composite functions f̃j := fj◦π are locally expressible as

f̃k(y) = y
ak
1

1 . . . y
ak

m
m uk(y), 1 � k � p, (1.2)

where akj ∈ N and uk is a holomorphic nowhere vanishing function. Because
π−1(X) is relatively compact, it may be covered by a finite number of open set
where (1.2) is valid.

For ϕ ∈ Λm,mC∞c (X) and �λ1, . . . ,�λp positive, we have∫
X

|f1|2λ1 . . . |fp|2λpφ =
∫
π−1(X)

|f̃1|2λ1 . . . |f̃p|2λpπ∗φ.

1Note that the eigenvalues of Θ are roots of unity.
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Using partition of unity and setting μk := a1kλ1 + · · ·+ apkλp , 1 � k � m , we are
reduced to give a meromorphic extension to

(μ1, . . . , μm)→
∫

Cm

|y1|2μ1 . . . |ym|2μmω(μ, y), (1.3)

where ω is a C∞ form of type (m,m) with compact support in Cm valued in
the space of entire functions on Cm . Of course, (1.3) is holomorphic in the set
{�μ1 > −1, . . . ,�μm > −1} .

The relation
(μ1 + 1).|y1|2μ1 = ∂1(|y1|2μ1 .y1)

implies by partial integration in y1∫
Cm

|y1|2μ1 . . . |ym|2μmω(μ, y) =
−1

μ1 + 1

∫
Cm

|y1|2μ1 .y1.|y2|2μ2 . . . |ym|2μm∂1ω(μ, y).

Because ∂1ω is again a C∞ form of type (m,m) with compact support in Cm

valued in the space of entire functions on Cm , we may repeat this argument for
each coordinate y2, . . . , ym and obtain∫

Cm

|y1|2μ1 . . . |ym|2μmω(μ, y) =

=
(−1)m

(μ1 + 1) . . . (μm + 1)

∫
Cm

|y1|2μ1 .y1.|y2|2μ2 .y2 . . . |ym|2μm .ym.∂1 . . . ∂mω(μ, y).

The integral on the RHS is holomorphic for �μ1 > −3/2, . . . ,�μm > −3/2. There-
fore the function (1.3) is meromorphic in this domain with only possible poles in
the union of the hyperplanes {μ1 + 1 = 0}, . . . , {μm + 1 = 0} .

Iteration of these arguments concludes the proof. �

Remark 1.2. An alternate proof of Theorem 1.1 has been given for p = 1 by
Bernstein [9], Björk [11], Barlet-Maire [6], [7]. See also Loeser [13] and Sabbah [14]
for the general case.

In case where f1, . . . , fp define an isolated complete intersection singularity
(icis), Loeser and Sabbah gave moreover the following information on the set P (f)
of the “slopes” of the polar hyperplanes in the meromorphic extension of the
function (1.1): it is contained in the set of slopes of the discriminant locus Δ of
f , which in this case is an hypersurface in Cp . More precisely, take the (p − 1)-
skeleton of the fan associated to the Newton polyhedron of Δ at 0 and denote by
P (Δ) the set of directions associated to this (p − 1)-skeleton union with the set
{(a1, . . . , ap) ∈ Np | a1 . . . ap = 0} . Then

P (f) ⊆ P (Δ).

In particular, if the discriminant locus is contained in the hyperplanes of coordi-
nates, then there are no polar hyperplanes with direction in (N∗)p .
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The results of Loeser and Sabbah above have the following consequence for
an icis which is proved below directly by elementary arguments, after we have
introduced some terminology.

Definition 1.3. Let f1, . . . , fp be holomorphic functions on an open neighbour-
hood X of the origin in Cm . We shall say that a polar hyperplane H ⊂ Cp for
the meromorphic extension of

∫
X
|f1|2λ1 . . . |fp|2λp� is supported by the closed set

F ⊂ X , when H is not a polar hyperplane for the meromorphic extension of∫
X\F |f1|2λ1 . . . |fp|2λp� . We shall say that a polar direction is supported in F if
any polar hyperplane with this direction is supported by F .

Proposition 1.4. Assume f1, . . . , fp are quasi-homogeneous functions for the
weights w1, . . . , wp , of degree a1, . . . , ap . Then if there exists a polar hyperplane
direction supported by the origin for (1.1) in (N∗)p it is (a1, . . . , ap) and the
corresponding poles are at most simple.

In particular, for p = 2 , and if (f1, f2) is an icis, all oblique polar lines have
direction (a1, a2) .

Proof. Quasi-homogeneity gives fk(tw1x1, . . . , t
wmxm) = takfk(x), k = 1, . . . , p .

Let Ω :=
∑m

1 (−1)j−1wjxj dx0∧· · ·∧ d̂xj∧· · ·∧dxm so that dΩ = (
∑
wj) dx .

From Euler’s relation, because fλk

k is quasi-homogeneous of degree akλk :

dfλk

k ∧ Ω = akλkf
λk

k dx,

dxδ ∧ Ω = 〈w | δ〉xδ dx, ∀δ ∈ Nm.
Take ρ ∈ C∞c (Cm); then, with 1 = (1, . . . , 1) ∈ Np and ε ∈ Nm :

d(|f |2λxδx̄ερΩ ∧ dx̄) =
= (〈a | λ〉+ 〈w | δ + 1〉)|f |2λxδx̄ερ dx ∧ dx̄+ |f |2λxδx̄ε dρ ∧ Ω ∧ dx̄.

Using Stokes’ formula we get

(〈a | λ〉+ 〈w | δ + 1〉)
∫
|f |2λxδx̄ερ dx ∧ dx̄ = −

∫
|f |2λxδx̄ε dρ ∧ Ω ∧ dx̄.

For ρ = 1 near 0, dρ = 0, near 0. Therefore the right-hand side has no poles
supported by the origin. Now the conclusion comes from the Taylor expansion at
0 of the test function. �

2. Existence of polar oblique lines

In this section, we consider two holomorphic functions f, g : Y → C , where Y is
an open subset in Cm and fix a relatively compact open subset X of Y . Without
loss of generality, we assume 0 ∈ X . We study the possible oblique polar lines of
the meromorphic extension of the current valued function

(λ, μ) �→
∫
X

|f |2λ|g|2μ�. (2.1)
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The following elementary lemma is basic.

Lemma 2.1. Let M be a meromorphic function in C2 with poles along a family of
lines with directions in N2 . For (λ0, μ0) ∈ C2 , assume
(i) {λ = λ0} is a polar line of order � k0 of M ,
(ii) {μ = μ0} is not a polar line of M ,
(iii) λ �→M(λ, μ0) has a pole of order at least k0 + 1 at λ0 .
Then there exists (a, b) ∈ (N∗)2 such that the function M has a pole along the
(oblique) line {aλ+ bμ = aλ0 + bμ0} .

Proof. If M does not have an oblique polar line through (λ0, μ0), then the function
(λ, μ) �→ (λ−λ0)k0M(λ, μ) is holomorphic near (λ0, μ0). Therefore, λ �→M(λ, μ0)
has at most a pole of order k0 at λ0 . Contradiction. �

It turns out that to check the first condition in the above lemma for the
function (2.1), a sufficient condition is that the poles of the meromorphic extension
of the current valued function

λ �→
∫
X

|f |2λ� (2.2)

are of order � k0 . Such a simplification does not hold for general meromorphic
functions. For example,

(λ, μ) �→ λ+ μ

λ2

has a double pole along {λ = 0} but its restriction to {μ = 0} has only a simple
pole at 0.

Proposition 2.2. If the meromorphic extension of the current valued function (2.2)
has a pole of order k at λ0 ∈ R− , i.e., it has a principal part of the form

Tk
(λ− λ0)k

+ · · ·+ T1

λ− λ0
,

at λ0 , then the meromorphic extension of the function (2.1) has a pole of order

k0 := max{0 � l � k | suppTl �⊆ {g = 0}} (2.3)

along the line {λ = λ0} .

Proof. As a consequence of the Bernstein identity (see [11]), there exists N ∈ N
such that the extension of

∫
X |f |2λφ in {�λ > λ0 − 1} can be achieved for φ ∈

Λm,mCNc (X). Our hypothesis implies that this function has a pole of order � k
at λ0 . Because |g|2μφ is of class CN for �μ large enough, the function

λ �→
∫
X

|f |2λ|g|2μφ

has a meromorphic extension in {�λ > λ0 − 1} with a pole of order � k at λ0 .
We have proved that (2.1) has a pole of order � k along the line {λ = λ0} .
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Near λ0 , the extension of
∫
X
|f |2λφ writes

〈Tk, φ〉
(λ− λ0)k

+ · · ·+ 〈T1, φ〉
λ− λ0

+ · · · .

Hence that of
∫
X
|f |2λ|g|2μφ looks

〈Tk|g|2μ, φ〉
(λ− λ0)k

+ · · ·+ 〈T1|g|2μ, φ〉
λ− λ0

+ · · · .

If suppTk ⊆ {g = 0} , then the first term vanishes for �μ large enough, because
Tk is of finite order (see the beginning of the proof). So the order of the pole along
the line {λ = λ0} is � k0 .

Take x0 ∈ suppTk0 such that g(x0) �= 0 and V a neighborhood of x0 in
which g does not vanish. From the definition of the support, there exists ψ ∈
Λm,mC∞c (V ) such that 〈Tk0 , ψ〉 �= 0. With φ := ψ|g|−2μ ∈ Λm,mC∞c (V ), we get

〈Tk0 |g|2μ, φ〉 = 〈Tk0 , ψ〉 �= 0.
Therefore, the extension of (2.1) has a pole of order k0 along the line {λ=λ0} .

�

Corollary 2.3. For (λ0, μ0) ∈ (R−)2 , assume

(i) the extension of the current valued function (2.2) has a pole of order k at
λ0 ,

(ii) μ0 is not an integer translate of a root of the Bernstein polynomial of g ,
(iii) λ �→ Pf(μ = μ0,

∫
X
|f |2λ|g|2μ�) has a pole of order l0 > k0 where k0 is

defined in (2.3) at λ0 .

Then the meromorphic extension of the current valued function (2.1) has at least
l0 − k0 oblique lines, counted with multiplicities, through (λ0, μ0) .

Proof. Use Proposition 2.2 and a version of Lemma 2.1 with multiplicities. �
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Example 2.4. m = 3, f(x, y, z) = x2 + y2 + z2 , g(x, y, z) = z .

Example 2.5. m = 4, f(x, y, z) = x2 + y2 + z2 + t2 , g(x, y, z, t) = t2 .



Oblique Polar Lines of
∫
X
|f |2λ|g|2μ� 9

Example 2.6. m = 3, f(x, y, z) = x2 + y2 , g(x, y, z) = y2 + z2 .

In this last example, Corollary 2.3 does not apply because for λ0 = −1 we have
k0 = l0 . Existence of an oblique polar line through (−1, 0) is obtained by compu-
tation of the extension of λ �→ Pf

(
μ = 1/2,

∫
X
|f |2λ|g|2μ�

)
.

3. Pullback and interaction

In this section, we give by pullback a method to verify condition (iii) of Corollary
2.3 when g is a coordinate. As a matter of fact the function λ �→

∫
X |f |2λ|g|2μ0�

is only known by meromorphic extension (via Bernstein identity) when μ0 is neg-
ative; it is in general difficult to exhibit some of its poles.

In Cn+1 , denote the coordinates by x1, . . . , xn, t and take g(x, t) = t . We
consider therefore only one holomorphic function f : Y → C , where Y is an open
subset in Cn+1 and fix a relatively compact open subset X of Y . Let us introduce
also the finite map

p : Cn+1 → Cn+1 such that p(x1, . . . , xn, τ) = (x1, . . . , xn, τ
k) (3.1)

for some fixed integer k . Finally, put f̃ := f◦p : X̃ → C where X̃ := p−1(X).

Proposition 3.1. With the above notations and λ0 ∈ R− suppose
(a) the extension of the current valued function (2.2) has a pole of order � 1 at

λ0 ,
(b) λ �→

∫
X̃
|f̃ |2λ� has a double pole at λ0 .

Then there exists l ∈ [1, k−1] such that the extension of the current valued function
λ �→

∫
X |f |2λ|t|−2l/k� has a double pole at λ0 .


