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For my beloved mother

A mother is special, she’s more than a friend.
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To help us succeed she does all that she can,
raised a young boy now into a man.
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Introduction

Maximal nilpotent are Cartan-subalgebras
as well as the nilradical.
Both will be studied in the magnificient sal
of associated Lie algebras.

(Sven Wirsing, December 2015)

Within the theory of Lie algebras Cartan subalgebras play an important role
for the classification of semisimple Lie algebras as well as within the theory
of symmetric spaces.

During my time of studying at the Christian-Albrechts-Universität of Kiel
Salvatore Siciliano presented his researches in the Oberseminar Algebren-
theorie about Cartan subalgebras in Lie algebras associated to associative
algebras. His presentation was the starting point for me to study maximal
nilpotent substructures in associated Lie algebras of associative algebras. In
this work we will present his theory of Cartan subalgebras and enhance it
to some special associative algebras (e.g. basic algebras, division algebras,
algebras with separable factor algebra by its nilradical). In addition, a sec-
ond maximal nilpotent substructure is analyzed, its the so-called nilradical
of a Lie algebra.

The first chapter introduces some special associative and Lie algebras, monoids
and groups. They will be important to visualize and illustrate the general
theorems proven within this work. Some applications are also transferred to
the exercises at the end of each section or chapter. There are some exercises
included enhancing the theory presented so far such that the reader gets a
deeper insight. In addition, at the beginning of each exercise series some
open-ended topics are included which can be used by the reader – and also
by the author – to do additional researches within this theory. The author
has included some (manually created) graphics – mostly so called Hasse di-
agrams – to visualize the results of each section or chapter.

Within chapter 2 basic results about finite subgroups of fields and divi-
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sion algebras are summarized. Some will be proven in details, others will be
just presented without a proof. They will play a role later on in the next
chapters of this work such that their understanding leads to a better insight
of the latter results. In addition, the author includes some proofs of these
basic results because of personal interest on the proofs itself. The summary
will include the proof that finite subgroups of fields are cyclic, the theorem
of Wedderburn about finite division algebras as well as results of Herstein
and Amitsur about the classification of finite subgroups of division algebras.

Likewise structured is chapter 3. This chapter focusses on the normal and
subnormal subgroup structure of division algebras. We will prove the the-
orem of Cartan-Brauer-Hua about normal subgroups of division algebras
and the theorem of Scott about solvable group of units of division alge-
bras. Finally, the theorem of Stuth about subnormal subgroups is presented
(without proving it) enhancing the theorem of Scott.

For an associative algebra the associated Lie algebra can be derived in a
natural way. In chapter 4 we analyze the nilradical – the greatest nilpotent
ideal – of that Lie algebra and focus our analysis on its associative structure.
For this, the center and the nilradical of the associative algebra are of im-
portance: the nilradical is the sum of these two associative substructures. In
particular, its an associative subalgebra. For this theorem we assume that
the factor algebra by the nilradical of the associative algebra is separable
and thus we can use the theorem of Wedderburn-Malcev within the proof.
The analysis begins by determining the nilradical in the case of a solvable
associative algebra. For this, results of the so-called generalized Jordan
decomposition are used. We demonstrate the theorem on special solvable
group algebras based on dihedral and quaternion groups, on the Solomon
algebras in characteristic zero, on the Solomon-Tits algebras and on the al-
gebras of upper and lower triangular matrices over an arbitrary field.
In a second step some results of Herstein about simple rings and their as-
sociated Lie ring are transferred to simple and semisimple algebras: we will
prove that the nilradical is identical to the greatest solvable Lie ideal – the
so-called solvable radical. Both structures are identical to the center of the
associative algebra. For the semisimple case it is proven that the Lie nil-
radical of direct products is the direct product of the Lie nilradicals of the
corresponding components: there are no diagonals possible.
Both results – for solvable and semisimple associative algebras – are used to
determine the nilradical for arbitrary associative algebras.
The chapter is finalized to apply and enhance the theorem for algebra con-
structions like the tensor product, the adjunction of a unit and matrix al-
gebras over algebras. The idea is to determine the Lie nilradical by the
components of the algebra constructions, like by the factors for the tensor
product. We will give proofs or counterexamples for these constructions
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with respect to this question.

In the previous chapter we have deeply analyzed the Lie nilradical of an
associative algebra with respect to its associative structure. The Lie nilrad-
ical is a maximal nilpotent substructure, and the Cartan subalgebras are
maximal nilpotent, too. They are in focus of the next chapter. They are
defined as being nilpotent and self-normalizing Lie subalgebras. The aim
of this chapter is the same as for Lie nilradical: their determination and
the description of their associative structure. Some results of this chapter
are based on an article of Salvatore Siciliano [59], others are enhancements
of his theory to other classes of associative algebras like division algebras,
simple, semisimple and separable associative algebras, reduced associative
algebras or associative algebras with separable factor algebra by their nil-
radical. Standard examples are investigated in details, in particular group
algebras, lower and upper triangular matrices and Solomon-(Tits) algebras
for illustrating the developed theory.
The main result of this chapter is the 1:1-connection between maximal
tori (maximal commutative separable subalgebras) und Cartan subalgebras.
Centralizing maximal tori is a bijection between these structures. The in-
verse calculates for every Cartan subalgebras a maximal torus by creating
the set of fully separable elements of the Cartan subalgebra.
In some cases both sets – maximal tori and Cartan subalgebras – are iden-
tical, like for separable associative algebras. Central divisions algebras are
separable, too, and we prove a theorem of Salvatore Siciliano (in a different
way) that maximal tori and Cartan subalgebras are exactly the maximal
separable subfields. We enhance the theorem by proving that these are ex-
actly the separable maximal subfields which is also an alternative proof of a
theorem of Emmy Noether. In particular, it is proven that all maximal tori
= Cartan subalgebras have the same dimension and are isomorphic as Lie
algebras. This theorem is transferred to non-central division algebras.
Solvable associative algebras have the property that maximal tori are exactly
the radical complements if the factor algebra by its associative nilradical is
separable. This result – proven by Thorsten Bauer in his dissertation [4] and
by Salvatore Siciliano in [59] – is proven by a different approach and revised
later on in the second to last section of this chapter. As a consequence of our
main theorem about Cartan subalgebras and the theorem of Wedderburn-
Malcev all maximal tori and Cartan subalgebras are conjugated, and the
Cartan-subalgebras are exactly the centralizers of the radical complements.
For basic algebras we transfer the determination of Cartan subalgebras to
Cartan subalgebras of maximal solvable substructures. These maximal ones
are describable as direct sums of maximal tori and the associative nilradical.
The centralizers of the maximal tori of the underlying algebra are identical
to the centralizer within these maximal solvable subalgebras. Afterwards we
focus on reduced group algebras. In the modular case the terms basic and
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solvable are equivalent. For semisimple group algebras the situation is more
complex: the group is hamiltonian and the equation a2 + b2 + 1 = 0 has
no solution in special field extension based on roots of unities. Finally, we
determine the dimension of the Cartan subalgebras for these group algebras
based on the results of chapter 6.
In the second to last section we analyze how the determination of Cartan
subalgebras can be done based on separable radical complements. The max-
imal tori of the radical complement and of the whole algebra are identically.
For separable radical complements maximal tori and Cartan subalgebras are
identically, too. The centralizers of them are exactly the Cartan subalgebra
of the underlying algebra. Based on this result a strategy is developed for
determining Cartan subalgebras. For solvable algebras this strategy is used
and the determination of Cartan subalgebras is revised in a more transpar-
ent way. We apply this strategy also on group algebras of dihedral groups.
The chapter is finalized to apply and enhance the theorem for Cartan sub-
algebras for algebra constructions like the tensor product, the adjunction
of a unit and matrix algebras over algebras. The idea is to determine the
Lie nilradical by the components of the algebra constructions, like by the
factors for the tensor product. We will give proofs or counterexamples for
these constructions with respect to this question.

The next chapter is dedicated to the dimension of maximal tori in group
algebras. We begin this chapter by proving a result of Salvatore Siciliano
connecting this dimension to the sum of degrees of all irreducible complex
characters for semisimple group algebras. This sum is identical for all fields
such that the group algebra is semisimple. We use this result and some
classical and modern results about that sum within the character theory of
finite groups to bound this dimension – like by the number of involutions,
by the order of the group, by the order of abelian subgroups and by the
maximal degree – and determine this sum for several classes of groups –
like for Frobenius groups, for direct products, for extra special p-groups, for
diverse linear groups, for ambivalent groups such as dihedral and symmetric
groups, for meta-cyclic groups, for p-groups, for nilpotent groups and for
minimal non-abelian p-groups.

Within chapter 7 we focus on the question whether the dimensions of the
maximal tori and of the Cartan subalgebras are unique for associated Lie
algebras of finite-dimensional associative unital algebras. For maximal tori
we give a positive answer to this question for associative algebras with sepa-
rable factor algebra by its nilradical by calculating this dimension explicitly.
The answer for the Cartan subalgebras is positive, too. In characteristic
zero we derive this result by using a classical result on Cartan subalgebras
over algebraically closed fields. In the modular case we begin the analysis by
proving the uniqueness for associated Lie algebras based on solvable finite-
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dimensional associative algebras, for separable associative algebras and for
finite-dimensional associative algebras possessing a central nilradical. The
general case is derived by using a result of Premet (which was later proven
by Farnsteiner) for restricted Lie algebras over algebraically closed fields in
positive characteristic and by using the result on the dimension for maximal
tori. In general, the dimension of Cartan subalgebras can differ for restricted
Lie algebras. By using a second approach we extend our theorem for the
uniqueness of the dimension of Cartan subalgebras to the solvable and nilpo-
tency class. For this, we prove that all maximal tori and Cartan subalgebras
of Lie algebras associated to finite-dimensional associative algebras over an
arbitrary algebraically closed field are conjugated. We demonstrates these
three invariants – dimension, nilpotency and solvable class – by calculating
them for group algebras based on dihedral and quaternion groups.

Chapter 8 is an outlook on the second series about maximal nilpotent sub-
structures. We will focus on the solvable case of an associative algebra in
more details as in this first volume. For this, we will extend the topic to
all maximal nilpotent substructures and to the connection to the maximal
nilpotent subgroups of their group of unit. A graphic illustrates the prob-
lems analyzed in series II.

Within the appendix we classify a special class of algebras and analyze their
Lie nilpotency. This class of algebras was in focus of the diploma thesis of
Armin Jöllenbeck.





Chapter 1

Natural examples

This chapter has a preliminary function by summarizing those monoids,
groups, associative and Lie algebras which will arise in this work. They will
be used for examples of the proven theorems as well as for exercises in which
the reader shall apply the results.

Groups and monoids

Let n ∈ N, N be a set, M a monoid, G a group, A an associative unitary
algebra and q a prime power. We will focus on the following groups and
monoids:

· N - natural numbers

· N0 - natural numbers containing zero

· (P (N);∩) - power set of N with operation ∩

· (P (N);∪) - power set of N with operation ∪

· (P (N); δ) - power set of N with operation δ - symmetric difference

· (P (M); ·) - power set of M with complex product · as operation

· (P (G); ·) - power set of G with complex product · as operation

· D2n - dihedral group of order 2n

· Q4n - quaternion group of order 4n

· SD2n - semi-dihedral group of order 2n

· Sn - symmetric group of degree n

· An - alternating group of degree n

13
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· GL(n, q) - general linear group of degree n over GF (q)

· SL(n, q) - special general linear group of degree n over GF (q)

· PSL(n, q) - projective special general linear group of degree n over GF (q)

· SP (2n, q) - symplectic group of degree 2n over GF (q)

· GSP (2n, q) - general similitudes group

· U(n, q) - unitary group of degree n over GF (q)

· Cn or Zn - cyclic group of order n

· E(A) - group of units of A

· Q(A) - quasiregular group of A

· × - direct products of groups

· o - regular wreath product of groups

· n - semidirect product of groups.

General constructions of algebras

Let A be an algebra, K a field, G a group, I an ideal, M a monoid, n ∈ N
and T ⊆ A. The following general constructions of algebras will be used:

· ⊗ - tensor product of algebras

· × - direct products of algebras

· ⊕ - direct sum of algebras

· A/I - factor algebra of A by the ideal I

· KG - group algebra of the group G and the field K

· KM - monoid algebra of the monoid M and the field K

· An×n - algebra of n× n-matrices over A

· A◦ - associated Lie algebra of A

· 〈T 〉K - K-linear span of T

· 〈T 〉A - subalgebra generated by T

· 〈T 〉A1 - unital subalgebra generated by T

· AK - adjunction of a unit to A
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· Aop or A− - inverse or opposite algebra of A

· (A×A;�) - zero extension of A

· gl(n,K) - identical to (Kn×n)◦

· eAe - identical to {eae | a ∈ A} for an idempotent e

· Aug(KG) - augmentation ideal of KG.

Commutative algebras

The following commutative algebras will appear:

· Z - the set of integers

· K[t] - polynomial algebra over K in one variable t.

Fields and skew fields

Let p be a prime number, n ∈ N and (K;L) a field extension. We will focus
on the following fields, skew fields and elements:

· Q - rational number field

· R - real number field

· C - complex number field

· H - real quaternion algebra

· GF (pn) - finite field with pn elements

· GF (q) - notation for GF (pn) and q = pn

· A(a, b) - generalized quaternion algebra

· K(a) - smallest subfield in L containing a and K

· ωd - primitive dth root of unity

· cyclic division algebras.

(Central) - simple associative algebras

Let K be a field, D a division algebra and n ∈ N. We will use the following
(central)-simple associative algebras:

· Kn×n - n× n-matrices over K

· Dn×n - n× n-matrices over D

· A(a, b) - generalized quaternion algebra.
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Semisimple associative algebras

We will use the following semisimple associative algebras:

· × - direct products of simple algebras

· A/rad(A) - the factor algebra by the nilradical of an associative algebra.

Nilpotent associative algebras

Let A be an associative algebra, K a field, p a prime number, n ∈ N and G
a p-group. We will focus on the following nilpotent associative algebras:

· rad(A) - nilradical of A

· J(A) - Jacobson radical of A

· sδu,n - algebra of strict lower triangular matrices of Kn×n

· sδo,n - algebra of strict upper triangular matrices of Kn×n

· Aug(KG) - augmentation ideal ofKG based on a p-groupG and char(K) =
p.

Solvable associative algebras

Let n ∈ N, p a prime number, G a finite group and K be a field. We will
focus on the following solvable associative algebras:

· KΠn - Solomon-Tits algebra (see e.g. [76])

· Dn - Solomon algebra in the case char(K) = 0 (see e.g. [4])

· δu,n - algebra of lower triangular matrices of Kn×n

· δo,n - algebra of upper triangular matrices of Kn×n

· KG - group algebra based on: char(K) = p and G possesses a normal
p-Sylow subgroup with an abelian p

′
-Hall subgroup.



Chapter 2

Finite subgroups of fields
and division algebras

In this chapter we summarize some results of finite subgroups in unit groups
of fields and division algebras. For some of them we provide a proof, for the
others we reference the corresponding literature. We will use some of these
results in the next chapters. Therefor these results provide the reader a
deeper insight for understanding these results. In addition, this chapter is
included on personal interest of the author for the proofs of these results.

2.1 Finite subgroups of fields

By E(A) and K[t] we denote the group of units of an associative algebra A
and the algebra of polynomials over a ring K based on the single variable t.
For a group G and an element g of G let o(g) (more exact: oG(g)) the order
of g in G.

The following theorem is proven by various arguments within the litera-
ture. It is unknown which mathematician provided the first proof of this
result. Our variant is based on the main theorem on finite abelian groups.

Theorem 1 Every finite subgroup of the group of units of a field is cyclic.
In particular, the group of units of a finite field is cyclic.

Proof. Let K be a field and U a finite subgroup of E(K). By using the
main theorem on finite abelian groups we decompose U in cyclic groups of
prime power order:

U = (G1,1 × · · · ×G1,s1)× · · · × (Gr,1 × · · · ×Gr,sr).

In this decomposition all groups Gi,j are of prime power order with respect
to the prime number pi. We arrange the product such that Gi,1 is the great-
est factor within Gi,1 × · · · × Gi,ri . For every i let gi a generator of Gi,1.

17
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We focus on the element g := g1 · · · gr. g is of order o(g) = o(g1) · · · o(gr)
because all prime numbers p1, · · · , pr are distinct. For every u ∈ U the
identity uo(g) = 1 is valid.

All elements of U are roots of the polynomial to(g) − 1, and there are at
most o(g) distinct roots. Hence we derive | U | ≤ o(g). All o(g)-powers of g
are distinct. Therefor U is exactly the set of these powers of g. We conclude
that U is cyclic and generated by g.�

2.2 Results of Wedderburn, Amitsur and Herstein
about division algebras

An unitary algebra is an algebra with a unit. An unital subalgebra of an
unitary algebra is a subalgebra containing the unit element of the global
algebra. Hence a unital subalgebra is unitary. An unitary subalgebra is a
subalgebra which is unitary as an algebra. An unitary subalgebra does not
need to be unital as its unitary unit could differ from the unit element of
the global algebra. Its unit element is an idempotent of the global algebra.
The center of A is denoted by Z(A).
Let G be a group, T a subset of G and g ∈ G. By g we symbolize the con-
jugation with g and by CG(T ) resp. NG(T ) the centralizer resp. normalizer
of T in G.

Our next focus is the proof of a theorem of Wedderburn about finite di-
vision algebras. For this proof we need the following two propositions.

Proposition 1 Let D be a K-division algebra and T be a unital finite-
dimensional subalgebra of D. Then T is a division algebra, too.

Proof. Let t ∈ T and assume t 6= 0. We consider the right and the
left multiplication with t on T . Both functions are injective because D is a
division algebra. Hence - using the finite dimension of T - they are surjective,
too. In particular, 1 has a pre-image with respect to these functions. Both
pre-images are the inverse of t and therefor contained in T . �

Proposition 2 Let G be a finite group and U be a subgroup of G. The the
U and G are equal if and only if G is the union of all G-conjugate subgroups
of U .

Proof. If U is a normal subgroup the statement is true. Let U be a non-
normal subgroup of G. Hence the statement G > NG(U) is true. The
number of conjugates of U is exactly the index of the normalizer of U in
G which is |G|

|NG(U)| . All conjugated of U have at least the unit element in
common. Therefor we conclude:
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|
⋃
g∈G

Ug | ≤ 1 + |G|
|NG(U)| · (| U | −1).

The right hand side is – because of U ≤ NG(U) – not greater than

1+ | G | − |G|
|NG(U)| .

By using G > NG(U) we derive that this value is smaller than | G |.�

We will prove the following theorem by usage of the theory of central-simple
associative division algebras. For this, let ind(D) (more exact: indK(D)) the
index of a central-simple finite-dimensional associative unitaryK-division al-
gebra which is the unique dimension of all maximal subfields of D. A good
introduction to this theory can be found [49] and in [39].

Theorem 2 (Wedderburn) Every finite division algebra is a field. In par-
ticular, its group of units is cyclic.

Proof. Let D be a finite division algebra and K := Z(D). K is a field and
D a central-simple finite-dimensional associative unitary K-division algebra.
All maximal subfields have the same dimension indK(D). Hence – by using
the finiteness of D – they are of the same order. Based on the finite field
theory we know that all maximal subfields are isomorphic. Now we use the
theorem of Skolem-Noether1 and conclude that all maximal subfields are
conjugated. Every element d of D is contained in a maximal subfield of D

1Thoralf Albert Skolem (born 23 May 1887, died 23 March 1963) was a Norwegian
mathematician who worked in mathematical logic and set theory. Although Skolem’s fa-
ther was a primary school teacher, most of his extended family were farmers. Skolem
attended secondary school in Kristiania (later renamed Oslo), passing the university en-
trance examinations in 1905. He then entered Det Kongelige Frederiks Universitet to study
mathematics, also taking courses in physics, chemistry, zoology and botany. In 1909, he
began working as an assistant to the physicist Kristian Birkeland, known for bombarding
magnetized spheres with electrons and obtaining aurora-like effects; thus Skolem’s first
publications were physics papers written jointly with Birkeland. In 1913, Skolem passed
the state examinations with distinction, and completed a dissertation titled Investigations
on the Algebra of Logic. He also traveled with Birkeland to the Sudan to observe the
zodiacal light. He spent the winter semester of 1915 at the University of Göttingen, at the
time the leading research center in mathematical logic, metamathematics, and abstract
algebra, fields in which Skolem eventually excelled. In 1916 he was appointed a research
fellow at Det Kongelige Frederiks Universitet. In 1918, he became a Docent in Mathemat-
ics and was elected to the Norwegian Academy of Science and Letters. Skolem did not
at first formally enroll as a Ph.D. candidate, believing that the Ph.D. was unnecessary
in Norway. He later changed his mind and submitted a thesis in 1926, titled Some theo-
rems about integral solutions to certain algebraic equations and inequalities. His notional
thesis advisor was Axel Thue, even though Thue had died in 1922. In 1927, he married
Edith Wilhelmine Hasvold. Skolem continued to teach at Det kongelige Frederiks Uni-
versitet (renamed the University of Oslo in 1939) until 1930 when he became a Research
Associate in Chr. Michelsen Institute in Bergen. This senior post allowed Skolem to
conduct research free of administrative and teaching duties. However, the position also
required that he reside in Bergen, a city which then lacked a university and hence had no
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because the subalgebra of D generated by {d, 1} is a subfield of D (see propo-
sition 1). Therefor D is the union of all maximal subfields of D. From this
we derive that E(D) is the union of all groups of units of all maximal sub-
fields and that these subgroups are conjugated. We can apply proposition 2
and conclude that D and one maximal subfield of D are identical. The proof
is complete and the add-on is a consequence of this result and of theorem 1.�

Let V be a K-linear space and T a subset of V . By 〈T 〉V we denote the
K-linear span of T in V . GF (pn) resp. GF (q) symbolize a finite field of
order pn resp. q (Galois field).

By usage of our previous results we derive two theorems proven by Her-
stein:

Theorem 3 (Herstein) Every finite abelian subgroup of a division algebra
is cyclic.

Proof. Let G be a finite abelian subgroup of a division algebra D. D is
a Z(D)-Algebra. We focus on the Z(D)-linear span of G in D. By using
proposition 1 we obtain that this span is a finite-dimensional unital Z(D)-
division algebra. G is commutative, and hence 〈G〉Z(D) is a field and G a
finite subgroup of its groups of units. The proof is finished by using theorem
1.�

Theorem 4 (Herstein) Every finite subgroup of a division algebra in posi-
tive characteristics is cyclic.

Proof. Let D be a division algebra, P the central prime subfield isomor-
phic to GF (p) and G a finite subgroup of E(D). We focus on the unital
P -subalgebra 〈G〉P of the P -division algebra D. This division algebra is by
the finiteness of G finite-dimensional. Therefor proposition 1 implies that it
is a division algebra over P . P is finite and we conclude that this division
algebra is finite, too. By usage of theorem 2 of Wedderburn it is a field. The
corresponding theorem 1 for fields implies that G is – as a finite subgroup –
cyclic.�

research library, so that he was unable to keep abreast of the mathematical literature. In
1938, he returned to Oslo to assume the Professorship of Mathematics at the university.
There he taught the graduate courses in algebra and number theory, and only occasionally
on mathematical logic. Skolem’s Ph.D. student Øystein Ore went on to a career in the
USA. Skolem served as president of the Norwegian Mathematical Society, and edited the
Norsk Matematisk Tidsskrift (The Norwegian Mathematical Journal) for many years. He
was also the founding editor of Mathematica Scandinavica. After his 1957 retirement,
he made several trips to the United States, speaking and teaching at universities there.
He remained intellectually active until his sudden and unexpected death. For more on
Skolem’s academic life, see Fenstad (1970).
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Remark 1 The previous theorem 4 is wrong in characteristic zero. In the
real quaternion algebra the quaternion group of order 8 is a finite but non-
cyclic subgroup of the group of units.�

Herstein and Amitsur2 have classified the finite subgroups of division alge-
bras. A first results deals with so-called meta-cyclic groups. These groups
are characterized by possessing a cyclic normal subgroup whose factor group
is cyclic, too. A group having only cyclic Sylow subgroups is called a Z-
group. It can be proven that Z-groups are meta-cyclic.

Theorem 5 (Herstein) Every p-subgroup with respect to a prime number
p 6= 2 of the group of units of a division algebra is cyclic. In particular,
every subgroup of uneven order of the group of units of a division algebra is
a Z-group.

Proof. We use theorem 5.3.7 in [63] to derive that a p-group of uneven
order is cyclic if it possesses exactly one subgroup of order p. This pre-
condition is with respect to 5.3.8 in [63] valid if every abelian subgroup is
cyclic. This was proven within theorem 3. The add-on follows as all Sylow
subgroups are cyclic.�

Remark 2 The previous theorem 5 fails for p = 2. In the real quaternion
algebra the quaternion group of order 8 is a finite but non-cyclic subgroup
of the group of units. All of its subgroups are cyclic.�

By Cn or Zn we denote a cyclic group of order n ∈ N. If n,m are integers,
then let on(m) := oZ/nZ(mZ). We formulate the classification of finite
subgroups of division algebras (but we will not prove it here) in characteristic
zero:

Theorem 6 (Amitsur) Every finite subgroup of the group of units of a divi-
sion algebra in characteristic zero is isomorphic one of the following groups:

(i) Cn

2Shimshon Avraham Amitsur (born August 26, 1921, died September 5, 1994) was
an Israeli mathematician. He is best known for his work in ring theory, in particular PI
rings, an area of abstract algebra. Amitsur was born in Jerusalem and studied at the
Hebrew University under the supervision of Jacob Levitzki. His studies were repeatedly
interrupted, first by World War II and then by the Israel’s War of Independence. He
received his M.Sc. degree in 1946, and his Ph.D. in 1950. Later, for his joint work with
Levitzki, he received the first Israel Prize in Exact Sciences. He worked at the Hebrew
University until his retirement in 1989. Amitsur was a visiting scholar at the Institute
for Advanced Study from 1952 to 1954. He was an Invited Speaker at the ICM in 1970
in Nice. He was a member of the Israel Academy of Sciences, where he was the Head for
Experimental Science Section. He was one of the founding editors of the Israel Journal of
Mathematics, and the mathematical editor of the Hebrew Encyclopedia. Amitsur received
a number of awards, including the honorary doctorate from Ben-Gurion University in 1990.
His students included Avinoam Mann, Amitai Regev, Eliyahu Rips and Aner Shalev.
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(ii) A Z-group of the form CmnC4 for which C4 acts per inversion on Cm
and m is uneven.

(iii) A Z-group of the form T0×· · ·×Ts in which the orders of these factors
are pairwise prime to each other, T0 is cyclic, every Ti, i ∈ s is non-
cyclic of the form Cpa n (C

q
b1
1

× · · · × C
qbrr

), the prime numbers p, qi,

i ∈ r are distinct, for every i ∈ r the semidirect product Cpa n C
q
bi
i

is non-cyclic and is satisfying the following condition: if Cpc is the
kernel of the operation of C

q
bi
i

on Cpa, then one of the following cases

are valid:
(qi = 2, p ≡ −1mod 4, c = 1) or
(qi = 2, p ≡ −1mod 4, 2c+1 does not divide p2 − 1) or
(qi = 2, p ≡ 1mod 4, 2c+1 does not divide p− 1) or
(qi > 2, qc+1

i does not divide p− 1.)
In addition, for every non-cyclic factor Cpa nC

q
bi
i

within every factor

Tj the statement qi · opc(p) does not divide o|T/Ti|(p) is valid.

(iv) Cm n Q2t in which m is uneven, an element of Q2t of order 2t−1

centralizes the group Cm and an element of order 4 of Q2t inverts the
group Cm.

(v) Q8 × Z in which Z is a Z-group of order m presented in (i), (ii) and
2 has uneven order in Z/Zm.

(vi) SL(2, 3)×Z in which Z is a Z-group of order m presented in (i), (ii)
and 2 has uneven order in Z/Zm.

(vii) The binary octahedral group of order 48.

(viii) The binary icosahedral group of order 120.

Proof. see Amitsur [1], Herstein [20] and Lam [38] �

2.3 Exercises

Excercise 1 Read the article [1] of Amitsur. Determine for all finite sub-
groups of division algebras suitable division algebra in which they are ap-
pearing!

Excercise 2 Define meta-abelian and supersolvable groups by a research in
the literature.

Excercise 3 Prove or disprove the following statements:

(i) Every cyclic group is meta-cyclic.
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(ii) The converse of (i) is valid.

(iii) Every abelian group is meta-cyclic.

(iv) The converse of (i) is valid.

(v) Direct products of meta-cyclic groups are meta-cyclic.

(vi) Semidirect products of meta-cyclic groups are meta-cyclic.

(vii) Every meta-cyclic group is supersolvable.

(viii) Every meta-cyclic group is meta-abelian.

(ix) A group for which all Sylow subgroups are cyclic is meta-cyclic.

(x) A group of squarefree order is meta-cyclic.

(xi) Dihedral groups are meta-cyclic.

(xii) Quaternion groups are meta-cyclic.

(xiii) Semidihedral groups are meta-cyclic.

Excercise 4 Prove the following statements: An unitary algebra is an alge-
bra with a unit element. A unital subalgebra of an algebra A is a subalgebra
containing the unit element of A. A unital subalgebra is unitary. A uni-
tary subalgebra is a subalgebra which is unitary as an algebra. A unitary
subalgebra is not unital in general. (Tip: idempotent elements)

Excercise 5 By using an article [20] of Herstein prove the following state-
ments (p prime number, D a skew field and U a subgroup of E(D)):

(i) If U is of order p or p2, then U is cyclic.

(ii) If p 6= 2 and U is a p-group, then U is cyclic.

(iii) Is part (ii) true for p = 2?

(iv) If the order of U is uneven, then U is meta-cyclic.

Excercise 6 True or false: The unit group of an infinite field is cyclic. Is
it possible to characterize finite fields by characteristics of their unit group?

Excercise 7 Determine all finite subgroups of the multiplicative group of
complex numbers! How many non-isomorphic subgroups of order n are ex-
isting? Visualize them for n ∈ 8 on the complex plane!

Excercise 8 Are there finite subgroups in the additive group of complex
numbers? On what terms do finite subgroups of the additive group of a field
exist which are non-trivial? What is the answer for the multiplicative group?


