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FOREWORD

FOR DECADES the motor industry associated with squirrel cage induc-
tion motors (SCIMs) has been developing, as part of condition monitoring, a pro-
cess called Motor Current Signature Analysis (MCSA) to determine if the rotor cage
winding has broken rotor bars or the motor has an abnormal level of operational air-
gap eccentricity. Since the 1970s, research, testing, evaluation, and technical papers
have been published on this form of condition monitoring and how and where to
apply it. Unfortunately, few of these studies and resulting papers have had any sig-
nificant amount of actual case histories containing enough useful data to assist in the
conduction of an accurate analysis.

The authors of this unique book, William T. Thomson and Ian Culbert, have
presented 50 industrial case histories, 35 of these are on MCSA to detect broken rotor
bars in “Cage Induction Motors,” which also include what is referred to as “false pos-
itives.” These are cases where there are no broken rotor bars but the test data indicate
that there are. There are also 15 industrial case histories on MCSA for diagnosing
abnormal levels of operational airgap eccentricity including successful and “unsuc-
cessful” cases.

On the surface, false positives may not seem a major issue. One may even
breathe a sigh of relief that they do not have to rebuild the rotor. This is the issue
with this approach that the authors discuss in great detail. First, if there turns out not
to be broken rotor bars in a large, high voltage SCIM and the user shuts down the
operation, pulls the motor, transports it to a qualified repair facility, disassembles the
motor and then finds nothing wrong, the expense to do so and the loss in production
can add up to a greater cost than a new motor! The end user is a very dissatisfied
customer and inevitably loses all faith in MCSA as a credible condition monitoring
technique. In many cases the “false positive” that drove this decision may indicate
a serious problem with the driven equipment that still has not been identified and
corrected when the motor is re-installed.

The authors do a great service to industry by identifying the source of many of
these false positives. If it is wrongly concluded that there is a “false positive” and the
motor is kept in operation, then the danger is that in some cases a broken rotor bar
may find its way into the stator winding and cause a catastrophic failure or in some
cases may actually exit the motor and cause physical harm to operating personnel, or
in a hazardous area may lead to an explosion.

Because of these possibilities there has previously been some hesitance to rely
on MCSA as an effective tool for condition monitoring and conducting a “Root Cause
Failure Analysis.” However, the proper use of this methodology proposed by the
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authors combined with the case studies now greatly minimizes the possibility of an
incorrect root cause failure analysis. The final chapter starts with a very useful flow
chart taking the user through a step-by-step process of conducting an MCSA test,
which is followed by sections on “strengths, weaknesses, external constraints, and
very importantly the lessons learned.”

For those who choose to use MCSA as a tool there are some considerations as
to where best to apply MCSA as pointed out by the authors. A review of broken rotor
bar failures reveals that most broken bars occur on fabricated rotors and not on die-
cast rotors which are normally used in smaller motors. The motors with the highest
probability of having broken bars are those that have been in service for many years,
those that are frequently started, or have high inertial loads. The actual loading of the
motor or high ambient temperature conditions can also be a factor.

MCSA is proposed as a useful tool to benchmark the motor prior to shipment
to the job site or upon start up. Unfortunately, there are some cases where the orig-
inal rotor design was not acceptable for its application and therefore has a built in
propensity for broken rotor bars during the motor’s normal life cycle. There are other
cases where, in the process of rebuilding the rotor, adequate steps have not been taken
to minimize future bar breakage. The authors have woven into this book the basic
knowledge to identify and deal with most of these issues.

When purchasing future motors, especially those with fabricated rotors, the
authors recommend that the motor manufacturer also supply the actual motor speed
at different loads and the correct number of rotor bars. It is also helpful to know the
shaft configuration and whether end ring retaining rings cover the extended bars and
end rings area. This additional information will help to ensure a more reliable MCSA
diagnosis of cage winding problems. The book contains valuable details as to why
this additional information is useful. If the motor is dismantled for repair much of
this information can be obtained then.

Another feature of the book is that it contains useful information on basic SCIM
theory to assist those who may be technical people, such as mechanical, maintenance,
and instrumentation engineers and technicians but who may have had no prior training
on basic induction motor theory. At the end of each chapter there are 10 questions
that make the book useful in the training process.

This book can be very beneficial for those who design, install, operate, main-
tain, troubleshoot, and repair SCIMs. The authors have many years of experience in
all of these areas and have chosen to include information pertaining to this vast array
of users. I would also recommend it to university or trade schools as a training tool
and a reference book.

It is quite apparent that the time spent to obtain and study the material pre-
sented by the authors is more than offset by the costs and time spent to avoid just
one catastrophic motor failure. This book will be a valuable asset in the library of
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those who have to deal with SCIMs in any of the many aspects from design through
to successful operation.

Austin Bonnett, IEEE Life Fellow
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PREFACE

CONDITION MONITORING of 3-phase squirrel cage induction
motors (SCIMs) is now extensively used by end users to prevent catastrophic failures,
unscheduled downtime with consequent loss of income, and hazardous conditions
that may lead to major accidents. This book is dedicated to one condition monitoring
technique, namely, Motor Current Signature Analysis (MCSA) and although its con-
tent is focused to suit the needs of industry it should also be of interest to academia.

The content is uniquely different from all other books on condition monitoring
of electrical machines and also those with a part content on the use of MCSA, since it
documents 50 industrial case histories on the application of MCSA to diagnose bro-
ken rotor bars, unacceptable levels of airgap eccentricity, and abnormal drive dynam-
ics downstream of the motor. A key feature of the case histories is that, wherever
possible, they seek to close the loop between diagnosing a problem and strip down of
the motor, to provide photographic evidence that the diagnosis was correct or incor-
rect. MCSA case histories of motors with power ratings from 127 kW (170 HP) to
10,000 kW (13,340 HP) and operating voltages from 415 to 13,800 V are presented.

The reason for this book arises from the nature of the existing literature. Since
the late 1970s there have been hundreds of research papers on MCSA which have
been predominantly published by academia, with the test results obtained from small
power SCIMs operating under controlled experimental conditions. These papers jus-
tify their research on the basis that MCSA is required by the end users and this is
perfectly acceptable; however, the number of papers containing actual industrial case
histories amount to only about 2% of the total. There was therefore an overwhelming
need for a book on MCSA that focused on industrial case histories. Since 1982 the
authors have applied MCSA in industry, William T. Thomson for 34 years and Ian
Culbert for 14 years. Further, the authors’ have 108 years of combined experience in
the installation, maintenance, repair, design, manufacture, operation, and condition
monitoring of SCIMs.

The successful application of MCSA requires the engineer to understand the
operation of SCIMs, have an appreciation of the design, construction, and manufac-
ture of cage rotors, the causes of breaks in cage windings, and the fundamentals on
the use of MCSA to detect broken rotor bars. These topics are covered in Chapters 1
to 4, respectively. Chapters 5 and 6 contain case histories on MCSA used to assess the
operational condition of different designs of cage windings when SCIMs are driving
steady mechanical loads. Chapter 7 reports on case histories where MCSA attempts
to diagnose broken rotor bars when cyclical disturbances from the mechanical loads
are reflected back into the motor, which reflection can cause an incorrect diagnosis
of broken rotor bars, referred to as a false positive.
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Chapter 8 presents case histories, which include false positives of broken rotor
bars due to the reflected mechanical dynamics from the combination of low speed
gearboxes and fluctuating loads from conveyors and crushers. Chapter 9 presents mis-
cellaneous MCSA case histories on the detection of broken rotor bars. For example,
cases in which the number of spider support arms on the shaft (and axial ducts) of a
cage rotor is equal to the number of poles, since this design can give a false positive
of cage winding defects; the detection of slack and worn belts in belt driven cooling
fans and the detection of imperfections in the caisson of a submersible seawater lift
pump driven by a SCIM. Chapter 9 also includes case histories on the application of
MCSA to inverter-fed SCIMs.

Chapter 10 covers the definitions and practical causes of different types of air-
gap eccentricity and discusses the resulting unbalanced magnetic pull (UMP) that can
cause a rotor to stator rub. The predictor equations required to detect the unique cur-
rent signature pattern, which is a function of the combination of static and dynamic
airgap eccentricity, are presented and the diagnostic strategy for the signal process-
ing is explained. The interpretation of the current spectrum and methodology used
to estimate the operational airgap eccentricity are also included in Chapter 10. Chap-
ter 11 presents industrial case histories on the application of MCSA to estimate the
operational airgap eccentricity, including successes and failures.

The MCSA case histories are deliberately presented in “great detail” since a
“broad brush, superficial presentation” that leaves the reader wondering how the
diagnosis was achieved is meaningless. The inclusion of cases, when MCSA was not
successful, is in complete contrast to the hundreds of research papers published on
MCSA, which tend to only report on successful laboratory-based experiments. Each
case history in this book stands alone so that the reader does not need to scroll back-
ward and forward to find information and inevitably, there is repetition of formulae
and other relevant knowledge. It is the authors’ opinion that the style of presenta-
tion of the case histories is advantageous to the readers and particularly to engineers
who apply MCSA technology. Root Cause Failure Analysis (RCFA) investigations
are very time consuming, expensive, and normally delay the repair of motors, which
the end user wants to get back in service as soon as possible. Consequently, RCFA
investigations for each of the 50 industrial case histories were certainly not carried
out by the end users but by the authors only when requested to so do. These requests
were very infrequent, but any investigations are reported.

Chapter 12 presents an appraisal on the reasons why end users have not been
receptive to the application of MCSA to diagnose shorted turns in LV or HV stator
windings or faults in roller element bearings in SCIMs. Chapter 13 starts with a flow
chart on the application of MCSA, which is formulated in a practical style, directly
applicable for industrial engineers. This is followed by an appraisal on the strengths,
weaknesses, external constraints, and very importantly the lessons learned by the
authors spanning a period of 34 years.

The identities of manufacturers and end users of the motors in the case histories
are not given and neither are the motors’ serial numbers. At the start of the chapters on
case histories (5–9 and 11) a list is presented to assist the reader to select the ones of
personal interest contained therein. For completeness, metric and imperial units are
included since the latter are used by electrical machine manufacturers, motor repair
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companies, and end users in the USA and also by the NEMA MG1: “Motors and
Generators,” 2012, USA, and API 541, USA, 5th edition, December 2014 standards.
Immediately after the list of contents there are lists of symbols, abbreviations, and
relevant units of equivalence between SI, metric and Imperial units The equations in
each chapter are presented after Chapter 13. There are 10 questions at the end of each
chapter (except Chapter 13)—the publisher should be contacted directly to obtain
access to the answers.

William T. Thomson
Ian Culbert





NOMENCLATURE

Quantity
Quantity
Symbol Unit

Unit
Symbol

Angular frequency ω Radians per sec rad/sec
Angular position around θ Degrees deg

circumference
Airgap—radial design value g Millimeters/inches 10−3 mm/mils
Airgap as a function of time

and angle
g(θ,t) Millimeters/inches 10−3 mm/mils

Airgap eccentricity—static es Millimeters/inches 10−3 mm/mils
Airgap

eccentricity—dynamic
ed Millimeters/inches 10−3 mm/mils

Backward rotating field from
the rotor

Nsb Revolutions per minute r/min

Equivalent broken rotor bar
factor at any operating slip
below full-load slip

BBf Number –

Equivalent broken rotor bar
factor at operating slip

BBfs Number –

Broken rotor bar correction
factor

BBc Number –

Broken rotor bar index at
full-load current and slip

n Number –

Broken rotor bar index at any
operational slip below
full-load slip and current

nfs Number –

Ball diameter in roller
element bearing

BD Millimeters mm

Centrifugal force CF Newtons/pounds force N/lbsf
Coil distribution factor kd Number –
Coil span factor ks Number –
Current (rms) I Ampere A
Current magnitude of supply

frequency component
Ip Ampere A

Current magnitude of f − 2sf
at any slip

ILSB Ampere A

Current magnitude of f + 2sf
at any slip

IUSB Ampere A
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Quantity
Quantity
Symbol Unit

Unit
Symbol

Current magnitude of f − 2sf
at any slip but referred to
full-load slip

ILSBr Ampere A

Current components sum of f
± 2sf at full-load

In Ampere A

Current input per phase Ii Ampere A
Current—no-load per phase Io Ampere A
Current in rotor per phase Ir Ampere A
Current in rotor bar Irb Ampere A
Current per phase due to core

losses
Ic Ampere A

Current per
phase—magnetizing

Im Ampere A

Current per phase in rotor
referred to stator

I/
r Ampere A

Contact angle on bearing
raceways

β Degrees deg

Diameter of rotor core Dr Millimeters/inches mm/inches
Decibel difference between f
− 2sf and f

N Decibels dB

Decibel difference (average)
between f ± 2sf and f

Nav Decibels dB

Decibel difference—the
corrected average of
measured Nav at reduced
load and slip between f ±
2sf and f referred to
full-load slip

Ncav Decibels dB

Decibel difference (average)
between frs and frs ± fr

Nec Decibels dB

Electromotive force
(instantaneous)

e Voltage V

Electrical degrees θe Degrees deg
Flux per pole ϕp Webers Wb
Frequency of mains supply f Hertz Hz
Frequency of rotor emf and

current
f2 Hertz Hz

Frequency of lower sideband fsb Hertz Hz
Frequencies of upper and

lower sidebands
fs Hertz Hz

Frequencies of rotor slotting
current components

frs Hertz Hz

Frequency of oscillation of
mechanical load

fc Hertz Hz


