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Preface

Polyphenols are secondary metabolites that are variously distributed in the plant 
k ingdom and characterized by a wide diversity of chemical structures. On behalf of the 
international scholarly society “Groupe Polyphénols,” which organizes the biennial 
conference, “International Conference on Polyphenols” (ICP), we define the term 
“polyphenol” as related to plant products exclusively derived from the shikimate/phe-
nylpropanoid and/or the polyketide pathway, featuring more than one phenolic unit and 
deprived of nitrogen‐based functions (http://www.groupepolyphenols.com/the‐society/
why‐bother‐with‐polyphenols/). The number of known plant polyphenols is quite large, 
from structurally simple compounds such as the stilbenoid resveratrol or the flavonoid 
quercetin to complex macromolecules such as the proanthocyanidin oligomers or the 
lignin polymer. It is thus not surprising that their functions in plant and physicochemi-
cal properties are also quite varied. In the early 20th century, investigations on polyphe-
nols were mainly dedicated to the determination of their structures and their roles in 
traditional medicines, as well as in vegetable tanning. Nowadays, research on plant 
polyphenols concerns a much wider area of science with novel and multidisciplinary 
efforts made toward the understanding of their properties and exploitation thereof in 
inter alia the development of new materials, the innovation in agriculture and food 
products, including the development of new crops and flowers, the higher fixation of 
carbon dioxide, and the formulation of functional foods with human health benefits, as 
well as the discovery of new pharmaceutical medicines.

This book series “Recent Advances in Polyphenol Research” began its publication in 
2008 on the occasion of the 24th ICP in Salamanca, Spain. The content of this first volume 
was already mostly based on review articles written by plenary lecturers of the previous 
ICP, which had taken place in Winnipeg, Canada. Since then, this flagship publication 
of the Groupe Polyphénols has been released without any discontinuity every 2 years to 
provide the reader with authoritative updates on various topics of polyphenol research 
written by ICP plenary lecturers and by invited expert contributors.

This book, the fifth volume of the series, is concerned with the topics that were covered 
during the 27th ICP, which was organized jointly with the 8th edition of the Tannin 
Conference in September 2014 in Nagoya, Japan. In more than 40 years of the history of 
the Groupe Polyphénols, it was the first time that the International Conference on 

http://www.groupepolyphenols.com/the-society/why-bother-with-polyphenols/
http://www.groupepolyphenols.com/the-society/why-bother-with-polyphenols/


xx  Preface

Polyphenols took place in Asia. Six different main topics of the polyphenol science were 
selected for the scientific program of this memorable ICP2014 edition:

1) Chemistry, Physicochemistry, and Materials Science, covering structures, reactivity, 
organic synthesis, molecular modeling, fundamental aspects, chemical analysis, 
spectroscopy, molecular associations, and interactions of polyphenols.

2) Biosynthesis, Genetics, and Metabolic Engineering, covering molecular biology, 
genetics, enzymology, gene expression and regulation, trafficking, biotechnology, 
horticultural science, and molecular breeding related to polyphenols.

3) Plants and Ecosystems, Lignocellulose Biomass, covering plant growth and development, 
biotic and abiotic stress, resistance, ecophysiology, sustainable development, valorization, 
plant environmental system, forest chemistry, and lignin and lignan.

4) Food, Nutrition, and Health, covering food ingredients, nutrient components, func-
tional food, mode of action, bioavailability and metabolism, food processing, influence 
on food and beverages properties, cosmetics, and antioxidant activity of polphenols.

5) Natural Medicine and Kampo, a special session for this first conference held in 
Asia covering oriental traditional medicine, herbal medicine, Chinese herbal medicine, 
folklore, mode of action, metabolism, natural products chemistry, and drug discovery.

6) Tannins and Their Functions, another special session on the occasion of this joint 
meeting with the Tannin Conference covering research topics related to condensed 
t annins, hydrolyzable tannins, tea, wine, persimmon, seed‐coat color, mode of action, 
and enzymatic reactions.
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More than 500 scientists from 35 countries attended the conference, with 321 paper 
contributions that comprised 61 oral communications and 260 poster presentations. The 
fifth volume of “Recent Advances in Polyphenol Research” contains chapters from 14 guest 
speakers of the conference. The support and assistance of the Groupe Polyphénols, the 
Tannin Conference Group, several Japanese academic associations and foundations, 
notably the Nagoya University, the City of Nagoya and the Nagoya Convention & Visitors 
Bureau, and numerous private sponsors are gratefully acknowledged, as the great success 
of these joint editions of the International Conference on Polyphenols and the Tannin 
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Conference would not have been possible without their contributions. As a final note, we 
would also like to deeply thank all of the plenary, communication, and poster presenters for 
the quality of their contributions, from basic science to more applied fields, and all of the 
attendees, with a special thank to the numerous Asian researchers for their first participation 
in the ICP and for expressing their eagerness to attend the next ICP meetings.

Kumi Yoshida
Véronique Cheynier

Stéphane Quideau
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Abstract: This chapter reviews the following versatile physicochemical properties 
of polyphenols in relation with their potential activity in humans:

1) Interactions with proteins and lipid–water interfaces. These interactions must be 
qualified with respect to the current knowledge on polyphenol bioavailability and 
metabolism. They are expected to mediate most of the cell signaling activity of 
polyphenols.

2) A general reducing capacity that may be expressed in the gastrointestinal tract 
submitted to postprandial oxidative stress and also in cells, for example, by direct 
scavenging of reactive oxygen species, especially if preliminary deconjugation of 
metabolites takes place

3) The complex relationships with transition metal ions involving binding and/or 
electron transfer in close connection with the antioxidant versus pro‐oxidant 
activity of polyphenols

Keywords: polyphenol, flavonoid, Health effectsbiological activity, mechanism, 
a ntioxidant, protein, membrane, metal ion, gastrointestinal tract, DFT methods.

The Physical Chemistry of Polyphenols: 
Insights into the Activity of Polyphenols 
in Humans at the Molecular Level

Olivier Dangles, Claire Dufour, Claire Tonnelé and Patrick Trouillas

Chapter 1

1.1 Introduction

The activity, functions, and structural diversity of polyphenols in plants, food, and humans 
reflect the remarkable diversity of their physicochemical properties: UV–visible absorp-
tion, electron donation, affinity for metal ions, propensity to develop molecular interac-
tions (van der Waals, hydrogen bonding) with proteins and lipid–water interfaces, and 
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nucleophilicity. This chapter aims to exemplify how polyphenols act to promote health in 
humans at the molecular level. It rests on two common assumptions based on epidemiological 
evidence and food analysis (Manach et al., 2005; Crozier et al., 2010; Del Rio et al., 2013):

 • The consumption of fruit and vegetables helps prevent chronic diseases and, in particular, 
favors cardiovascular health.

 • Phenolic compounds, from the simple hydroxybenzoic and hydroxycinnamic acids to 
the complex condensed and hydrolyzable tannins, constitute the most abundant class of 
plant secondary metabolites in our diet and take part in this protection.

By contributing to the sensorial properties of food, for example, color and astringency, 
native polyphenols and their derivatives obtained after technological and domestic pro-
cessing can directly influence the consumer’s choice. Moreover, polyphenols undergo 
only minimal enzymatic conversion in the oral cavity and in the gastric compartment 
although their release from the food matrix (bioaccessibility) is an important issue. Thus, 
intact food polyphenols may directly promote health benefits in the upper digestive tract, 
in particular by fighting postprandial oxidative stress resulting from an unbalanced diet 
(Sies et al., 2005; Kanner et al., 2012). Beyond the gastric compartment, polyphenol bio-
availability1 (Fig. 1.1) must be considered as a priority to tackle any biological effects 
(Manach et al., 2005; Crozier et al., 2010; Del Rio et al., 2013). Indeed, even for polyphe-
nols that can be partially absorbed in the upper intestinal tract (aglycones, glucosides), 
most of the dietary intake reaches the colon where extensive catabolism by the microbiota 
takes place: hydrolysis of glycosidic and ester bonds, release of flavanol monomers from 
proanthocyanidins, hydrogenation of the C═C double bond of hydroxycinnamic acids, 
deoxygenation of aromatic rings, cleavage of the central heterocycle of flavonoids, and so 
on. Conjugation of polyphenols and their bacterial metabolites in intestinal and liver cells 
eventually results in a complex mixture of circulating polyphenol O‐β‐d‐glucuronides and 
O‐sulfo forms (less rigorously called sulfates). When present, catechol groups are also 
partially methylated.

The concentration of circulating polyphenols is usually evaluated after treatment by a 
mixture of glucuronidases and sulfatases that release the aglycones and their O‐methyl 
ethers. This concentration is usually quite low (barely higher than 0.1 μM) and much lower 
than that of typical plasma antioxidants such as ascorbate (> 30 μM). At first sight, this does 
not argue in favor of nonspecific biological effects, such as the antioxidant activity by radi-
cal scavenging or chelation of transition metal ions to form inert complexes. This seems all 
the more true that the catechol group, displayed by many common dietary polyphenols and 
which is a critical determinant of the electron‐donating and metal‐binding capacities, is 
generally either absent in the circulating metabolites (bacterial deoxygenation) or at least 

1 Bioavailability: the fraction of ingested polyphenol (native form + metabolites) that enters the 
g eneral blood circulation and is thus potentially available for health effects.
    Bioaccessibility: the first step of bioavailability, the fraction of ingested polyphenol (native 
form + metabolites) that is released from the food matrix and is thus potentially available for intestinal 
absorption.
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partially conjugated. However, the claim that in vivo polyphenol concentrations are low 
should be nuanced for the following reasons:

1) The complete assessment of polyphenol bioavailability must include the bacterial 
catabolites and their conjugates, some being much more abundant in the circulation 
than the parent phenol. A spectacular example can be found in the case of anthocya-
nins. Indeed, after consumption of blood orange juice, the total amount of native 
cyanidin 3‐O‐β‐d‐glucoside (C3G) in plasma is 0.02% of the ingested dose versus 
44% for (unconjugated) protocatechuic acid (PCA), its main catabolite (Vitaglione 
et al., 2007). When the fecal content is also taken into account, PCA eventually rep-
resents ca. 73% of the metabolic fate of ingested C3G. Its absence in urine (unlike 
C3G) also suggests that it takes part in the antioxidant protection and is thus oxidized 
in tissues.

2) The circulating concentration and its time dependence say nothing concerning either 
the possibility of polyphenol metabolites accumulation at a much higher local concen-
tration at specific sites of inflammation and oxidative stress or their deconjugation into 
more active forms.

Large intestine (colon): general 
site of absorption, extensive 
catabolism by bacterial enzymes 
(hydrolysis, cleavage of 
heterocycles, hydrogenation, 
deoxygenation, etc.)

Liver: extensive conjugation of 
aglycones and bacterial
metabolites

Stomach: minor absorption of 
anthocyanins and phenolic acids

Tissues: absorption,
possible deconjugation

General circulation:
interaction with serum 
albumin

Oral cavity: native forms, 
interactions with salivary 
proteins

Kidneys: urinary excretion, 
mostly metabolites

Lumen of GI tract: interaction 
with other food components, with
human and bacterial enzymes
⇒ Release from food matrix

Small intestine: partial absorption 
of aglycones and glucosides
(after hydrolysis by intestinal
β-glucosidase), conjugation in  
enterocytes

Fig. 1.1 A simplified view of polyphenol bioavailability. (See insert for color representation of the figure)
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For instance, when quercetin is continuously perfused through the vascular wall of 
arteries, it rapidly undergoes oxidative degradation into PCA, whereas the fraction retained 
in the wall is much more stable and partially methylated (Menendez et al., 2011). By contrast, 
quercetin 3‐O‐β‐d‐glucuronide (Q3G), the main circulating metabolite, is not oxidized 
upon perfusion but slowly converted into quercetin. The kinetics of quercetin release paral-
lels the inhibition in the contractile response of the artery. Thus, the biological effect can be 
ascribed to quercetin released from its glucuronide, which basically appears as a stable 
storage form. A schematic view for the bioactivity of polyphenols is summed up in Fig. 1.2.

1.2 Molecular complexation of polyphenols

The phenolic nucleus can be regarded as a benchmark chemical group for molecular inter-
actions as it combines an acidic OH group liable to develop hydrogen bonds (both as a 
donor and as an acceptor) and an aromatic nucleus for dispersion interactions (the stabilizing 
component of van der Waals interactions).

1.2.1 Polyphenol–protein binding

Polyphenol–protein binding of nutritional relevance can be classified as follows:

 • Binding processes within the gastrointestinal (GI) tract, that is, with food proteins, 
mucins, and the digestive enzymes, with an impact on the bioaccessibility of polyphenols 
and the digestibility of macronutrients

 ∘ Interactions with plasma proteins, with an impact on transport and the rate of clearance 
from the general circulation

 ∘ Interactions with specific cell proteins (enzymes, receptors, transcription factors, etc.) 
that would mediate the nonredox health effects of polyphenols

OH
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R

ROS
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O
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Mn+ / –2H+

OR′

OH
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Residual direct antioxidant activity of metabolites
Possible restoration by deconjugation

Cell-specific antioxidant or anti-inflammatory activity:
Enzyme inhibition, regulation of gene expression
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Polyphenol
Inert
oxidation
products

Direct antioxidant activity:
in plant, food, the GI tract 

Inert metal complexes

R′ = Me, GlcU, SO3
–

Metabolism
in humans

Reduced ROS

Fig. 1.2 Health effects expressed by polyphenols.
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As the last two situations lie downstream the intestinal absorption and passage 
through the liver, they concern the circulating polyphenol metabolites. However, 
some exceptions may be found. For instance, epigallocatechin 3‐O‐gallate (EGCG), 
the major green tea flavanol, is a rare example of a polyphenol entering the blood 
c irculation mostly in its initial (nonconjugated) form (Manach et al., 2005). No less 
remarkable, EGCG is also one of the rare polyphenols for which a specific receptor 
has  been identified, namely the 67‐kDa laminin receptor (67LR) that is expressed 
on  the surface of various tumor cells (Umeda et  al., 2008). EGCG‐67LR binding 
leads  to myosin phosphatase activation and actin cytoskeleton rearrangement, thus 
inhibiting cell growth. It provides a strong basis for interpreting the in vivo antican-
cer  activity of EGCG and its anti‐inflammatory activity in endothelial cells (Byun 
et al., 2014).

It is not the authors’ purpose to provide the reader with an exhaustive updated report on 
polyphenol–protein binding processes (see Dangles and Dufour (2008) for a specific 
review on this topic). Only a few recent important examples will be discussed with an 
emphasis on works dealing with polyphenol metabolites.

1.2.1.1 Interactions in the digestive tract

In the postprandial phase, black tea drinking leads to vasorelaxation as evidenced by flow‐
mediated dilation experiments in humans and a strong increase in the activity of endothe-
lial nitric oxide synthase (eNOS) (Lorenz et al., 2007). However, these effects are 
completely abolished when 10% milk is added to black tea. Experiments with isolated 
fractions of milk proteins show that caseins are actually responsible for this inhibition. 
It can thus be proposed that caseins bind and probably precipitate black tea polyphenols in 
the GI tract, thereby preventing their intestinal absorption. This is a spectacular example of 
how food proteins may sequester oligomeric polyphenols and cancel their bioaccessibility 
and downstream biological effects.

The binding between dietary polyphenols and the digestive enzymes is best evi-
denced with large polyphenols such as oligomeric proanthocyanidins (OPAs). For 
instance, OPAs inhibit pancreatic elastase, a serine protease, proportionally to their 
mean degree of polymerization (Bras et al., 2010). A K

i
 value of ca. 0.5 mM was esti-

mated for a catechin tetramer. However, a mixture of n‐mers (n = 2–6) rich in 3‐O‐galloyl 
flavanol units binds much more tightly (K

i
 ≈ 14 μM). Similar data were obtained with 

trypsin (Goncalves et al., 2007). By slowing down the digestion, such interactions could 
prolong the sensation of satiety and help fight weight gain and obesity. By contrast, 
simple phenols were shown to mildly enhance pepsin activity at pH 2 in the following 
order: resveratrol ≥ quercetin > EGCG > catechin (Tagliazucchi et al., 2005). Tannins are 
known to inhibit pancreatic lipase (McDougall et al., 2009), thereby possibly contribut-
ing to lowering fat intake. Polyphenol‐rich berry extracts also inhibit pancreatic α‐amylase 
(thus decreasing starch digestibility) and intestinal α‐glucosidase, with tannins and 
anthocyanins being, respectively, the main contributors to the observed inhibition 
(McDougall et al., 2005). These mild inhibitory effects could help regulate the circulating 
d‐glucose concentration.
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1.2.1.2 Interactions beyond intestinal absorption

In the circulating blood, polyphenol metabolites likely travel in association with serum 
albumin, the most abundant plasma protein, which displays several binding sites for the 
transport of drugs, free fatty acids, and other nutrients. Our recent work (Khan et al., 2011) 
has shown that flavanone glucuronides (conjugation at the A‐ or B‐ring) are moderate 
serum albumin ligands (K

b
 = 3–6 × 104 M−1) that bind site 2 (subdomain IIIA), in contrast to 

the more planar flavones and flavonols, which bind site 1 (subdomain IIA).
Once delivered to tissues, polyphenol metabolites are expected to bind specific cell pro-

teins to express their biological effects, in particular their well‐documented anti‐inflammatory 
activity (Pan et al., 2010; Spencer et al., 2012; Wu & Schauss, 2012). Inflammation is an 
adaptive response to deleterious stimuli, activating the immune system. What is at stake with 
dietary polyphenols is the inhibition of chronic low‐grade inflammation (in contrast to acute 
inflammation following microbial infection) associated with the development of degenera-
tive diseases, such as type 2 diabetes and cardiovascular disease. Indeed, this pathological 
state is deeply influenced by lifestyle and environmental factors, especially dietary habits.

At the cell level, inflammation involves complex signaling pathways and cascades 
(Fig. 1.3). In particular, mitogen‐activated protein kinases (MAPKs, e.g., ERK, JNK, and 
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Fig. 1.3 Pathways of inflammation and oxidative stress in cells. Kinases, proinflammatory transcription 
factors, and pro‐oxidant enzymes are possible target proteins for polyphenols and their metabolites.


