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Applications of Mathematical Heat
Transfer and Fluid Flow Models in
Engineering and Medicine

No problem can be solved from the same level of consciousness that created it.

Albert Einstein

Preface

This textbook for advanced graduate and post-graduate courses presents the applications of
the modern heat transfer and fluid flow mathematical models in engineering, biology, and
medicine. By writing this work, the author continues the introduction of brand-new efficient
methods in fluid flow and heat transfer that have been developed and widely used during the
last 50 years after computers became common. While his previous two monographs presented
these contemporary methods on an academic level in heat transfer only [119] or in both areas
heat transfer and fluid flow on the preliminary level [121], this manual introduces the modern
approaches in studying corresponding mathematical models—a core of each research means
determining its efficiency and applicability. Two types of new mathematical models are con-
sidered: the conjugate models in heat transfer and in fluid flow and models of direct numerical
simulation of turbulence. The current situation of applications of these models is presented in
two parts: applications of conjugate heat transfer in engineering (Part I) and applications of
conjugate fluid flow (peristaltic flow) in medicine and biology and applications in engineering
of direct numerical simulation (Part II). These parts contain theory, analysis of mathemat-
ical models, and methods of problem solution introduced via 134 detailed and 231 shortly
reviewed examples selected from a list of 448 cited original papers adopted from 152 scien-
tific general mathematic, computing, and different specific oriented journals, 42 proceedings,
reports, theses, and 37 books. This list of 448 references comprehends the whole period of the
new methods existing from the 1950s to present time, including more than 100 results pub-
lished during the last 5 years among which more than half of the studies were issued in 2014
to 2016.
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The term conjugate, or coupled problem, was coined in the 1960s to designate the heat
transfer strict investigation that requires matching temperature fields of bodies flowing around
or inside the fluids. Later on, it became clear that these terms and procedures are important
to many other natural and technology processes, consisting of interactions between elements
and/or substances. In particular, the peristaltic flow is an inherent conjugate phenomenon
because such flow occurs due to interaction between the elastic channel walls and the fluid
inside channel. The conjugate formulation reflects the basic features of a studied phenomenon.
Due to that, the models of this type are reliable and significantly improve the correctness and
physical understanding of the results. Conjugate methods constitute a powerful tool for solv-
ing contemporary problems, substituting the previous approximate approaches. At the same
time, it is important to know when the common more simple approaches may be used with
comparable exactness, instead of more complex conjugate procedures. The textbook answers
this question, as well as significant other questions governing the applications of conjugate
methods.
The other group of new methods considered in this text is based on direct numerical solu-

tion of exact unsteady (without averaging) Navier-Stokes equations. Because the unsteady
Navier-Stokes equations describe the complete space- and time-dependent field of turbulent
flow, the results of direct numerical simulation are considered as an experimental data gained
computationally. Such results provide highly accurate instantaneous turbulence characteris-
tics giving further insight into physics of turbulence, opening new possibilities, fresh ideas
and improving applications.
The discussion goes along with 239 exercises and 136 comments. Whereas the former

allowed the reader to improve his or her skills and experience, the latter are used to clear
up specific terms and to note some instructive historical facts. The majority of exercises are
used by the author to divide the derivation of particular expressions or formulae with a reader.
To realize such an offer, the way of solution and the result are given in the text. However,
the mathematical procedure is left for the reader as an exercise. Such a type of exercise gives
a person a choice to be satisfied only by results, or use the suggested drill to improve their
own expertise. For convenience, it is pointed out in the text when each exercise should be per-
formed, and to find a specific one, the reader may apply the contents where the locations of
exercises are indicated. Also, for the reader orientation, the more sophisticated exercises and
examples (and hence, corresponding publications) are marked by an asterisk (∗).
As mentioned above, comments provide significant information required for understand-

ing. Such valuable subjects as, for example, special means, like tridiagonal matrix algorithm
(TDMA), or alternating direction implicit method (ADI), or scientific terms, such as order
of the value of magnitude, function singularities, tensor or factor of nonisothermicity, are
explained via comments incorporated in the text. Meaningful historical notes are also intro-
duced through comments at the relevant manual points. Thus, after discussing the benefits of
the boundary layer theory, it is noticed that boundary-layer methods was not utilized for the
first 25 years until Prandtl’s lecture at the Royal Aeronautical Society meeting in 1927. The
other examples of historical notes given by comments are explanations of the name BBO of
differential equation, the Saffman slip boundary condition, the Paul Erlich role in monoclonal
antibodies, and the Smagorinsky contribution in the direct numerical simulation of turbulence.
In view of the intended audience, special attention is given to the balance between strictness

and comprehensibility of the writing. Such a compromise is realized using a strict formulation
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of the problems on one side and the detailed explanation of definitions, special terms and
procedures on the other. For example, it is justified that both problems—heat transfer of flow
past a body and peristaltic flow in a flexible channel—are similar, and both are inherently
conjugate. At the same time, it is explained in detail why a nonlinear model of peristaltic flow
differs in essence from a linear heat transfer pattern.
In contrast to exciting college courses on heat transfer presenting basically simple empirical

approaches based on the heat transfer coefficients, the conjugate methods are grounded on
contemporary fluid flow and heat transfer models. Therefore, to help the reader to understand
the conjugate principles and procedures, the third part of this textbook offers fundamental
laws of laminar and turbulent fluid flows and applied mathematic methods frequently used in
engineering (Part III). Setting subsidiary chapters behind the body text, it is assumed that the
reader takes a relatively small part of the information required to understand only a specific
thesis or topic, rather than studying the whole subject in advance. In addition, the references
given in the text in the form: Chap. (Chapter), S. (Section), Exam. (Example), Exer. (Exercise),
and Com. (Comment) help the reader to find directly the desired portion of knowledge. Such a
book structure permits the reader to get explanation step by step during studying. At the same
time, an experienced person may read the text ignoring those citations.
As a whole, the textbook is written so as to be usable to senior and post-graduate students

and engineers with the prerequisites of calculus, fluid mechanics, and heat transfer college
engineering courses.
The textbook begins with Part I presenting applications in heat transfer, which starts with

an introduction containing two pieces. The first writing, “When and why conjugate procedure
is essential” explains in detail where the term conjugate came from, what it means, and in
which cases conjugation procedure is important. The second piece entitled “A core of con-
jugation” presents the qualitative analysis of a simple problem of heat transfer from a plate
heated from one end. This assay clarifies a physical meaning of the conjugation principle by
showing the contrasting distributions of the heat transfer characteristics on the interface in two
flow directions, from heated and unheated ends.
This part consists of four chapters, incorporating the theory of conjugate heat transfer based

on universal functions (Chapter 1) and three chapters of applications: universal function appli-
cations (Chapter 2), conjugate problem applications in flows around bodies and inside channels
(Chapter 3), and special application of conjugate heat transfer models in industrial and tech-
nological processes (Chapter 4).
The first chapter begins from the formulation of conjugate heat transfer problems specifying

two sets of equations, the initial and boundary conditions governing the conjugate problem
for a body and fluid. Each equation, such as Navier-Stokes or Laplace equation, is followed
by references to chapter or section from the third part, presenting appropriate explanation.
The initial conditions, the three kinds of common boundary conditions, and the Dirichlet and
Neumann problem formulation for elliptic differential equations are considered in detail. The
conjugate conditions on fluid/body interface (fourth kind boundary condition) and specific
methods for performing the conjugate procedure are discussed also.
The next section introduces the universal functions that are widely used in this text. It

explains what universal functions are, and shows that these types of functions are proper and
convenient tools for nonisothermal and conjugate heat transfer analyzing. Two forms of uni-
versal functions, integral and differential, are employed.



�

� �

�

xviii Preface

First, the special form of Duhamel’s integral containing influence function is derived which,
in fact, presents a universal function for the heat transfer on a plate with arbitrary temperature
and zero pressure gradient flow.
Then, the equivalent differential universal function, in the form of a series of tempera-

ture head derivatives, is obtained by the consecutive differentiation of the Duhamel’s integral.
The calculation data for the series coefficients and for the exponents of influence function in
Duhamel’s integral conclude the determination of the universal functions for laminar flows.
Because the universal functions are valid in the same form for other regimes and con-

ditions, the remaining part of the first chapter specifies only the series coefficients and the
appropriate exponents of the influence function for differential and integral forms of universal
functions. These results are obtained for the following cases: turbulent flow, compressible zero
pressure gradient flow, power-law Non-Newtonian fluids, moving through surrounding con-
tinuous sheet, plate with unsteady arbitrary temperature distribution, flow past axisymmetric
body, inverse universal functions for arbitrary heat flux distribution, and functions for recovery
factor.
Chapter 2 provides applications of universal functions. General properties of conjugate heat

transfer are investigated, considering the conjugate problem as a case of heat transfer from
arbitrary nonisothermal surface. The results are obtained analyzing universal functions and
are supplemented with relevant examples. It is found that: (i) the second term of series with
the first derivative in differential universal function basically determines the effect of the tem-
perature head gradient because the first coefficient of series is from 3 to 10 times larger than
the second one, whereas the others are negligible small, (ii) because the first coefficient is pos-
itive, the increasing temperature heads (positive derivative) leads to greater and the decreasing
temperature heads (negative derivative) results in lesser heat transfer coefficients than that for
an isothermal surface, (iii) strikingly large effects, resulting in zero heat transfer if the negative
derivative is large or the surface is long enough, (iv) the positive and negative pressure gradi-
ents respectively decrease and increase the heat transfer coefficient of nonisothermal surface,
(v) the higher the Prandtl number is, the less the effect of nonisothermicity in turbulent flow
is, and the higher the Prandtl and Reynolds numbers, the less the effect of nonisothermicity
in turbulent flow is, (vi) the effect of nonisotermicity caused by variable time temperature is
greater than that of variable space temperature, and (vii) the Biot number specifies the degree
of problem conjugation and shows that in both limiting cases, Bi → ∞ and Bi → 0 conjugate
problem decays, so that the greatest effect of conjugation occurs at comparable body/fluid
resistances at Bi ≈ 1.
The second part of Chapter 2 describes some inherent characteristics and phenomena for

conjugate heat transfer, indicating that:

• The differential universal function builds up the general convective boundary condition tes-
tifying that a series with only the first term constructs the boundary condition of the third
kind, taking into account only isothermal effect, whereas retaining of the followed terms
increases the accuracy of boundary conditions, accounting for the effect of the first and
higher temperature head derivatives.

• Because the second term with the first derivative basically defines the effect of nonisother-
micity, the calculation of its value gives an estimation of error caused by a boundary con-
dition of the third kind telling us whether the conjugate solution is required or the simple
common approach is acceptable.
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• Using a general boundary condition allows reducing the conjugate problem to equivalent
conduction problem for the body only.

• There exists a gradient analogy, which means that the temperature head gradient affects the
heat transfer coefficient, as the free stream velocity gradient influences the friction coeffi-
cient.

• In the case of decreasing temperature head, the heat flux inversion might occur when the
heat flux vanishes—a phenomenon analogous to separation of boundary layer in flows with
adverse pressure gradient.

Chapter 3 presents results of conjugate heat transfer investigations in flows around bodies
(external flows) and inside the channels and tubes (internal flows) in general, without speci-
fying a concrete application in any device or process. The examples reviewed in this chapter
differ by methods of problem solution, form of objects, boundary conditions, flow regimes,
and state of flow (initial or developed). These results present effects of different parameters
and conditions on conjugate heat transfer intensity in external and internal flows in general,
without reference to particular application. The specific practical applications of conjugate
heat transfer are discussed in the next chapter.
Special attention is given to conjugate heat transfer in flows past the thin plate, which are

considered first. Due to the relative simplicity of this type of problem, we used the universal
functions to create effective methods and obtain significant results, which include: (i) investi-
gation of the temperature singularities on the solid/fluid interface, (ii) creation of the charts for
simple conjugate problems solution, (iii) consideration of examples to help a reader to possess
the charts usage, and (vi) computation of the inequalities for quasi-steady approach validation.
The other part of this chapter contains 15 reviewed and 27 indicated as other works of

original studies of conjugate heat transfer in external and internal flows. Here, as well as in the
following Chapters 4 and 6, the original studies are presented describing problem formulation,
a mathematical model as the system of equations, ideas of solutions, and the basic results, but
without exercises, which would be difficult for beginners.
The following examples are reviewed:

• Past plate and bodies: laminar flow past finite rectangular slab, flush sources on an infi-
nite slab, free convection on vertical and horizontal thin plates, elliptic cylinder in laminar
flow, translating fluid sphere, radiating plate with internal source, and radiating thin plate in
compressible flow.

• Inside channels and tubes: fully developed laminar flow in a pipe heated by uniform heat
flux, turbulent flow in parallel plats duct at periodical inlet temperature, fully developed
flow in thick-walled channel with moving wall, hydrodynamically and thermally developed
flow in a thick-walled pipe, laminar flow in the entrance of plane duct, flow in a channel of
finite length, unsteady heat transfer in a duct with laminar flow, and transient heat transfer
in a pipe with constant surface temperature.

Chapter 4 contains specific conjugate heat transfer applications in different industrial areas
and technology processes. Thirty-one original papers are reviewed in four sections considering
heat exchangers and finned surfaces (12 examples), thermal treatment and cooling systems (9),
simulation of industrial (3) and technological (7) processes. Chapter 4 begins with conjugate
solution of the classical problem of overall heat transfer coefficient of two flows separated by
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a thin plate, which is usually considered as a model of heat exchanger. Six conjugate solu-
tions of this problem using different methods are analyzed, showing how much the conjugate
strict results differ from data obtained by simple common approach. The following solutions
are considered: two solutions of concurrent and countercurrent laminar and turbulent flows,
solutions for two quiescent and two flowing fluids separated by vertical plate, and vertical
thin-walled pipe with forced inside and natural outside flows.
The conjugate results for overall heat transfer coefficient obtained for a thin plate are com-

pared with exact two-dimensional conjugate solution to understand where assumption of thin
plate is applicable, and how otherwise such results should be corrected. It is found that conju-
gate results for thin plate are practically accurate, except a small area close to the leading edge,
where two-dimensional effects are important and should be taken into account. The next three
examples present more reliable heat exchanger models: two conjugate models using double
pipes and a special model for the microchannel exchanger. The two last samples of this section
consider models of finned surfaces.
In the second section of Chapter 4, the thermal treatment of moving continuous materials

is analyzed in the first three examples, and conjugate heat transfer in different cooling
systems is studied in the other six examples. The heat transfer in electronic packages is
discussed in the first two examples, the results for cooling turbine blades and vanes are
presented in the next two examples, and the last two samples analyzed the protection of
systems in reentry rocket, and in a nuclear reactor at emergency loss of coolant. The next
section gives three examples of simulation of the processes in industrial equipment. Because
of complexity, there are relatively few publications of this type. The three models considered
here simulate processes in twin-screw extruder, optical fiber coating, and continuous wires
casting.
The last section of Chapter 4 presents heat transfer investigations in seven technologi-

cal processes. The first three examples examine heat and mass transfer in multiphase flows
using models of such complicated processes; wetted-wall absorber, concrete production, and
Czochralski crystal growing. The next three samples studied drying of wood board, porous
materials, and pulled through coolant continuous sheets. The last example presents freeze dry-
ing of two specimens of food. Forty-seven relevant other works are introduced shortly after
the reviewed examples.
Part I is closed by a short summary of results. The basic dependences of heat transfer char-

acteristics are presented in the form of a table where the influence parameters are arranged in
order of a degree of conjugation. Such comparative information is useful in making a deci-
sion whether the conjugate solution is needed in a particular problem, or the common simple
approach is enough to solve it. This question is discussed in detail and possible recommenda-
tions are formulated.
Part II incorporates two chapters consisting of applications of modern methods in fluid flow.

The theory and general characteristics of thosemethods in both areas, peristaltic flow and direct
turbulence simulation, are outlined in Chapter 5. Applications of peristaltic flow in medicine,
biology and engineering and applications of direct simulation of turbulence in engineering are
introduced in Chapter 6, reviewing 24 and presenting 42 as other works of original papers.
Chapter 5 starts from considering the peristaltic motion as conjugate phenomenon. Physical

analysis shows that peristaltic motion adopted from creation exists due to conjugation (say
interaction) between flexible walls and fluid inside tubular human organs, so that the conjuga-
tion nature is an inherent property of peristaltic flow. These considerations are confirmed by
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subsequent examples of human organs operating under the peristaltic flow and by explaining
working principles of some devices simulating this natural motion mechanism.
The next part of Chapter 5 consists of the formulation of the conjugate model for peri-

staltic motion. This model is similar to that for heat transfer described in detail in Part I, and
involves two subdomains with conjugate conditions on the wall/fluids interface. Conjugate
relations in the case of peristaltic flow contain no-slip conditions for velocities and the bal-
ance of forces on the interface instead of equalities of temperatures and heat fluxes in the case
of heat transfer. The essential difference between both conjugate models is explained, stress-
ing that nonlinear peristaltic flow model is more complex than the linear heat transfer one. To
take into account that complexity after analyzing published studies, the term “semi-conjugate
model” is introduced which describes the situation when only the effect of flexible walls on the
flow is investigated, ignoring more complicated impacts of flow on walls motion. The samples
reviewed in Chapter 6 show that the majority of studies are of the semi-conjugate type.
The discussion of the problem solutions begins from the first simple research. The main

objective of early studies was the understanding of the peristalsis mechanism in order to get
insight into physical processes in the ureter, like reflux of bacteria. To simplify the problems,
early authors used a linear model and assumptions of low Reynolds number and long wave-
length, which are often applied up to now. Two more substantial nonlinear semi-conjugate
solutions are introduced next: the analytical solution at low Reynolds number based on a per-
turbation series and numerical solution of a two-dimensional peristaltic flow at a moderate
Reynolds number.
Two examples are analyzed to introduce fully conjugate solutions, taking into account both

effects of interaction of the flexible walls and fluid inside channel. In the early paper, the equal-
ity conditions of forces on the interface are defined, employing the relatively simple approx-
imate expressions. Conjugate conditions on the interface in another study published later are
much more complicated but more realistic. These conditions are constructed using relations
from the theory of thin oscillating elastic plate and two-dimensional Navier-Stokes equations
and result in a system of three differential equations. Both solutions are compared with corre-
sponding semi-conjugate data showing that the flow significantly affects the wall’s behavior.
The second part of Chapter 5 presents the modern methods of direct numerical simulation

of turbulence. Here, the discussion starts with a short introduction explaining the difficulties
associated with extremely wide scales of turbulence eddies, which range from scales of integral
length to Taylor and Kolmogorov smallest scales. In the following three sections, the new
methods: direct numerical simulation (DNS), large eddy simulation (LES) and detached eddy
simulation (DES) are introduced and compared.
A direct numerical simulation is a method to solve the unsteady Navier-Stokes equations in

order to obtain the complete space- and time-dependent field of turbulent flow. By estimation
of a number of grid points and time steps required for performing DNS, it is shown that
only relatively simple engineering problems at real Reynolds numbers can be investigated by
direct simulation.
A large eddy simulation is a method of reduction of the requirements for DNS in order

to solve directly Navier-Stokes equations at higher Reynolds numbers. The main idea of LES
proposed by Smagorinsky is to separate the treatment of large and small eddies, computing the
large eddies by DNS and small eddies by Reynolds-average models. To demonstrate how the
filtering procedure works providing the separation of areas with DNS and Reynolds-average
models, a simple filter based on the integration is described.
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The filtered form of Navier-Stokes equations are analyzed showing that this procedure gives
the field of filtered large scales modified by the subgrid scales stresses (SGS). This pattern rep-
resents the interaction between large and small eddies testifying the essential role of modeling
SGS in LES.
Large eddy simulation significantly widened the application of the direct solutions of the

Navier-Stokes equation. However, the important engineering applications such as airfoil,
ground or marine vehicle require much higher Reynolds numbers and, accordingly, greater
numbers of grid points and time steps. These large requirements are caused by the near-wall
region with the smallest eddies whose role increases about three times proportional to the
value of Reynolds number. To reduce the number of grid points and to achieve further
progress, Spalart, with co-authors, suggested detached eddy simulation. This method (DES)
is a hybrid approach combining the RANS (Reynolds-average Navier-Stokes equation) for
near-wall region and the LES for domain with large eddies. To provide the model behavior
according to required treatment by LES or by RANS, the blending functions are used. The
idea of a blending function is described showing the principle of comparing the closest
to the surface distance d with the largest grid sell Δ so that the model uses RANS close
to the walls, where d << Δ, and works as a subgrid type pattern away from walls, where
Δ << d.
Some examples demonstrate the accomplishments of DES in modeling the flow separations

at high Reynolds numbers, such as sub- and super-critical flows around sphere and flows past
aircraft models. Nevertheless, to correct weaknesses of DES, two modifications were pro-
posed: the delayed detached eddy simulation (DDES) and the zonal detached eddy simulation
(ZDES). In these versions of DES, the treatment of the area where the model switches from
RANS to LES is improved in order to get rid of the rapid decrease of the RANS eddy vis-
cosity, which might result in strong instabilities. In DDES, to prevent this undesired depletion
of the RANS strength, the switch into LES is delayed. In ZDES, this problem is resolved by
introducing separated zones for RANS and LES where the regime in each zone is selected
individually in line with requirements.
At the end of this chapter, a small paragraph represents the chaos theory, which studies phe-

nomena sensitive to initial conditions, like weather, when the small variations in one location
may result in widely different outcomes far away (butterfly effect). Though currently the chaos
theory is not a tool for turbulence modeling, some characteristics of turbulence are of a chaotic
kind, which gives hope of using the chaos theory in the future.
Chapter 6 represents applications of advanced peristaltic and turbulence models in biology,

medicine and engineering. Examples of original studies are reviewed, as well as the heat trans-
fer articles in Chapter 4, presenting problem formulation, mathematical models as systems of
equations, ideas of solutions and basic results. The applications in biology and medicine are
described in three sections analyzing blood flows in normal and pathologic vessels, flows in
disordered human organs and biological transport processes. The first section presents flow
in the arterial stenosis and flow through series of stenoses, blood flow affected by magnetic
field during MRA and MRI tests, and blood flow under the hyperthermia cancer treatment. In
the second section, the abnormal flows and/or irregular situations are simulated: the particle
motion in ureter modeling of a bacterium or stone motility, chyme flow during gastrointestinal
endoscopy and bile flow in a duct with stones. The third section describes fluid transport in the
cerebral perivascular space, macromolecules transport in tumors, embryo transport modeling,
and the bioheat transfer in human tissues. Twenty articles are indicated as other works.
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The second part of Chapter 6 consists of applications in engineering contributed by peri-
staltic flow simulation (PFS), DNS, LES, and DES (4 and 9 reviewed examples of peristaltic
flow and turbulence simulations, respectively). Each section of reviewed articles is followed
by other works citations. 13, 15, 12, and 14 studies of PFS, DNS, LES, and DES including
IDDES and ZDES, respectively, are indicated. We begin the discussion with peristaltic flow
applications in engineering, and then consider the engineering applications of direct numerical
turbulence simulation. The contribution of peristaltic flow in engineering is presented by four
recent results obtained during the last five years, including the effects of chemical reaction, a
micropumping systems optimization, the method of valve-less microfluidic peristaltic pump-
ing design, and the construction of biomimetic swallowing robot published in 2015. These
examples demonstrate the effectiveness of mathematical models in peristaltic motion applica-
tions, which cardinally changes the methods of investigation in this area.
The review of DNS examples starts from simulation of turbulent boundary layer at a rela-

tively high Reynolds number as Re𝜃 = 2560 published four years ago. The next two studies
introduce the effects of Reynolds and Prandtl numbers in turbulent heat transfer, and a more
involved recent study of exothermic gas-phase reaction in a packed bed. The last example and
15 latest results, including three articles published in 2016 cited as other works, show progress
in DNS.
The next three examples demonstrate the advances in LFS via simulation of vortex and pres-

sure fluctuation in aerostatic bearings, effects of equivalence ratio fluctuations in combustion
chamber of gas turbine, and the heat transfer in pebble bed of nuclear reactor at a high tem-
perature. Ten other works published during the last few years and the two most recent studies
appearing in 2016 show in addition to reviewed articles the current situation in LES.
The last three examples display the great progress in studying the real objects characteristics

by DES. The first result published 13 years ago presents patterns of sub- and super-critical
flows over sphere confirming the well-known experimental data of early (82∘) and much later
(120∘) separations in the first and second cases, respectively. Two other samples show recent
investigations of complicated natural prototypes: Reentry-F flight experiment and free-surface
flow around a submerged submarine fairwater. Both studies are performed at real values of
Reynolds number of order ≈ 107 and the Mach number about 20 in the first study and the
Froude number about 0.4 in the second one. Fourteenmodern articles employedDES including
the latest versions DDES and ZDES cited as other works present manifold achievements of
contemporary methods of direct numerical simulation of turbulence in studying the complex
engineering systems.
As mentioned above, Part III serves as a subsidiary intended to help a reader to find infor-

mation during studying of the basic text. Three chapters containing fundamental laws and
methods compose this part: laminar and turbulent fluid flows and heat transfer (Chapters 7 and
8) and basic analytical and numerical methods in applications (Chapter 9). Chapter 7 starts
with discussing two similar mechanisms of momentum, energy, and mass transport described
by conservation laws. Physically grounded analysis shows that structures of Navier-Stokes,
energy, and mass transfer equations are similar consisting of two groups of terms responsible
for the molecular and convective transport processes.
The next several sections present different forms and properties of Navier-Stokes equations.

The vector, vorticity, stream function, and irrotational invisced forms aswell as the form in Ein-
stein notations are considered. The other often used notations, Kronecker delta and Levi-Civita
index are also explained. Some basic exact solutions of Navier-Stokes and energy equations
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(Stokes problems, flow and heat transfer in a channel and a tube, stagnation point flow, and heat
transfer in Couette flow) are analyzed. The two cases of simplified Navier-Stokes equations,
the small (creeping flows) and large (boundary layer) Reynolds numbers, are presented. As an
example of creeping flow, the Stokes flow around a sphere is shortly described. The derivation
of boundary layer equations and dimensionless numbers are given using the comparison of the
terms order in Navier-Stokes and energy equations. The merits of boundary layer approach are
described. The Prandtl-Mises and Görtler forms of boundary layer equation are analyzed. The
physical meaning of several dimensionless numbers is explained indicating that each number
may be interpreted as a ratio of particular physical parameters. As examples of exact solu-
tions of boundary layer equations, the Blasius, Pohlhausen, and Falkner and Skan problems are
considered, showing how the initial partial differential equations are reduced to ordinary differ-
ential equations. The Karman-Pohlhausen integral method is described and some approximate
solutions of boundary layer problems are analyzed.
The last section of this chapter presents the natural convection, comparing it with forced

convection considered in previous sections. It is noted that a free convection occurs naturally
whenever there are density differences in gravitational field in contrast to the forced one, which
exists due to external force. Three examples are reviewed to show the basic features of natural
convective problems. Analyzing the solution for the vertical plate reveals some characteristics
of natural convection that cause this type of convection to differ from the forced one. Two
examples show that in case of natural convection some additional effects should be taken into
account. In particular, the radiation should often be considered along with natural convection
because both heat transfer rates are usually of the same order. The other effect that is significant
in that case is the flow stability as, for example, in Rayleigh-Benard free convection flow
between parallel horizontal plates.
Chapter 8 presents features that differentiate turbulent flow from the laminar issue. Two

parts describing averaging procedure and diverse turbulence models construct this chapter. It is
explained that the process of averaging parameters developed byReynolds leads to formulating
the governing equations for turbulent flow in the form similar to that for laminar flow. Presented
analysis shows how the averaging procedure yields additional unknown terms in the governing
equations, called the Reynolds stresses, and finally results in an unclosed system of equations.
The problem of closing this system, known as a problem of closure, is solved employing the
semi-empirical or statistical turbulence models.
We begin the discussion of turbulent models from the simpler algebraic models. The first

Prandtl model of this type is grounded on Boussinesq relation with unknown turbulent vis-
cosity 𝜇tb defined through the mixing-length hypothesis. The physical interpretation of both
Boussinesq and Prandtl hypotheses is followed by discussion of the structure of equilibrium
turbulent boundary layers, which is the basis of the modern algebraic models. The typical
velocity profile in such boundary layer consists of three standard parts: the viscous sublayer
where the law of the wall holds, the defect layer with Clauser’s velocity law, and the overlap
logarithmic region where both laws are asymptotically valid. Three modern algebraic models,
Mellor-Gibson, Cebeci-Smith, and Baldwin-Lomax, are considered. The results of model-
ing flows in a channel, tube, in some boundary layers, and heat transfer from surface with
arbitrary temperature distribution using these models show reasonable agreement with exper-
imental data.
The remaining part of this chapter deals with the one- and two-differential equations mod-

els. These types of models grounded on the turbulence kinetic energy equation, simulate the
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turbulent flows much closer than algebraic models. A special section is devoted to the turbu-
lence kinetic energy equation explaining the physical meaning of terms and the role of the
Kolmogorov kinetic energy equation. Some one-equation models and results of testing these
models at AFOSR conference are presented. It is noted that, according to AFOSR, the basic
shortage of the one-equation models is the absence of length scale. At the same time, it is
underlined that only two-equation models are complete models, which means that the solution
might be obtained by the model itself without using additional experimental data.
The two most popular k − 𝜔 and k − 𝜀 two-equation models are considered, and both

equations defining the turbulent kinetic energy and dissipation energy rate (it serves as
length scale) are discussed. The applicability of one- and two-equation models reveals that
the turbulent flows with strong adverse pressure gradients, separated or reattachment flows,
compressible and other complex flows may be studied with reasonable accuracy only by
two-equation models since applications of more accurate new methods of direct numerical
simulation are restricted at present. At the same time, the simpler algebraic models are
preferable for the solution of problems with zero and benign pressure gradients.
Two parts of Chapter 9 present analytical and numerical mathematical methods frequently

used in applications. To illustrate the usage of considered methods, we apply mainly problems
of heat transfer in solids. Such a manner completed the set of topics important for studying the
basic text since two others, laminar and turbulent fluid flow and heat transfer, are reviewed in
previous chapters of Part III. The analytical methods are reviewed starting from error function.
It is shown that error function satisfied the unsteady one-dimensional conduction equation and
boundary conditions for infinite and semi- infinite solids and for lateral insulated thin rods.
Two examples are analyzed.
The method of separation variables is considered next. Three cases are indicated when the

general procedure of separation is possible for solution. Solutions of one-dimensional unsteady
problems applying standard technique of Fourier series are presented. A special case when the
usual Fourier series are not applicable is studied, giving an understanding of what are the eigen-
values and orthogonal eigenfunctions. The Sturm-Liouville problem is reviewed, specifying
the conditions of the existing orthogonal eigenfunctions and defining the proper series. Two
steady two-dimensional problems for Laplace equation with Dirichlet and mixed boundary
conditions are examined as well.
The Fourier and Laplace integral transforms present the next two sections. The idea of inte-

gral transform is described, and the difference between these two widely used integral methods
is explained. Four solutions for rods and rectangular sheets following this discussion show that
Fourier transform is applicable to infinite domains, whereas the Laplace transform is relevant
for semi-infinite positive variables domain.
The Green’s method of analytical solution is described in the last section of this part of

Chapter 9. The idea of this approach is close to Duhamel’s method: presenting a solution of
a problem with space-time dependent variables in terms of similar results for problem with
constant parameters (S.1.3.1). The general formula defining the Green function is derived for
the solution of a one-dimensional conduction problem.
In the second part of Chapter 9, we review shortly classical numerical methods Three

sections completed this review. The first section “What method is proper” shows that there is
no reason to oppose analytical and numerical methods as it becomes popular after computer
advent. In the second section, we discuss the approximate methods for solving the differential
equations. It is justified that these methods were developed and widely used many years
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before they became a basis of modern numerical methods, but before they are used for entire
computation domain as analytical means. As the computers came, it became possible to apply
the same approximate methods for each cell of grid vastly increasing the computing accuracy
and converting these simple analytical approaches into the contemporary numerical methods.
We classify numerical methods according to the types of discretization of the computation
domain and analytical methods used for solution. Three methods, finite-difference (FDM),
finite-element (FEM), and boundary element (BEM) methods applying uniform and irregular
grids are considered.
To describe the technique of employing different analytical methods, we use the weighted

residual approach. The idea of this approach is explained considering solutions of a simple
conduction problem governed by a one-dimensional equation. Analysis of relevant examples
clarifies the features, the merits, and lack of different methods. In particular, it is explained
what is the weak solution and why the boundary element method requires data only along
boundaries of computing domain, whereas the other methods demand information of the whole
variable field.
The final section of Chapter 9 deals with the complications in computing flow and heat

transfer characteristics. Following Patankar, we discuss some ways for overcoming problems
arising in computing pressure and velocity, convection-diffusion terms, and cases of false dif-
fusion. It is shown that the difficulty in computing flow characteristics associated with the
absence of explicit equations for pressure is in fact an apparent problem because the correct
pressure estimation is controlled by continuity equation. Analysis indicates that usual control
volume approach fails resulting in zero pressure, and to resolve the pressure computing, the
staggered control volume was developed. This procedure is described, explaining that in this
case, in contrast to the usual approach, the velocity components and pressure are calculated on
the control volume faces. The software SIMPLE and three modified versions of it are shortly
described.
The textbook is closed with a conclusion summarizing the purpose, applicability, and pre-

diction of the feature of the contemporary methods considered in the book.

Abram Dorfman
February 2016
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