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Preface

Over the past fifteen years, motivated by regularity problems in evolution
equations, there has been tremendous progress in the analysis of Banach
space-valued functions and processes. For so-called UMD spaces in particular,
central areas of harmonic analysis, such as the theory of Fourier multipliers
and singular integrals, were extended to operator-valued kernels acting on
Bochner spaces, and basic estimates of stochastic analysis, including the Itô
isometry and the Burkholder–Davis–Gundy inequalities, were generalised to
Banach space-valued processes.

As it was long known that extensions of such sophisticated scalar-valued
estimates are not possible for all Banach spaces, these results depended on es-
sential progress in the geometry of Banach spaces during the 70s and 80s. The
theory of Burkholder and Bourgain on UMD spaces became the foundation
on which the recent theory we wish to report on was built; just as important
are results of Kwapień, Maurey, and Pisier on type and cotype, since they link
the structure of the Banach space to estimates for random sums which replace
to some extent the fundamental orthogonality relations in Hilbert spaces.

For most classical Banach spaces, the UMD, type and cotype properties
are readily available and therefore the results of vector-valued Analysis can
be applied to many situations of interest in the theory of partial differential
equations; they have already proved their value by providing sharp regularity
estimates for parabolic problems. Our aim is to give a detailed and careful
presentation of these topics that is useful not only as a reference book but can
be used also selectively as a basis for advanced courses and seminars.

This project ranges over a broad spectrum of Analysis and includes Banach
space theory, operator theory, harmonic analysis and stochastic analysis. For
this reason we have divided it into three parts. The present volume develops
the theory of Bochner integration, Banach space-valued martingales and UMD
spaces, and culminates in a treatment of the Hilbert transform, Littlewood–
Paley theory and the vector-valued Mihlin multiplier theorem.

Volume II will present a thorough study of the basic randomisation
techniques and the operator-theoretic aspects of the theory, such as R-



boundedness, vector-valued square functions and radonifying operators, as
well as a detailed treatment of the relevant probabilistic Banach space notions
such as type, cotype, K-convexity and properties related to contraction prin-
ciples. These techniques will allow us to present the theory of H∞-functional
calculus for sectorial operators and work out the main examples. This sets the
stage for our final aim, a presentation of the theory of singular integral oper-
ators with operator-valued kernels and its applications to maximal regularity
for deterministic and stochastic parabolic evolution equations, which will be
the subject matter of Volume III.

The central theme in all volumes is the identification of the Banach spaces
to which the key estimates of classical harmonic and stochastic analysis can be
extended as those with the fundamental UMD property. The very definition
behind this abbreviation is the unconditionality of martingale differences, a
primarily probabilistic notion, and a number of different characterisations are
formulated in purely probabilistic terms. However, this same property is also
equivalent to the boundedness of the vector-valued Hilbert transform, the
Littlewood–Paley inequality for vector-valued Fourier integrals, and several
other estimates in the realm of classical harmonic analysis.

Each of these aspects of UMD spaces makes a substantial body of theory
in its own right, and one could certainly produce respectable treatments of
large parts of this material with a “clean” probabilistic or analytic flavour.
However, rather than striving for such “purity”, our aim is to emphasise the
rich connections between the two worlds and the unity of the subject. For ex-
ample, while martingales are traditionally regarded as a topic in Probability,
we define and discuss them on σ-finite measure spaces from the beginning,
so that they are immediately applicable to Analysis on the Euclidean space
Rd without the need of auxiliary truncations or decompositions into prob-
ability spaces. Moreover, it is important to observe that even if we (or the
reader) wanted to concentrate on the analytic side of UMD spaces only, we
could hardly present a complete picture without an occasional reference to
the probabilistic notions, at least at the present state of knowledge. For in-
stance, although we know that both the Hilbert transform boundedness and
the Littlewood–Paley inequality are equivalent to the UMD property, and
therefore to each other, the only known way of proving the equivalence of
these two analytic notions passes through the probabilistic UMD. There are
numerous other such examples, and new frontiers of the theory have shown
over and over again that it is the probabilistic definition of UMD spaces that
lies at the centre and connects everything together.

So much said about the unity of Analysis and Probability (in Banach
spaces), we should acknowledge the existence of a third side of the triangle,
which is barely touched by the present treatise, namely: Geometry (of Banach
spaces). Our choice of topics is not meant in any way to downplay the impor-
tance of this huge topic, both in its own right and in relation to analytic and
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probabilistic questions, but rather to admit our limits and to leave the proper
account of the geometric connections for other treatments.

*
This book can be studied in a variety of ways and for different motivations.
The principal, but not the only, audience that we have in mind consists of
researchers who need and use Analysis in Banach spaces as a tool for studying
other problems, in particular the regularity of evolution equations mentioned
above. Until now, the contents of this extensive and powerful toolbox have
been mostly scattered around in research papers, or in some cases monographs
addressed to readerships with a rather different background from our focus,
and we feel that collecting this diverse body of material into a unified and
accessible presentation fills a gap in the existing literature. Indeed, we regard
ourselves as part of this audience, and we have written the kind of book that
we would have liked to have for ourselves when working through this theory
for the first time.

Aside from this, parts of the book may also offer an interesting angle to
the classical analysis of scalar-valued functions, which is certainly covered
as a special case, and seldom required as a prerequisite or used as a building
block for the Banach space-valued theory. For a classical harmonic analyst, the
approach that we take, say, to the Lp-boundedness of the Hilbert transform,
is possibly exotic, but not necessarily substantially more difficult than more
traditional treatments in the scalar-valued case.

*
There are a couple of technical features of the book worth mentioning. Most of
the time, we are quite explicit with the constants appearing in our estimates,
and we especially try to keep track of the dependence on the main parameters
involved. Thus, rather than saying that a particular bound “only depends on
the UMD constant βp,X ”, we prefer to write out, say, (βp,X)2, or whichever
function of βp,X appears from the calculation. We often go to the extent of
writing, say, “2000” instead of “c, where c is a numerical constant”, although
we also might write “2000” instead of “1764”, when there is no reason to
believe that the latter constant, although given by a particular computation,
would be anywhere close to optimal. Indeed, except for a few select places,
we make no claim that our explicit constants cannot be improved; however,
in many places, we have made an effort to present the best (order of) bounds
currently available by the existing methods. We hope that making this explicit
documentation might spur some interest towards research on such quantitative
issues.

We also pay more attention than many texts to the impact of the under-
lying scalar field (real or complex) on the results under consideration. While
this is largely irrelevant for many questions, it does play a role in some others,
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and we try to be quite explicit in pointing out the differences when they do
occur, hopefully without insisting too much on this point when they do not.

*
This project was initiated in Delft and Karlsruhe already in 2008. Critical
to its eventual progress was the possibility of intensive joint working periods
in the serenity provided by the Banach Center in Będlewo (2012), Mathe-
matisches Forschungsinstitut Oberwolfach (2013), Stiftsgut Keysermühle in
Klingenmünster (2014 and 2015) and Hotel ’t Paviljoen in Rhenen (2015).
All four of us also met twice in Helsinki (2014 and 2016), and a number of
additional working sessions were held by subgroups of the author team. One
of us (J.v.N.) wishes to thank Marta Sanz-Solé for her hospitality during a
sabbatical leave at the University of Barcelona in 2013.

Preliminary versions of parts of the material were presented in advanced
courses and lecture series at various international venues and in seminars at
our departments, and we would like to thank the students and colleagues
who attended these events for feedback that shaped and improved the final
form of the text. Special thanks go to Jamil Abreu, Alex Amenta, Markus
Antoni, Sonja Cox, Chiara Gallarati, Fabian Hornung, Luca Hornung, Marcel
de Jeu, Marcel Kreuter, Nick Lindemulder, Emiel Lorist, Bas Nieraeth, Jan
Rozendaal, Jonas Teuwen, and Ivan Yaroslavtsev who did detailed reading of
portions of this book. Needless to say, we take full responsibility for any re-
maining errors. A list with errata will be maintained on our personal websites.
We wish to thank Klaas Pieter Hart for LATEX support.

During the writing of this book, we have benefited from external funding
by the European Research Council (ERC Starting Grant “AnProb” to T.H.),
the Academy of Finland (grants 130166 and 133264 to T.H., and the Centre of
Excellence in Analysis and Dynamics, of which T.H. is a member), the Nether-
lands Organisation for Scientific research (NWO) (VIDI grant 639.032.201 and
VICI grant 639.033.604 to J.v.N. and VENI grant 639.031.930 and VIDI grant
639.032.427 to M.V.), the Volkswagenstiftung (grant I/78593 to L.W.) and the
Deutsche Forschungsgemeinschaft (grant We 2847/1-2 to L.W.). We also wish
to thank the Banach Center in Będlewo and Mathematisches Forschungsin-
stitut Oberwolfach for allowing us to spend two highly productive weeks in
both wonderful locations.

Delft, Helsinki and Karlsruhe,
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Symbols and notations

Sets

N = {0, 1, 2, . . .} - non-negative integers
Z - integers
Q - rational numbers
R - real numbers
C - complex numbers
K - scalar field (R or C)
S = {z ∈ C : 0 < =z < 1} - unit strip
T = {z ∈ C : |z| = 1} - unit circle
Z = Z ∪ {−∞,∞} - extended integers
R+ = (0,∞) - positive real line
BX - open unit ball
SX - unit sphere
B(x, r) - open ball centred at x with radius r

Vector spaces

BMO - space of functions of bounded mean oscillation
c0 - space of null sequences
C - space of continuous functions
C0 - space of continuous functions vanishing at infinity
Cb - space of bounded continuous functions
Cc - space of continuous functions with compact support
C∞c - space of test functions with compact support
C p - Schatten class
H - Hilbert space
Hs,p - Bessel potential space
Hp - Hardy space
H (X0, X1) - space of homomorphic functions on the strip
`p - space of p-summable sequences



`pN - space of p-summable finite sequences
Lp - Lebesgue space
Lp,∞ - weak-Lp
L (X,Y ) - space of bounded linear operators
MLp(Rd;X,Y ) - space of Fourier multipliers
M(Rd;X,Y ) - Mihlin class
S - space of Schwartz functions
S ′ - space of tempered distributions
W k,p - Sobolev space
X, Y , . . . - Banach spaces
XC - complexification
Xγ,p

C - Gaussian complexification
X∗, Y ∗, . . . - dual Banach spaces
X ⊗ Y - tensor product
[X0, X1]θ - complex interpolation space
(X0, X1)θ,p, (X0, X1)θ,p0,p1 - real interpolation spaces

Measure theory and probability

A - σ-algebra
dfn = fn − fn−1 - nth martingale difference
εn - signs in K, i.e., scalars in K of modulus one
εn - Rademacher variables with values in K
E - expectation
F , G , . . . - σ-algebras
Ff - collection of sets in F on which f is integrable
E(·|·) - conditional expectation
τfn = fn − fτ∧n - started martingale
fτn = fτ∧n - stopped martingale
f?n = supk6n ‖fn‖ - maximal function
γ - Gaussian variable
hI - Haar function
µ - measure
‖µ‖ - variation of a measure
(Ω,A ,P) - probability space
P - probability measure
P(·|·) - conditional probability
rn - real Rademacher variables
(S,A , µ) - measure space
σ(f, g, . . . ) - σ-algebra generated by the functions f, g, . . .
σ(C ) - σ-algebra generated by the collection C
τ - stopping time
wα - Walsh function
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Norms and pairings

| · | - modulus, Euclidean norm
‖ · ‖ = ‖ · ‖X - norm in a Banach space X
‖ · ‖p = ‖ · ‖Lp - Lp-norm
〈·, ·〉 - duality
(·|·) - inner product in a Hilbert space
a · b - inner product of a, b ∈ Rd

Operators

Dj - pre-decomposition
∆ - Laplace operator
D - dyadic system
∂j = ∂/∂xj - partial derivative with respect to xj
∂α - partial derivative with multi-index α
E(·|·) - conditional expectation
Ff - Fourier transform
F−1f - inverse Fourier transform
H - Hilbert transform
H̃ - periodic Hilbert transform
Js - Bessel potential operator
L (X,Y ) - space of bounded operators from X to Y
Lso(X,Y ) - idem, endowed with the strong operator topology
Rp - R-bound
Rj - jth Riesz transform
S, T , . . . - bounded linear operators
T ∗ - adjoint of the operator T
Tm - Fourier multiplier operator associated with multiplier m
Tv - martingale transform associated with predictable sequence v
T ⊗ IX - tensor extension of T

Constants and inequalities

βp,X - UMD constant
βR
p,X - UMD constant with signs ±1

β±p,X - upper and lower randomised UMD constant
cq,X - cotype q constant
cmart
q,X - martingale cotype q constant
~p,X - norm of the Hilbert transform on Lp(R;X)
Kp,X - K-convexity constant
κp,q - Kahane–Khintchine constant
τp,X - type p constant
τmart
p,X - martingale type p constant
ϕp,X(Rd) - norm of the Fourier transform F : Lp(Rd;X)→ Lp

′
(Rd;X).
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Miscellaneous

↪→ - continuous embedding
1A - indicator function
a . b - ∃C such that a 6 Cb
a .p,P b - ∃C, depending on p and P , such that a 6 Cb
C - generic constant
{ - complement
d(x, y) - distance
f? - maximal function
f̃ - reflected function
f̂ - Fourier transform
f̂ - inverse Fourier transform
f ∗ g - convolution
= - imaginary part
K(t, x) = K(t, x;X0, X1) - K-functional
Mf - Hardy–Littlewood maximal function
MRadf - Rademacher maximal function
p′ = p/(p− 1) - conjugate exponent
p∗ = max{p, p′}
< - real part
s ∧ t = min{s, t}
s ∨ t = max{s, t}
v ? f - martingale transform of f by v
x - generic element of X
x∗ - generic element of X∗
x⊗ y - elementary tensor
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Standing assumptions

Throughout this book, two of conventions will be in force.

1. Unless stated otherwise, the scalar field K can be real or complex. Results
which do not explicitly specify the scalar field to be real or complex are
true over both the real and complex scalars.

2. In the context of randomisation, a Rademacher variable is a uniformly
distributed random variable taking values in the set {z ∈ K : |z| = 1}.
Such variables are denoted by the letter ε. Thus, whenever we work over
R it is understood that ε is a real Rademacher variable, i.e.,

P(ε = 1) = P(ε = −1) =
1

2
,

and whenever we work over C it is understood that ε is a complex
Rademacher variable (also called a Steinhaus variable), i.e.,

P(a < arg(ε) < b) =
1

2π
(b− a).

Occasionally we need to use real Rademacher variables when working over
the complex scalars. In those instances we will always denote these with
the letter r. Similar conventions are in force with respect to Gaussian
random variables: a Gaussian random variable is a standard normal real-
valued variable when working over R and a standard normal complex-
valued variable when working over C.



In this first chapter we present the essentials of the integration theory of
Banach space-valued functions. We begin by exploring the various possible
definitions of measurability for such functions. It turns out that for separable
Banach spaces X and measurable spaces (S,A ), a function f : S → X is
measurable—in the sense that the pre-images

f−1(B) := {f ∈ B} := {s ∈ S : f(s) ∈ B}

are measurable for every Borel set B in X—if and only if the scalar-valued
function 〈f, x∗〉 is measurable for every functional x∗ in the dual space X∗.
This is essentially the content of the Pettis measurability theorem, which is
proved in Section 1.1.

In Section 1.2 we proceed with the construction of the Bochner integral,
which is the analogue of the Lebesgue integral for X-valued functions. It
preserves all essential aspects of the Lebesgue integral, such as the availability
of approximation results, convergence theorems and Fubini’s theorem. The
Banach spaces Lp(S;X) of Bochner integrable functions provide the basic
functional framework of our work. However, occasionally we shall also need
the Pettis integral, which is defined in terms of the Lebesgue integrals of the
functions 〈f, x∗〉.

For the most complete statement of the duality theory of the Bochner
spaces Lp(S;X) in Section 1.3 we have to restrict ourselves to the class of
Banach spaces for which an analogue of the Radon–Nikodým theorem holds.
This class is closely connected with the almost-everywhere differentiability of
Lipschitz and absolutely continuous functions with values in X, a topic that
will be discussed in the next chapter.

Throughout this book, X is a Banach space over the scalar field K which
may be either R or C. If we wish to emphasise a particular choice of scalar
field we will speak of real and complex Banach spaces. It is often useful to
note that a complex Banach space is also a real Banach space by restricting
the complex scalar multiplication to the real numbers.

1
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2 1 Bochner spaces

The norm of an element x ∈ X is denoted by ‖x‖X , or, if no confusion can
arise, by ‖x‖. The Banach space dual of X is denoted by X∗. We shall use the
notation 〈x, x∗〉 := x∗(x) to denote the duality pairing of the elements x ∈ X
and x∗ ∈ X∗.

1.1 Measurability

In the context of Analysis in Banach spaces, several natural notions of mea-
surability present themselves, such as measurability, strong measurability and
weak measurability. In finite dimensions all three coincide, but in infinite di-
mensions they do not and our first task is to understand the way they are
interrelated. The main result in this direction, and indeed one of the corner-
stones of the theory, is the Pettis measurability theorem. It asserts that a
function with values in a Banach space X is strongly measurable if and only
if it is separably valued and weakly measurable. We shall present two versions
of this result: a pointwise version for functions defined on a measurable space
(S,A ) and a µ-almost everywhere version for functions defined on a measure
space (S,A , µ). In general we shall make some effort to present the results for
arbitrary measure spaces, avoiding assumptions such as σ-finiteness whenever
this is possible.

1.1.a Functions on a measurable space (S,A )

Measurability

The first definition of measurability for Banach space-valued functions that
comes to mind is that of inverse images: a function with values in a Banach
space X is said to be measurable if the pre-image f−1(B) of every Borel set B
in X is measurable. As it turns out, in many respects this natural notion is not
as useful as one might think, the reason being that the Borel σ-algebra B(X)
is in general ‘too large’. In fact, the σ-algebra generated by all continuous
linear functionals on X may be strictly smaller than B(X). This presents an
obstruction to applying the standard tools of functional analysis such as the
Hahn–Banach theorem in an effective way.

Our first objective is to prove that if X is a separable Banach space, this
problem does not occur. Given a subset Y of the dual space X∗ we denote
by σ(Y ) the σ-algebra generated by Y , i.e., the smallest σ-algebra in X for
which every x∗ ∈ Y measurable. It is easy to see that σ(Y ) is generated by
the collection C (Y ) of all sets of the form{

x ∈ X :
(
〈x, x∗1〉, . . . , 〈x, x∗n〉

)
∈ B

}
with n > 1, x∗1, . . . , x∗n ∈ Y and B ∈ B(Kn).

Recall that a linear subspace Y of X∗ is dense with respect to the weak∗
topology of X (which, by definition, is the smallest topology in X∗ for which
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the mapping x∗ 7→ 〈x, x∗〉 continuous for every x ∈ X) if and only if Y sepa-
rates the points of X. We refer the reader to Appendix B for some background
material on the weak∗ topology.

Proposition 1.1.1. If X is separable and Y is a weak∗ dense linear subspace
of X∗, then

σ(Y ) = σ(X∗) = B(X).

Proof. Let G denote the set of all x∗ ∈ X∗ having the property that the
function x 7→ 〈x, x∗〉 is σ(Y )-measurable. Then G is a linear subspace of X∗
containing Y . Moreover, G is weak∗ sequentially closed. Therefore, G = X∗

by a corollary to the Krein–Šmulian theorem (Corollary B.1.14), which means
that x 7→ 〈x, x∗〉 is σ(Y )-measurable for all x∗ ∈ X∗.

Now let n > 1, x∗1, . . . , x∗n ∈ X∗ and B1, . . . , Bn ∈ B(K) be given. Put
B := B1 × · · · ×Bn. Then B ∈ B(Kn) and the set

{
x ∈ X :

(
〈x, x∗1〉, . . . , 〈x, x∗n〉

)
∈ B

}
=

n⋂
k=1

{
x ∈ X : 〈x, x∗k〉 ∈ Bk

}
belongs to σ(Y ). Denote by Σ the collection of all B ∈ B(Kn) having the
property that {

x ∈ X :
(
〈x, x∗1〉, . . . , 〈x, x∗n〉

)
∈ B

}
∈ σ(Y ). (1.1)

Then Σ is a σ-algebra in Kn, and by the observation just made it contains all
Borel rectangles B1 × . . . ,×Bn. Therefore B(Kn) ⊆ Σ.

We have shown that (1.1) holds for all finite sets x∗1, . . . , x∗n ∈ X∗ and
all Borel sets B ∈ B(Kn). It follows that σ(X∗) ⊆ σ(Y ). Since the reverse
inclusion holds trivially, it follows that σ(X∗) = σ(Y ). It remains to be shown
that σ(X∗) = B(X). Since every open set is the countable union of open balls
and every open ball is a countable union of closed balls, it is enough to show
that every closed ball B(x0, r) := {x ∈ X : ‖x− x0‖ 6 r} belongs to σ(X∗).
Choose a norming sequence of unit vectors (x∗n)n>1 in X∗. Then

B(x0, r) =
{
x ∈ X : ‖x− x0‖ 6 r

}
=
⋂
n>1

{
x ∈ X : |〈x− x0, x

∗
n〉| 6 r

}
,

and this set belongs to σ(X∗). This completes the proof. �

When X is non-separable, strict inclusion σ(X∗) ( B(X) may indeed occur;
this phenomenon will be discussed in the Notes at the end of the chapter.

Corollary 1.1.2. If X is separable, then for a function f : S → X the fol-
lowing assertions are equivalent:

(1) f is measurable;
(2) 〈f, x∗〉 is measurable for all x∗ ∈ X∗.
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Indeed, if (2) holds, then with the notations introduced in the above proof,

f−1(B(x0, r)) =
⋂
n>1

{
s ∈ S : |〈f(s)− x0, x

∗
n〉| 6 r

}
∈ A .

Since the balls B(x0, r) generate B(X), this proves that f is measurable.

Strong measurability

The essential feature used in the construction of the Lebesgue integral for
scalar-valued functions is that every measurable function can be approximated
pointwise by a sequence of simple functions. Since, in the converse direction,
pointwise limits of measurable functions are measurable, this suggests to tie
up the notion of measurability with approximation by simple functions. This
is precisely the idea taken up in the definition of strong measurability.

As before we let (S,A ) be a measurable space.

Definition 1.1.3. A function f : S → X is called simple if it is of the form
f =

∑N
n=1 1An ⊗ xn with An ∈ A and xn ∈ X for all 1 6 n 6 N .

Here 1A denotes the indicator function of the set A and we use the notation

(f ⊗ x)(s) := f(s)x

for functions f : S → K and elements x ∈ X. We also define

F ⊗X :=
{ N∑
n=1

fn ⊗ xn : fn ∈ F, xn ∈ X, n = 1, . . . , N ; N = 1, 2, . . .
}
,

whenever F is a vector space of scalar-valued functions.

Definition 1.1.4. A function f : S → X is strongly measurable if there
exists a sequence of simple functions fn : S → X such that limn→∞ fn = f
pointwise on S.

If we wish to emphasise the underlying σ-algebra we shall speak of a strongly
A -measurable function.

We shall see below that if X is separable, then an X-valued function f is
strongly measurable if and only if it is measurable. The next example shows
that the word ‘separable’ cannot be omitted from this statement.

Example 1.1.5. For any non-separable Banach space X, the identity map
I : X → X is continuous and hence measurable, but it fails to be strongly
measurable. Suppose, for a contradiction, that In : X → X is a sequence of
simple Borel functions converging to I pointwise. Let V be the countable set
of values taken by these functions. Then every x ∈ X is the limit of a sequence
in V , which implies that X is separable. By the same argument, I even fails
to be strongly P(X)-measurable (with P(X) the power set of X).
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A function f : S → X is called separably valued if there exists a separable
closed subspace X0 ⊆ X such that f(s) ∈ X0 for all s ∈ S. The function f is
called weakly measurable if

s 7→ 〈f, x∗〉(s) := 〈f(s), x∗〉,

is measurable for all x∗ ∈ X∗.

Theorem 1.1.6 (Pettis measurability theorem, first version). Let
(S,A ) be a measurable space and let Y be a weak∗ dense subspace of X∗.
For a function f : S → X the following assertions are equivalent:

(1) f is strongly measurable;
(2) f is separably valued and weakly measurable;
(3) f is separably valued and 〈f, x∗〉 is measurable for all x∗ ∈ Y .

Moreover, if f takes its values in a closed linear subspace X0 of X, then f is
the pointwise limit of a sequence of X0-valued simple functions.

Proof. (1)⇒(2): Let (fn)n>1 be a sequence of simple functions converging to
f pointwise and let X1 be the closed subspace spanned by the countably many
values taken by these functions. Then X1 is separable and f takes its values
in X1. Furthermore, each 〈f, x∗〉 is measurable, being the pointwise limit of
the measurable functions 〈fn, x∗〉.

(2)⇒(3): This implication holds trivially.
(3)⇒(2): Let X1 be a separable closed subspace of X with the property

that f(s) ∈ X1 for all s ∈ S, and let j1 : X1 ⊆ X be the inclusion mapping.
Then for all x∗ ∈ X∗ we have 〈f, x∗〉 = 〈f, j∗1x∗〉, where on the left we regard
f as an X-valued function and on the right as an X1-valued function. Thus
is suffices to prove that 〈f, x∗1〉 is measurable for every x∗1 ∈ X∗1 .

Let Y1 be the subspace in X∗1 consisting of all x∗1 ∈ X∗1 for which 〈f, x∗1〉 is
measurable. Then j∗1 (Y ) ⊆ Y1. Since j∗1 , being an adjoint operator, is weak∗
continuous, j∗1 (Y ) is weak∗ dense in X∗1 . Therefore the same is true for Y1.
Also, Y1 is weak∗ sequentially closed in X∗1 . Hence by a corollary to the Krein–
Šmulian theorem (Corollary B.1.14), Y1 = X∗1 .

(2)⇒(1): Choose a sequence (x∗n)n>1 of unit vectors in X∗ that is norming
for a separable closed subspace X1 of X where f takes its values. By the weak
measurability of f , for each x ∈ X1 the real-valued function

s 7→ ‖f(s)− x‖ = sup
n>1
|〈f(s)− x, x∗n〉|

is measurable. Let (xn)n>1 be a dense sequence in X1 with x1 = 0.
Define the functions φn : X1 → {x1, . . . , xn} as follows. For each y ∈ X1

let k(n, y) be the least integer 1 6 k 6 n with the properties that ‖xk‖ 6 ‖y‖
and

‖y − xk‖ = min
16j6n

‖y − xj‖,



6 1 Bochner spaces

and put φn(y) := xk(n,y). Since (xn)n>1 is dense in X1, we obtain

lim
n→∞

‖φn(y)− y‖ = 0 and ‖φn(y)‖ 6 ‖y‖ ∀y ∈ X1.

Now define fn : S → X by

fn(s) := φn(f(s)), s ∈ S.

Then for all x ∈ X1, ‖fn(x)‖ 6 ‖f(x)‖. Moreover, for all 1 6 k 6 n we have

{fn = xk} =
{
‖f − xk‖ = min

16j6n
‖f − xj‖ < min

16j<k
‖f − xj‖

}
.

The set on the right hand side is in A . Hence each fn is simple, takes values
in X1, and for all s ∈ S we have

lim
n→∞

‖fn(s)− f(s)‖ = lim
n→∞

‖φn(f(s))− f(s)‖ = 0.

The final assertion follows from the fact that if X0 has the stated proper-
ties, then X1 ⊆ X0. �

We state a number of simple corollaries. The first corollary follows from the
proof of the implication (2)⇒(1).

Corollary 1.1.7. If f : S → X is strongly measurable, then there exists a
sequence of simple functions (fn)n>1 such that

‖fn(x)‖ 6 ‖f(x)‖ and fn(x)→ f(x) for all x ∈ X.

Corollary 1.1.8. If f : S → X takes values in a closed subspace X0 of X,
then f is strongly measurable as a function with values in X if and only if f
is strongly measurable as a function with values in X0.

Corollary 1.1.9. The pointwise limit f : S → X of a sequence of strongly
measurable functions fn : S → X is strongly measurable.

Proof. Each function fn takes its values in a separable subspace of X. Then
f takes its values in the closed linear span of these subspaces, which is again
separable. The measurability of the functions 〈f, x∗〉 follows by noting that
each 〈f, x∗〉 is the pointwise limit of the measurable functions 〈fn, x∗〉. �

The next corollary gives the precise connection between measurability and
strong measurability.

Corollary 1.1.10. For a function f : S → X, the following assertions are
equivalent:

(1) f is strongly measurable;
(2) f is separably valued and measurable.
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Proof. (1)⇒(2): If f is strongly measurable, then f is weakly measurable and
separably valued, say with values in a separable closed subspace X0 of X. By
the Hahn–Banach theorem, f is weakly measurable as an X0-valued function,
and by Corollary 1.1.2, this implies that f is measurable as an X0-valued
function. If B ∈ B(X), then B0 := B ∩X0 ∈ B(X0), and

{f ∈ B} = {f ∈ B0} ∈ A ,

so that f is also measurable as an X-valued function.
(2)⇒(1): The functions 〈f, x∗〉 are measurable for all x∗ ∈ X∗. The result

now follows from the Pettis measurability theorem. �

weakly measurable

measurable

strongly measurable

separably valued

Fig. 1.1: The interrelations between different notions of measurability, as es-
tablished in Theorem 1.1.6 and Corollary 1.1.10.

If f : S → X is strongly measurable and takes values in an open subset
O ⊆ X, and φ : O → Y is continuous, where Y is another Banach space, then
φ ◦ f is strongly measurable. In fact f is the pointwise limit of some simple
fn, and therefore also the pointwise limit of f̃n := 1{fn∈O}fn + 1{fn∈{O}x0,
where x0 is some fixed element of O. Then φ ◦ f̃n is well defined, simple, and
converges to φ ◦ f , which proves the claim.

More generally the following is true:

Corollary 1.1.11. If f : S → X is strongly measurable and φ : X → Y is
measurable, where Y is another Banach space, then φ ◦ f is strongly measur-
able.

The proof of Corollary 1.1.11 uses the following topological fact.

Lemma 1.1.12. Let E be a separable metric space and let F be a metric
space. If f : E → F is measurable, then f(E) is a separable subset of F .
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Proof. Suppose that f(E) is non-separable. Then there exists an uncountable
family of disjoint open sets (Oi)i∈I in F , each of which intersects f(E). For
every subset I ′ ⊆ I we obtain an open set OI′ :=

⋃
i∈I′ Oi in F , hence a

Borel set f−1(OI′) in E. If I ′ 6= I ′′, then also OI′ 6= OI′′ , which shows that in
E there are at least 2|I| Borel sets. This is impossible since separable metric
spaces have at most 2|N| Borel sets (see the Notes for a sketch of the proof).
�

Proof of Corollary 1.1.11. It is clear that φ ◦ f is measurable, and therefore
by Corollary 1.1.10 it suffices to show that φ◦f takes its values in a separable
closed subspace of Y . The function f takes values in a separable closed sub-
space X0 of X. Then φ ◦ f takes its values in the subspace φ(X0) of Y , which
is separable by Lemma 1.1.12. �

1.1.b Functions on a measure space (S,A , µ)

Up to this point we have considered measurability properties of X-valued
functions defined on a measurable space (S,A ). Next we consider functions
defined on a measure space (S,A , µ).

Definition 1.1.13. A µ-simple function with values in X is a function of
the form f =

∑N
n=1 1An ⊗ xn, where xn ∈ X and the sets An ∈ A satisfy

µ(An) <∞.

We say that a property holds µ-almost everywhere if there exists a µ-null set
N ∈ A such that the property holds on the complement of N . Note that this
definition makes no statement with regard to the validity of the property on
N ; the property may also hold on some subset of N , and this subset need not
be in A .

Definition 1.1.14. A function f : S → X is strongly µ-measurable if there
exists a sequence (fn)n>1 of µ-simple functions converging to f µ-almost ev-
erywhere.

When X = K, we shall usually omit the prefix ‘strongly’. Thus, a function
f : S → K is µ-measurable if it is the µ-almost everywhere limit of a sequence
if µ-simple functions fn : S → K.

A measure µ is said to be σ-finite if it admits an exhausting sequence, i.e.,
an increasing sequence S(1) ⊆ S(2) ⊆ . . . of sets in A of finite µ-measure
such that

⋃
n>1 S

(n) = S. The next result shows that strongly µ-measurable
functions are µ-essentially supported on σ-finite measure spaces:

Proposition 1.1.15. Suppose that f : S → X is strongly µ-measurable. Then
we have a disjoint decomposition S = S0 ∪ S1 with S0, S1 ∈ A such that:

(i) f ≡ 0 µ-almost everywhere on S0;
(ii) µ is σ-finite on S1.
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Proof. Suppose fn → f µ-almost everywhere, with each fn a µ-simple func-
tion, say fn =

∑Nn
m=1 1Amn ⊗ xmn with µ(Amn) < ∞. The sets S1 =⋃

n>1

⋃Nn
m=1Amn and S0 = {S1 have the desired properties. �

The next proposition relates the notions of ‘strong measurability’ and ‘strong
µ-measurability’.

Proposition 1.1.16. Consider a function f : S → X.

(1) If f is strongly µ-measurable, then f is µ-almost everywhere equal to a
strongly measurable function.

(2) If µ is σ-finite and f is µ-almost everywhere equal to a strongly measurable
function, then f is strongly µ-measurable.

Proof. (1): Suppose that fn → f pointwise outside the null set N ∈ A , with
each fn µ-simple. Then we have limn→∞ 1{Nfn = 1{Nf pointwise on S, and
since the functions 1{Nfn are simple, 1{Nf is strongly measurable. Clearly,
f = 1{Nf µ-almost everywhere.

(2): Let f̃ be a strongly measurable function and let N ∈ A be a µ-null
set such that f = f̃ on {N . If (f̃n)n>1 is a sequence of simple functions
converging pointwise to f̃ , then limn→∞ f̃n = f on {N , so limn→∞ f̃n = f
µ-almost everywhere. If (S(n))n>1 is an exhausting sequence for µ, then the
functions fn := 1S(n) f̃n are µ-simple and we have limn→∞ fn = f µ-almost
everywhere. �

Part (2) is wrong without the σ-finiteness assumption:

Example 1.1.17. The constant function 1 is always strongly measurable (as
an indicator function); it is strongly µ-measurable if and only if µ is σ-finite.

Remark 1.1.18. As a consequence of Proposition 1.1.16(1), a separably valued
and strongly µ-measurable function f : S → X is strongly Aµ-measurable,
where Aµ is the completion of A with respect to µ, i.e., the σ-algebra gen-
erated by A and the collection of all subsets of the µ-null sets in A . The
converse holds if µ is σ-finite.

Remark 1.1.19 (Pre-images with respect to strongly µ-measurable functions).
If f : S → X is strongly µ-measurable and f̃ : S → X is strongly measurable
such that f = f̃ µ-almost everywhere, then by Corollary 1.1.10 the set

{f̃ ∈ B} := {s ∈ S : f̃(s) ∈ B}

belongs to A for all Borel sets B ∈ B(X). The µ-measure of the set {f̃ ∈
B} does not depend on the particular choice of measurable function f̃ . This
justifies the notation

µ{f ∈ B} := µ{f̃ ∈ B}

which often use without further notice.
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An X-valued function f is said to be µ-essentially separably valued if there
exists a closed separable subspace X0 of X such that f(s) ∈ X0 for µ-almost
all s ∈ S, and weakly µ-measurable if 〈f, x∗〉 is µ-measurable for all x∗ ∈ X∗.

Theorem 1.1.20 (Pettis measurability theorem, second version). For
a function f : S → X the following assertions are equivalent:

(1) f is strongly µ-measurable;
(2) f is µ-essentially separably valued and weakly µ-measurable;
(3) f is µ-essentially separably valued and there exists a weak∗ dense subspace

Y of X∗ such that 〈f, x∗〉 is µ-measurable for all x∗ ∈ Y .

Moreover, if f takes its values µ-almost everywhere in a closed linear subspace
X0 of X, then f is the µ-almost everywhere pointwise limit of a sequence of
X0-valued simple functions.

Proof. The implications (1)⇒(2)⇔(3) are proved in the same way as in The-
orem 1.1.6. For the implication (2)⇒(1) we have to be a bit more careful: the
corresponding proof in Theorem 1.1.6 produces a sequence of simple functions,
but not necessarily a sequence of µ-simple functions.

Let X1 be a separable closed subspace in which f takes µ-almost all of
its values, and let (x∗k)k>1 be a norming sequence for X1. The functions
gk = 〈f, x∗k〉 are µ-measurable, and therefore by Proposition 1.1.15 we find
decompositions S = Sk,0 ∪Sk,1 such that gk ≡ 0 µ-almost everywhere on Sk,0
and µ is σ-finite on Sk,1. Put S0 =

⋂
k>1 Sk,0 and S1 := {S0. Then f ≡ 0

µ-almost everywhere on S0 and µ is σ-finite on S1.
This argument shows that in the rest of the proof we may assume that

µ is σ-finite. Then for all x ∈ X the constant function 1S ⊗ x is strongly µ-
measurable. Letting (xj)j>1 be a dense sequence in X1, it follows that each of
the functions gjk = 〈f − xj , x∗k〉 is µ-measurable. Hence by Proposition 1.1.16
there is a µ-null set N ∈ A such that the functions 1{Ngjk are measurable.
Replacing if necessary S by {N , we may therefore assume that each of the
functions gjk is measurable. Then also the functions ‖f −xj‖ are measurable.

Let fn be the simple functions constructed in the proof of (2)⇒(1) of
Theorem 1.1.6. These functions converge to f pointwise. If (S(n))n>1 is an
exhaustion for µ, we have 1S(n)fn → f pointwise, and each of the functions
1S(n)fn is µ-simple. �

For completeness we list a number of corollaries which may be proved in the
same way as their strongly measurable counterparts.

Corollary 1.1.21. If f : S → X is strongly µ-measurable, there exists a
sequence of µ-simple functions (fn)n>1 such that

‖fn(x)‖ 6 ‖f(x)‖ and fn(x)→ f(x) for µ-almost all x ∈ X.

Corollary 1.1.22. If f : S → X is strongly µ-measurable and takes values in
a closed subspace X0 of X almost everywhere, then f is strongly µ-measurable
as a function with values in X0.
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Corollary 1.1.23. The µ-almost everywhere limit f : S → X of a sequence
of strongly µ-measurable functions fn : S → X is strongly µ-measurable.

Corollary 1.1.24. If f : S → X is strongly µ-measurable and φ : X → Y
is measurable, where Y is another Banach space, then φ ◦ f is strongly µ-
measurable provided at least one of the following two conditions is satisfied:

(i) µ is σ-finite;
(ii) φ(0) = 0.

Proof. If µ is σ-finite, the result follows by combining Corollary 1.1.11 and
Proposition 1.1.16.

If φ(0) = 0 and if limn→∞ fn = f is an almost everywhere approximation
of f by µ-simple functions fn, then f vanishes µ-almost everywhere outside
the union A of the sets supporting the fn. On A, µ restricts to a σ-finite
measure; outside A we have φ◦f = 0 almost everywhere. Now the result follows
by applying the previous case to f |A, viewed as a strongly µ|A-measurable
function on A. �

The conditions (i) and (ii) cannot be omitted, even if X = Y = K. Indeed,
suppose that µ is non-σ-finite, let f ≡ 0 and φ(t) = 1 for all t ∈ K. The
function 1 = φ ◦ f fails to be strongly µ-measurable.

The following result gives a convenient way to reduce proofs of vector-
valued equalities to the scalar case. The corresponding version for strongly
measurable functions is trivial.

Corollary 1.1.25. If f and g are strongly µ-measurable X-valued functions
which satisfy 〈f, x∗〉 = 〈g, x∗〉 µ-almost everywhere for every x∗ ∈ Y , where
Y is a weak∗ dense linear subspace of X∗, then f = g µ-almost everywhere.

Proof. Both f and g take values in a separable closed subspace X0 µ-almost
everywhere, say outside the µ-null set N . Using Proposition B.1.11 we choose
a sequence (x∗n)n>1 in Y separating the points of X0. Since 〈f, x∗n〉 = 〈g, x∗n〉
outside a µ-null set Nn, we conclude that f and g agree outside the union of
the µ-nulls set N and

⋃
n>1Nn. �

The following example illustrates how the results above can be used to check
strong measurability.

Example 1.1.26. Suppose X and Y are Banach spaces with X separable, and
let T : X → Y be an injective bounded linear operator. If f : S → X is
a function with the property that T ◦ f is strongly µ-measurable, then f
is strongly µ-measurable. Indeed, f is separably valued by assumption, and
for all y∗ ∈ Y ∗ the function 〈f, T ∗y∗〉 is µ-measurable. The injectivity of T
implies that T ∗ has weak∗ dense range, and therefore the result follows from
the Pettis measurability theorem.

The example S = (0, 1), X = L∞(0, 1), Y = L2(0, 1), T the natural
injection f 7→ f , and f(t) = 1(0,t) shows that the separability assumption on
X cannot be omitted.
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1.1.c Operator-valued functions

Throughout these volumes there will be occasions to study properties of
operator-valued functions. With respect to the uniform operator topology,
the Banach space L (X,Y ) is in general non-separable and because of this,
few functions f : S → L (X,Y ) will be strongly measurable. To get a grasp of
the situation, just consider the mapping T : R→ L (L2(R)), t 7→ Tt, defined
by

Ttf(u) = f(u+ t), u ∈ R.

To see that this function fails to be strongly measurable with respect to the
uniform operator topology of L (L2(R)) we may argue as follows. For any two
s 6= t in R we note that

‖Ts − Tt‖ = 2.

As a result, no matter how we choose the null set N ⊆ R, the set {Tt : t ∈
R\N} cannot be contained in a separable closed subspace of L (L2(R)). Hence,
by the Pettis measurability theorem, t 7→ Tt fails to be strongly measurable
as an L (L2(R))-valued function.

On the other hand, the orbits t 7→ Ttx enjoy many good properties, such
as being continuous with respect to the norm of L2(R). This suggests the
following definition.

Definition 1.1.27. A function f : S → L (X,Y ) is called strongly mea-
surable (respectively, strongly µ-measurable) if for all x ∈ X the Y -valued
function fx : s 7→ f(s)x is strongly measurable (respectively, strongly µ-
measurable).

It would be more accurate to refer to such functions as being strongly
(µ-)measurable with respect to the strong operator topology, as opposed to
those functions which are strongly measurable with respect to the uniform
operator topology (for the definitions of these topologies we refer to Ap-
pendix B). The reader will agree that this terminology would be unnecessarily
cumbersome. The slight ambiguity in our terminology is therefore taken for
granted.

Proposition 1.1.28. Let (S,A ) be a measurable space (respectively, (S,A , µ)
a measure space) and let X and Y be Banach spaces. If f : S → X and
g : S → L (X,Y ) are strongly (µ-)measurable, then gf : S → Y is strongly
(µ-)measurable.

Proof. By assumption there exists a sequence (fn)n>1 of (µ-)simple func-
tions converging pointwise to f (µ-almost everywhere). The functions gfn are
strongly (µ-)measurable and satisfy limn→∞ gfn → gf pointwise (µ-almost
everywhere). Corollary 1.1.9 (Corollary 1.1.23) now implies the strong (µ-)-
measurability of gf . �


