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Foreword

This book brings together and explores possibilities for combining image
processing and artificial intelligence, both focused on machine learning and opti-
mization, two relevant areas and fields in computer science. Most books have been
proposed about the major topics separately, but not in conjunction, giving it a
special interest. The problems addressed and described in the different chapters
were selected in order to demonstrate the capabilities of optimization and machine
learning to solve different issues in image processing. These problems were selected
considering the degree of relevance in the field providing important cues on par-
ticular applications domains. The topics include the study of different methods for
image segmentation, and more specifically detection of geometrical shapes and
object recognition, where their applications in medical image processing, based on
the modification of optimization algorithms with machine learning techniques,
provide a new point of view. In short, the book was intended with the purpose and
motivation to show that optimization and machine learning main topics are
attractive alternatives for image processing technique taking advantage over other
existing strategies. Complex tasks can be addressed under these approaches pro-
viding new solutions or improving the existing ones thanks to the required foun-
dation for solving problems in specific areas and applications.

Unlike other existing books in similar areas, the book proposed here introduces
to the reader the new trends using optimization approaches about the use of opti-
mization and machine learning techniques applied to image processing. Moreover,
each chapter includes comparisons and updated references that support the results
obtained by the proposed approaches, at the same time that provides the reader a
practical guide to go to the reference sources.

The book was designed for graduate and postgraduate education, where students
can find support for reinforcing or as the basis for their consolidation or deepening
of knowledge, and for researchers. Also teachers can find support for the teaching
process in the areas involving machine vision or as examples related to main
techniques addressed. Additionally, professionals who want to learn and explore the
advances on concepts and implementation of optimization and learning-based
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algorithms applied image processing find in this book an excellent guide for such
purpose.

The content of this book has been organized considering an introduction to
machine learning an optimization. After each chapter addresses and solves selected
problems in image processing. In this regard, Chaps. 1 and 2 provides respectively
introductions to machine learning and optimization, where the basic and main
concepts related to image processing are addressed. Chapter 3, describes the
electromagnetism-like optimization (EMO) algorithm, where the appropriate
modifications are addressed to work properly in image processing. Moreover, its
advantages and shortcomings are also explored. Chapter 4 addresses the digital
image segmentation as an optimization problem. It explains how the image seg-
mentation is treated as an optimization problem using different objective functions.
Template matching using a physical inspired algorithm is addressed in Chap. 5,
where indeed, template matching is considered as an optimization problem, based
on a modification of EMO and considering the use of a memory to reduce the
number of call functions. Chapter 6 addresses the detection of circular shapes
problem in digital images, and again focused as an optimization problem.
A practical medical application is proposed in Chap. 7, where blood cell seg-
mentation by circle detection is the problem to be solved. This chapter introduces a
new objective function to measure the match between the proposed solutions and
the blood cells contained in the images. Finally, Chap. 8 proposes an improvement
EMO applying the concept of opposition-based electromagnetism-like optimiza-
tion. This chapter analyzes a modification of EMO used as a machine learning
technique to improve its performance. An important advantage of this structure is
that each chapter could be read separately. Although all chapters are interconnected,
Chap. 3 serves as the basis for some of them.

The concise comprehensive book on the topics addressed makes this work an
important reference in image processing, which is an important area where a sig-
nificant number of technologies are continuously emerging and sometimes unten-
able and scattered along the literature. Therefore, congratulations to authors for
their diligence, oversight and dedication for assembling the topics addressed in the
book. The computer vision community will be very grateful for this well-done
work.

July 2016 Gonzalo Pajares
Universidad Complutense de Madrid
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Preface

The use of cameras to obtain images or videos from the environment has been
extended in the last years. Now these sensors are present in our lives, from cell
phones to industrial, surveillance and medical applications. The tendency is to have
automatic applications that can analyze the images obtained with the cameras. Such
applications involve the use of image processing algorithms.

Image processing is a field in which the environment is analyzed using samples
taken with a camera. The idea is to extract features that permit the identification
of the objects contained in the image. To achieve this goal is necessary applying
different operators that allow a correct analysis of a scene. Most of these operations
are computationally expensive. On the other hand, optimization approaches are
extensively used in different areas of engineering. They are used to explore complex
search spaces and obtain the most appropriate solutions using an objective function.
This book presents a study the uses of optimization algorithms in complex prob-
lems of image processing. The selected problems explore areas from the theory of
image segmentation to the detection of complex objects in medical images. The
concepts of machine learning and optimization are analyzed to provide an overview
of the application of these tools in image processing.

The aim of this book is to present a study of the use of new tendencies to solve
image processing problems. When we start working on those topics almost ten
years ago, the related information was sparse. Now we realize that the researchers
were divided and closed in their fields. On the other hand, the use of cameras was
not popular then. This book presents in a practical way the task to adapt the
traditional methods of a specific field to be solved using modern optimization
algorithms. Moreover, in our study we notice that optimization algorithm could also
be modified and hybridized with machine learning techniques. Such modifications
are also included in some chapters. The reader could see that our goal is to show
that exist a natural link between the image processing and optimization. To achieve
this objective, the first three chapters introduce the concepts of machine learning,
optimization and the optimization technique used to solve the problems. The
structure of the rest of the sections is to first present an introduction to the problem
to be solved and explain the basic ideas and concepts about the implementations.
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The book was planned considering that, the readers could be students, researchers
expert in the field and practitioners that are not completely involved with the topics.

This book has been structured so that each chapter can be read independently
from the others. Chapter 1 describes the machine learning (ML). This chapter
concentrates on elementary concepts of machine learning. Chapter 2 explains the
theory related with global optimization (GO). Readers that are familiar with those
topics may wish to skip these chapters.

In Chap. 3 the electromagnetism-like optimization (EMO) algorithm is intro-
duced as a tool to solve complex optimization problems. The theory of physics
behind the EMO operators is explained. Moreover, their pros and cons are widely
analyzed, including some of the most significant modifications.

Chapter 4 presents three alternative methodologies for image segmentation
considering different objective functions. The EMO algorithm is used to find the
best thresholds that can segment the histogram of a digital image.

In Chap. 5 the problem template matching is introduced that consists in the
detection of objects in an image using a template. Here the EMO algorithm opti-
mizes an objective function. Moreover, improvements to reduce the number of
evaluations and the convergence velocity are also explained.

Continuing with the object detection, Chap. 6 shows how EMO algorithm can be
applied to detect circular shapes embedded in digital images. Meanwhile, in
Chap. 7 a modified objective function is used to identify white blood cells in
medical images using EMO.

Chapter 8 shows how a machine learning technique could improve the perfor-
mance of an optimization algorithm without affecting its main features such as
accuracy or convergence.

Writing this book was a very rewarding experience where many people were
involved. We acknowledge Dr. Gonzalo Pajares for always being available to help
us. We express our gratitude to Prof. Lakhmi Jain, who so warmly sustained this
project. Acknowledgements also go to Dr. Thomas Ditzinger, who so kindly agreed
to its appearance.

Finally, it is necessary to mention that this book is a small piece in the puzzles of
image processing and optimization. We would like to encourage the reader to
explore and expand the knowledge in order create their own implementations
according their own necessities.

Zapopan, Mexico Diego Oliva
Guadalajara, Mexico Erik Cuevas
July 2016
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Chapter 1
An Introduction to Machine Learning

1.1 Introduction

We already are in the era of big data. The overall amount of data is steadily
growing. There are about one trillion of web pages; one hour of video is uploaded
to YouTube every second, amounting to 10 years of content every day. Banks
handle more than 1 M transactions per hour and has databases containing more than
2.5 petabytes (2.5 × 1015) of information; and so on [1].

In general, we define machine learning as a set of methods that can automatically
detect patterns in data, and then use the uncovered patterns to predict future data, or
to perform other kinds of decision making under uncertainty. Learning means that
novel knowledge is generated from observations and that this knowledge is used to
achieve defined objectives. Data itself is already knowledge. But for certain
applications and for human understanding, large data sets cannot directly be applied
in their raw form. Learning from data means that new condensed knowledge is
extracted from the large amount of information [2].

Some typical machine learning problems include, for example in bioinformatics,
the analysis of large genome data sets to detect illnesses and for the development of
drugs. In economics, the study of large data sets of market data can improve the
behavior of decision makers. Prediction and inference can help to improve planning
strategies for efficient market behavior. The analysis of share markets and stock
time series can be used to learn models that allow the prediction of future devel-
opments. There are thousands of further examples that require the development of
efficient data mining and machine learning techniques. Machine learning tasks vary
in various kinds of ways, e.g., the type of learning task, the number of patterns, and
their size [2].

© Springer International Publishing AG 2017
D. Oliva and E. Cuevas, Advances and Applications of Optimised Algorithms
in Image Processing, Intelligent Systems Reference Library 117,
DOI 10.1007/978-3-319-48550-8_1
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1.2 Typed of Machine Learning Strategies

The Machine learning methods are usually divided into three main types: super-
vised, unsupervised and reinforcement learning [3]. In the predictive or supervised
learning approach, the goal is to learn a mapping from inputs x to outputs y, given a
labeled set of input-output pairs D ¼ xi; yið Þf gNi¼1,xi ¼ x1i ; . . .; x

d
i

� �
. Here D is

called the training data set, and N represents the number of training examples.
In the simplest formulation, each training vector x is a d-dimensional vector,

where each dimension represents a feature or attribute of x. Similarly, yi symbolizes
the category assigned to xi. Such categories integrate a set defined as
yi 2 1; . . .;Cf g. When yi is categorical, the problem is known as classification and
when yi is real-valued, the problem is known as regression. Figure 1.1 shows a
schematic representation of the supervised learning.

The second main method of machine learning is the unsupervised learning. In
unsupervised learning, it is only necessary to provide the data D ¼ xif gNi¼1.
Therefore, the objective of an unsupervised algorithm is to automatically find
patterns from the data, which are not initially apparent. This process is sometimes
called knowledge discovery. Under such conditions, this process is a much less
well-defined problem, since we are not told what kinds of patterns to look for, and
there is no obvious error metric to use (unlike supervised learning, where we can
compare our prediction of yi for a given xi to the observed value). Figure 1.2
illustrate the process of unsupervised learning. In the figure, data are automatically
classified according to their distances in two categories, such as clustering
algorithms.

Reinforcement Learning is the third method of machine learning. It is less
popular compared with supervised and unsupervised methods. Under,
Reinforcement learning, an agent learns to behave in an unknown scenario through
the signals of reward and punishment provided by a critic. Different to supervised
learning, the reward and punishment signals give less information, in most of the
cases only failure or success. The final objective of the agent is to maximize the
total reward obtained in a complete learning episode. Figure 1.3 illustrate the
process of reinforcement learning.

Supervised
learning algorithm

Actual
output

Desired
output

+
-

Error
signal

Input

iy

ix
Fig. 1.1 Schematic
representation of the
supervised learning
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1.3 Classification

Classification considers the problem of determining categorical labels for unla-
beled patterns based on observations. Let ðx1; y1Þ; . . .; ðxN ; yNÞ be observations of
d-dimensional continuous patterns, i.e., xi 2 R

d with discrete labels y1; . . .; yN . The
objective in classification is to obtain a functional model f that allows a reasonable
prediction of unknown class labels y0 for a new pattern x0. Patterns without labels
should be assigned to labels of patterns that are enough similar, e.g., that are close
to the target pattern in data space, that come from the same distribution, or that lie
on the same side of a separating decision function. But learning from observed
patterns can be difficult. Training sets can be noisy, important features may be
unknown, similarities between patterns may not be easy to define, and observations
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may not be sufficiently described by simple distributions. Further, learning func-
tional models can be tedious task, as classes may not be linearly separable or may
be difficult to separate with simple rules or mathematical equations.

1.3.1 Nearest Neighbors

The Nearest neighbor (NN) method is the most popular method used in machine
learning for classification. Its best characteristic is its simplicity. It is based on the
idea that the closest patterns to a target pattern x0, for which we seek the label,
deliver useful information of its description. Based on this idea, NN assigns the
class label of the majority of the k-nearest patterns in data space. Figure 1.4 show
the classification process under the NN method, considering a 4-nearest approach.
Analyzing Fig. 1.4, it is clear that the novel pattern x0 will be classified as element
of the class A, since most of the nearest element are of the A category.

1.4 Parametric and Non-parametric Models

The objective of a machine learning algorithm is to obtain a functional model f that
allows a reasonable prediction or description of a data set. There are many ways to
define such models, but the most important distinction is this: does the model have
a fixed number of parameters, or does the number of parameters grow with the
amount of training data? The former is called a parametric model, and the latter is
called a nonparametric model. Parametric models have the advantage of often being
faster to use, but the disadvantage of making stronger assumptions about the nature
of the data distributions. Nonparametric models are more flexible, but often com-
putationally intractable for large datasets. We will give examples of both kinds of
models in the sections below. We focus on supervised learning for simplicity,
although much of our discussion also applies to unsupervised learning. Figure 1.5
represents graphically the architectures from both approaches.
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Fig. 1.4 Classification
process under the NN method,
considering a 4-nearest
approach
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1.5 Overfitting

The objective of learning is to obtain better predictions as outputs, being they class
labels or continuous regression values. The process to know how successfully the
algorithm has learnt is to compare the actual predictions with known target labels,
which in fact is how the training is done in supervised learning. If we want to
generalize the performance of the learning algorithm to examples that were not seen
during the training process, we obviously can’t test by using the same data set used
in the learning stage. Therefore, it is necessary a different data, a test set, to prove
the generalization ability of the learning method. This test set is used by the
learning algorithm and compared with the predicted outputs produced during the
learning process. In this test, the parameters obtained in the learning process are not
modified.

In fact, during the learning process, there is at least as much danger in
over-training as there is in under-training. The number of degrees of variability in
most machine learning algorithms is huge—for a neural network there are lots of
weights, and each of them can vary. This is undoubtedly more variation than there
is in the function we are learning, so we need to be careful: if we train for too long,
then we will overfit the data, which means that we have learnt about the noise and
inaccuracies in the data as well as the actual function. Therefore, the model that we
learn will be much too complicated, and won’t be able to generalize.

Figure 1.6 illustrates this problem by plotting the predictions of some algorithm
(as the curve) at two different points in the learning process. On the Fig. 1.6a the
curve fits the overall trend of the data well (it has generalized to the underlying
general function), but the training error would still not be that close to zero since it
passes near, but not through, the training data. As the network continues to learn, it
will eventually produce a much more complex model that has a lower training error
(close to zero), meaning that it has memorized the training examples, including any
noise component of them, so that is has overfitted the training data (see Fig. 1.6b).
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Fig. 1.5 Graphical representation of the learning process in Parametric and non-parametric
models
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We want to stop the learning process before the algorithm overfits, which means
that we need to know how well it is generalizing at each iteration. We can’t use the
training data for this, because we wouldn’t detect overfitting, but we can’t use the
testing data either, because we’re saving that for the final tests. So we need a third
set of data to use for this purpose, which is called the validation set because we’re
using it to validate the learning so far. This is known as cross-validation in statistics.
It is part of model selection: choosing the right parameters for the model so that it
generalizes as well as possible.

1.6 The Curse of Dimensionality

The NN classifier is simple and can work quite well, when it is given a represen-
tative distance metric and an enough training data. In fact, it can be shown that the
NN classifier can come within a factor of 2 of the best possible performance if
N ! 1.

However, the main problem with NN classifiers is that they do not work well
with high dimensional data x. The poor performance in high dimensional settings is
due to the curse of dimensionality.

To explain the curse, we give a simple example. Consider applying a NN
classifier to data where the inputs are uniformly distributed in the d-dimensional
unit cube. Suppose we estimate the density of class labels around a test point x0 by
“growing” a hyper-cube around x0 until it contains a desired fraction F of the data
points. The expected edge length of this cube will be edðFÞ ¼ F1=d . If d = 10 and
we want to compute our estimate on 10 % of the data, we have e10ð0:1Þ ¼ 0:8, so
we need to extend the cube 80 % along each dimension around x0. Even if we only
use 1 % of the data, we find e10ð0:01Þ ¼ 0:63, see Fig. 1.7. Since the entire range
of the data is only 1 along each dimension, we see that the method is no longer very
local, despite the name “nearest neighbor”. The trouble with looking at neighbors
that are so far away is that they may not be good predictors about the behavior of
the input-output function at a given point.
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Fig. 1.6 Examples of a generalization and b overfitting
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