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Preface

Probabilistic methods are currently of crucial importance for research and devel-
opments in the field of engineering, which is challenged by new materials and
technologies and rapidly changing societal needs and values. Hence, the societal
importance of risk and safety has significantly increased in the last decades. Con-
temporary needs related to, for example, performance-based design, service-life
design, life cycle analysis, product optimization, assessment of existing structures,
structural robustness, etc., still give rise to new developments in order to establish
accurate and practically applicable probabilistic and statistical engineering methods
to support these developments.

In 2003, a series of annual symposia or workshops has been established to
provide a multidisciplinary forum for the exchange of knowledge and expertise in
probabilistic methods, uncertainty quantification, safety and risk management,
focusing on theory as well as practice and stimulating discussions on developments,
and needs in this fascinating field of expertise.

Originally, the series started as the 1st and 2nd Dresdner Probabilistic Sympo-
sium in 2003 and 2004, respectively, which were launched to present research and
applications that mainly dealt with at Dresden University of Technology. Since
then, the series has grown to an internationally recognised conference dealing with
research and applications of probabilistic techniques, mainly in the field of struc-
tural engineering.

After Dresden in 2003 and 2004, the International Probabilistic Workshop was
organised in Vienna (2005), Berlin (2006), Ghent (2007), Darmstadt (2008), Delft
(2009), Szczecin (2010), Braunschweig (2011), Stuttgart (2012), Brno (2013),
Weimar (2014) and Liverpool (2015). For the first time, the workshop is now
returning to a former location. From 5 to 7 December 2016, Ghent University will
host the 14th edition of the International Probabilistic Workshop (IPW2016) once
more in the beautiful city of Ghent, Belgium.
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The proceedings of this 14th edition of the International Probabilistic Workshop
include 36 papers, of which 2 are keynote papers, representing contributions from
14 countries. Overall, the papers relate to the following topics:

• Structural reliability methods and statistical approaches
• Probability and statistics
• Uncertainty quantification
• Uncertainty modelling
• Applied structural reliability analysis
• Risk analysis and optimization
• Probabilistic assessment of new and existing structures

The editors are grateful to all the contributing authors for their efforts and
enthusiasm as well as to the Scientific Committee and the reviewers for safe-
guarding the quality of the Workshop’s contributions.

We hope that this booklet can stimulate the research activities and interests into
probabilistic applications and foster international cooperation in the field.

Ghent, Belgium Robby Caspeele
Ghent, Belgium Luc Taerwe
Döttingen, Switzerland Dirk Proske
December 2016
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Optimizing Adaptable Systems
for Future Uncertainty

D. Straub and O. Špačková

Abstract Demands on structures and infrastructures change over their service life
and cannot be predicted with certainty. Adaptable (or flexible) infrastructure
designs are thus potentially beneficial, enabling easier adjustments of the systems at
a later stage. However, systematic quantitative investigations and corresponding
recommendations are missing. In Špačková and Straub (Bayesian models for
long-term adaptation decisions. Working paper, ERA Group, TU München, Ger-
many) (2016), we present a framework for such an analysis, which is based on
sequential decision processes. In this contribution, we summarize the approach and
focus on the interpretation of flexibility. We show that the framework enables
quantification of the value of flexibility, to answer the question: what is the maxi-
mum amount that should be spent additionally to ensure system flexibility? Two
case studies illustrate that this value is strongly dependent on a number of factors, in
particular on the types of uncertainty present and the amount of future information
collected in the future.

Keywords Planning ⋅ Infrastructure ⋅ Risk ⋅ POMDP ⋅ Decision making ⋅
Sustainability ⋅ Adaptability

1 Introduction

Most structures and infrastructure are built to last, with projected service life times
of 50 years or more. However, these systems are subject to changing demands from
environment and users over their service life. Bridges are deteriorating and are
subject to possibly increasing traffic loads, demands on dwater infrastructure are

D. Straub (✉) ⋅ O. Špačková (✉)
Engineering Risk Analysis Group, Technische Universität München,
Munich, Germany
e-mail: straub@tum.de

O. Špačková
e-mail: olga.spackova@tum.de

© Springer International Publishing AG 2017
R. Caspeele et al. (eds.), 14th International Probabilistic Workshop,
DOI 10.1007/978-3-319-47886-9_1
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affected by changing climates and population development and industrial facilities
undergo changes in user requirements (Hall et al. 2014; Yzer et al. 2014). If these
systems cannot be adapted to the new demands, they may become inefficient or
obsolete. On the other hand, increasing the flexibility or adaptability of engineering
systems is typically associated with additional costs, and it may turn out to be
unnecessary in the long run if demands are not changing. To further complicate the
matter, safety margins against future changes in demand may be built into systems
as an alternative to building adaptable systems. These margins also come at a cost
though, and it is necessary to find a trade-off among safety, adaptability and risk.

Such an optimization problem can be formalized by sequential decision analysis,
which was first developed by economists and was later enhanced in the field of
artificial intelligence (Raiffa and Schlaifer 1961; Kochenderfer et al. 2015). In
Špačková and Straub (2016), we show that the theory and the available mathe-
matical tools are ideally suited to model infrastructure systems under uncertain
future demands. The approach can account for the fact that adaptable systems may
be adjusted when demands are changing or when new information is available in
the future. In contrast to alternative approaches, most of which are based on
real-options analysis (e.g. Neufville et al. 2006), sequential decision analysis allows
to consistently address all uncertainty and decision alternatives in the process, and
also can account for partial observability of the relevant processes. To facilitate the
modeling process and communication, the decision process is represented by an
influence diagram, similar to the proposal of Nishijima (2016).

A special focus of this contribution is on investigating the effect of a system’s
flexibility. It has been pointed out in the literature that flexible system designs can be
advantageous under future uncertainties, such as climate change uncertainty or
demand uncertainty (Hallegate 2009). Intuitively, this appears reasonable, as flexible
systems can be adapted in the future with limited cost. However, formal quantitative
investigations of the effect of flexibility in the context of infrastructure planning are
missing. To enable such analysis, we propose a measure of flexibility in Špačková
and Straub (2016). Through sequential decision analysis, one can then derive a value
of flexibility and make recommendations on optimal strategies for dealing with
future uncertainty. In particular, the relation between a system’s flexibility and the
initial safety margin can be derived. As we show, this relation depends on a number
of factors, not least the amount of information that can be obtained in the future.

The generic concepts are illustrated by application to infrastructure subject to
demand uncertainty and to flood management systems under climate change
uncertainty.

2 Adaptable or Flexible Engineering Systems

Adaptable or flexible systems are designed such that they are easily adjusted to
changing demands (Ross et al. 2008; Saleh et al. 2009). Examples include pipes
with additional capacity for future transmission cables, buildings with structural

4 D. Straub and O. Špačková



systems that enable flexible floor plans or flood defense systems where land for
future extension is reserved. Because such flexibility comes at an additional cost, an
optimization should be carried out to understand if it pays off. Furthermore, if a
system is more flexible, the optimal design of the system might change (if trans-
mission cables can be added later, fewer cables might be installed initially).

We propose to measure flexibility through the cost of establishing capacity.
Conceptually, Fig. 1 shows two systems with higher and lower flexibility.

2.1 A Measure of Flexibility

To formalize the analysis of flexibility, we proposed a quantitative measure φ of
flexibility in Špačková and Straub (2016) and Špačková et al. (2015). The measure
is based on the costs of establishing and upgrading a system. Let cðvÞ denote the
cost of establishing a system capacity v initially. In a flexible system, the cost Δc of
increasing the system capacity from a value v′ to a higher v′′ should be comparable
to the difference of the costs for establishing v′′ and v′ initially. Therefore, one can
write this upgrading cost Δc as

Δc v′, v′′ð Þ= c v′′ð Þ−φ ⋅ c v′ð Þ. ð1Þ

Fig. 1 Illustration of the total development cost for a flexible versus an inflexible system. Shown
are the costs associated with establishing the initial capacity and the costs associated with the 1st
and 2nd upgrade conditional on existing levels of capacity. While the inflexible system is typically
cheaper initially, it may lead to larger lifetime costs when updates become necessary

Optimizing Adaptable Systems for Future Uncertainty 5



It follows that the measure of flexibility is defined as

φ=
c v′′ð Þ−Δcðv′, v′′Þ

c v′ð Þ . ð2Þ

All costs in Eqs. (1) and (2) are undiscounted values, since the system flexibility
measure should not depend on time. The actual net present value of upgrading the
system from v′ to v′′ might therefore be lower than Δc according to Eq. (1).

3 Sequential Decision Analysis

The optimization of infrastructure system capacity over time can be approached
with sequential (Bayesian) decision analysis, which originated in mathematical
economics (Raiffa and Schlaifer 1961) and was further developed in artificial
intelligence and planning (e.g. Kaelbling et al. 1998; Kochenderfer et al. 2015).
Decisions are optimized following the expected utility principle, which here cor-
responds to a minimization of expected present value life cycle costs. Uncertainties
are modelled probabilistically, and the effect of future information on the uncer-
tainties is accounted for by Bayesian analysis.

Following Špačková and Straub (2016), infrastructure capacity planning can be
generically represented by a partially observable Markov decision process
(POMDP). This only requires the demand process to be modelled as a Markov
process.1 The generic POMDP, and its special case, the MDP (Markov decision
process), are represented by the influence diagrams (IDs) in Fig. 2. An ID is an
extension of Bayesian networks that includes decision and utility (cost) nodes; the
former are represented by squares, the latter by diamond-shaped nodes. IDs can
mostly be understood intuitively, the detailed semantics are described e.g. in Jensen
and Nielsen (2007). An important aspect of an ID are the links pointing towards a
decision node. They reflect the flow of information, as they indicate that the parent
node is known at the time of making the decision.

The ID of Fig. 2b shows the POMDP model, in which the demand node θt
cannot be observed directly before a decision is made at t+1. Instead, an indicator
variable Zt is observed, which represents partial information on the demand vari-
able. Unfortunately, this partial observability leads to computationally challenges in
identifying optimal decision policies. An introduction to POMDP is found in
Kochenderfer et al. (2015). POMDP has previously been applied to planning of
inspections in deteriorating structure and infrastructure (e.g. Madanat 1993; Corotis
et al. 2005; Papakonstantinou and Shinozuka 2014; Memarzadeh and Pozzi 2016).

1As discussed in Špačková and Straub (2016), this is not a strong limitation, since most
non-Markovian processes can be transformed into a Markovian process by augmenting the state
space.
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A special case of this model arises when the demand at any time t can be observed
with certainty. In this case, the POMDP reduces to the MDP (Fig. 2a), which is
substantially easier to solve. For details on the computation of such POMDP or
MDP models in the context of planning in adaptable infrastructure systems, the
reader is referred to Špačková and Straub (2016).

In a POMDP/MDP, the decision to be taken at each time is described by a
policy, which describes the action to be taken conditional on the available infor-
mation. In an MDP, this information is the current state of demand φt, in the
POMDP, this is the current state of belief, which summarizes all past observations.
If these policies are not changing with time, they are called stationary policies. An
approximate solution to a POMDP can be found by defining a stationary policy
through a limited number of parameters d (a heuristic), computing the expected
total utility by means of a Monte Carlo approach for a given heuristic, and then
performing an optimization over d. Such approaches are common in risk-based
inspection planning (e.g. Straub and Faber 2006).

4 Numerical Illustrations

4.1 Case 1: Infrastructure Capacity

In this example, we consider a generic model for infrastructure capacity planning,
where the demand at present is observable with high accuracy. Examples of such
problems include transportation infrastructure, water resource systems or electrical
power networks. The problem setting is summarized by the ID of Fig. 3. In Fig. 3a,
the actual model is shown where the demand at each time step is defined condi-
tional on the trend τ, which reflects the mean change in the demand. An equivalent

Fig. 2 Influence diagram representing the general infrastructure capacity planning problem.
aMarkov decision process (MDP). b Partially observable Markov decision process (POMDP). The
variables at each time step t are: θt: demand, Zt : measurement, vt: capacity, φ: flexibility, bt: benefits,
rt: risk (associated with demands exceeding capacity), ct: cost of system update. (Figure from
Špačková and Straub 2016)

Optimizing Adaptable Systems for Future Uncertainty 7



POMDP is obtained by replacing the common variable τ with identical copies τt
(corresponding to an augmentation of the state space).

The remaining uncertainty in observations of the demand Dt can be neglected,
therefore there is a link from Dt to the decision node vt+1, indicating direct
observability of Dt. Note that the process is nevertheless only partially observable,
because the trend variables τt can be inferred only indirectly.

The considered service life is 50 years, with a 2 % discounting rate. For the
numerical investigation, the parameters of the model are according to Table 1. The
trend is modelled by a discrete random variable with three possible scenarios. The
demand is modelled as a lognormal random process.

It is assumed that decisions on upgrading system capacity are made every
5 years. A reduction of capacity is not considered, as there are no benefits asso-
ciated with such a reduction.

The optimal life-cycle strategies are identified by means of the heuristic
approach in combination with Monte Carlo sampling.

Fig. 3 Influence diagram representing the investigated infrastructure capacity planning problem.
τ is the trend in the demand, Dt is the system demand, vt is the system capacity, ct is the cost
associated with upgrading the system, and rt is the cost associated with the demand exceeding the
capacity

Table 1 Parameters of the infrastructure capacity case study

Parameter Type Description

Trend τ Discrete random variable pτ 0ð Þ=1 ̸3, pτ 0.01ð Þ=1 ̸3, pτ 0.02ð Þ=1 ̸3
Demand Dt Lognormal random process D0 = 1

lnDtj lnDt− 1 ∼NðlnDt + τ, σΔDÞ
σΔD =0.05

Capacity vt Decision process Optimization parameter
Capacity cost Function c vð Þ= lnð1+ vÞ
Cost of demand Function rt =Dt − vt , if Dt > vt , else 0
Discount rate ρ Deterministic 0.02

8 D. Straub and O. Špačková



The stationary decision policy for t>0 is parametrized as follows:

• Extend capacity when the demand times a tolerance parameter α exceeds
capacity, i.e. if α ⋅Dt > vt.

• If the capacity is extended, then to a value γ ⋅Dt. Here, γ represents the
overdesign of a system modification.

The initial capacity is selected as v0 = SF ⋅D0, where SF is a safety factor (initial
overdesign). Therefore, the optimization parameters are d= ½SF; α, γ�.

In Fig. 4, the expected net present value of the life-cycle costs in function of
flexibility and the initial safety factor are shown. Costs decrease with increasing
flexibility, as expected. The optimum safety factor, i.e. the initial overdesign,
increases as the flexibility decreases, from a value of around 1.4 (for φ=1) to 3 (for
φ=0).

In Fig. 5, the optimal expected net present life-cycle costs are plotted for varying
system flexibilities (these are the values found along the white line of Fig. 4). The
largest costs are incurred for the inflexible system. The reduction in costs for higher
values of flexibility reflects the value of flexibility.

The temporal distribution of optimal expected costs varies in function of the
system flexibility (Fig. 6). In case of the inflexible system, the optimal strategy is to
invest initially, and then accept the possibility of costs because of insufficient
capacity towards the end of service life. For the fully flexible system, the costs are
most equally distributed over the service life. Whenever the capacity is insufficient,
or if it is likely that the capacity will become insufficient in the next years, the
system is upgraded.

Fig. 4 Expected net present value of life-cycle costs in function of the initial safety factor and the
flexibility of the system, together with the optimal safety factor

Optimizing Adaptable Systems for Future Uncertainty 9



4.2 Case 2: Disaster Risk Management

Disaster risk mitigation infrastructures, such as flood defences, are designed to
protect society from extreme events. The frequency of extreme events is not directly
observable—many years of observations are in fact needed to derive the frequency
accurately (Dittes et al. 2016). This problem is intensified when the frequency and
characteristic of extreme events changes in time (is non-stationary), e.g. due to
climate change.

The following example on planning of flood mitigation measures under climate
change uncertainty is taken from (Špačková and Straub 2016). The presentation
here differs the one in the original paper. Three climate scenarios are considered: A
—no change in extreme discharge frequency, B—moderate increase of frequency of

Fig. 5 Optimal expected net present value of the life-cycle cost in function of flexibility. The
difference relative to the value achieved with flexibility zero is the value of flexibility

Fig. 6 Distribution of expected discounted costs over the lifetime for the different flexibilities,
when the optimal management strategy is implemented. The yellow (lighter) bars correspond to
cost associated with building or upgrading the system ct , and the blue (darker) bars are the expect
costs associated with the demand Dt exceeding the capacity vt

10 D. Straub and O. Špačková



extreme discharges and C—significant increase. These climate scenarios corre-
spond to trend values τ=0, 1, 2, respectively. In the future, observed annual
maximum discharges will be applied to update the probabilistic believes on the
climate scenarios.

The model corresponds to the model shown in Fig. 3. Decisions on flood pro-
tection capacity are revised every 30 years, the total planning horizon is 90 years.
Definitions of the utilized variables are provided in Table 2. The risk and cost
functions are defined in the original paper.

In Table 3, the optimal initial designs of the flood protection system are sum-
marized for stationary conditions (neglecting the effect of climate change,
i.e., assuming that the probability of scenario A is 1) and under consideration of the
uncertain effects of climate change. The latter results are shown for varying flexi-
bility φ (Fig. 7). The difference between flexible and inflexible systems is very low,
indicating that the flexibility has limited value in this case.

Table 2 Parameters of the flood protection case study

Parameter Type Description

Climate trend τ Discrete RV pτ 0ð Þ=1 ̸3, pτ 1ð Þ=1 ̸3, pτ 2ð Þ=1 ̸3
Ann.max discharge Dt Continuous RV Dtjτ∼Gumbelð1200+ 2 ⋅ τ ⋅ t, 960+ 1.6τÞ
Capacity vt Decision process Optimization parameter
Discount rate ρ Deterministic 0.02

Table 3 Optimal initial design of the flood protection system excluding and including uncertain
climate impact for different flexibilities

Neglecting climate change Including climate change
uncertainty
φ=0 φ=0.5 φ=1

Design discharge (m3/s) 4800 5240 5240 5220
Design return period (year) 220 400 400 380

Fig. 7 Distribution of expected discounted costs over the lifetime for the different flexibilities,
when the optimal management strategy is implemented. The yellow (lighter) bars correspond to
cost associated with building or upgrading the flood defense, and the blue (darker) bars are the
discounted flood risks
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5 Concluding Remarks

We present a framework that enables the investigation of the effect of adaptability
(flexibility) in infrastructure systems in a systematic and quantitative manner.
Adaptability is frequently mentioned as a potentially effective strategy to deal with
uncertain climate change and other future changes and uncertainties. However,
numerical investigations into its effect are lacking, which is the aim of this research.
To enable a generalization of results from individual case studies, we propose a
measure of flexibility. Taking basis in sequential decision analysis, it is then pos-
sible to quantify the value of flexibility.

The results of the two case studies, and others reported in Dittes et al. (2016) and
Špačková and Straub (2016), indicate that the value of flexibility can be funda-
mentally different depending on a number of factors, which include the amount of
uncertainty and the possibility for future learning (reducing uncertainty), the mean
predicted changes of the system, the discounting rate as well as the cost and risk
functions. Comparing the two presented examples, one can observe that the flexi-
bility has a significant value in the infrastructure capacity example, where the
learning process is strong. This is in contrast to the second example, where the
uncertainty is on extremes, which are generally hard to predict. The presented
example does underestimate the true capability for learning, because it is not
accounted for improvements in climate models and other information that can be
used to improve flood predictions. Nevertheless, the value of information will be
limited also under modified assumptions, because increasing flood protection
capacity is a no-regret strategy. That is, a conservative design has benefits under
any future change, which is not the case in the first example.
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Freak Events, Black Swans,
and Unknowable Unknowns: Impact
on Risk-Based Design

M.A. Maes and M.R. Dann

Abstract To design means making informed decisions about suitable alternatives
in the face of uncertainties. As a result, structural design criteria and inspection
plans reflect the objective of satisfactory performance under well selected extreme
conditions. The extent to which the extreme boundary is “pushed” depends on the
design approach (ex: component vs system design), the nature and the conse-
quences of the hazards, and risk acceptance, all of which fit neatly into the tradi-
tional framework of decision theory. This basic framework is also broad enough to
include wider socio-economic and environmental objects, so that provisions with
respect to robustness, resilience, sustainability, and risk mitigative measures in
general, can be effectively accounted for. Various civil engineering fields suffer
from a perception that we don’t dig deep enough, that we fail to consider “beyond
extreme” scenarios. Every major accident, or any exceptional natural disaster, or
any surprising combination of circumstances, triggers a new call for re-examination
of the design rationale: if a freak event can be explained, then surely it should be
(have been) accounted for. This paper looks at what really lies beyond our “design
frontier”. We distinguish between three broad classes of events: far-out extremes for
heavy-tailed hazards, scenarios marked by very unlikely combinations of events
(perfect storms), and so-called unknowable unknowns. We identify, from a decision
making point of view, which objectives, which tools, and which risk measures can
be used, and which lessons can be learned.
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1 Introduction

We live in a world of interconnected networks of almost everything. The inter-
connected world evidently offers a myriad of benefits to its “members”. This can
easily be tracked in terms of ever increasing metrics ranging from efficiency,
productivity, technological performances, to quality of life. However, any kind of
disturbance—external or internal—has the potential of upsetting the system,
paralysing the network, and causing damage far beyond its perceived boundaries
(Jowitt 2010). In other words, interdependency has led to increased and more
widespread vulnerability.

Very rare incidents having extraordinary consequences form the main subject of
this paper. They are not new; they are in fact the same as all of the “mysterious”
events ascribed by the ancient Greeks to the god Poseidon. A recent trend is to refer
to them as beyond-extreme events or very exceptional disasters that carry
metaphorical names such as black swans, freak events, perfect storms, nightmare
scenarios, and, also, events perceived to have risen from the unknowable unknown.

2 Infrastructure: Evolving Expectations

It is important to reconsider the proper context of design decision making in order
to evaluate the role and the impact of extraordinary events. Skilled builders,
designers, architects and engineers serve as the custodians of past, current, and
future infrastructure. Over the past 30 centuries, the needs of infrastructure have
changed and expanded. This evolution occurred more or less at the same pace as the
hierarchical expansion of human needs (Maes and Stewart 2004).

Historically, infrastructure has always been the sole and common stable platform
upon which civilization rests. Its main role was to bring people and views together,
to provide shelter and basic comfort, and to provide a true forum for interaction—in
the literal sense of the meaning. Much later arose the need for infrastructure to be
efficient, cost effective, and functional, as the human need for an acceptable quality
of life became tied to basic infrastructure functions. The specific character of
modern societies is largely defined by culture, heritage, and vision, all of which are
heavily influenced by its infrastructure. In a sense, infrastructure came to “shape”
our world (Jowitt 2010). It is only very recently in this historical sequence that the
ultimate step in this hierarchy of needs appears: it focuses on a society’s vulnera-
bility in times of unexpected distress and/or abnormal conditions. Hence the
requirements for infrastructure to be resilient against disasters and sustainable in the
long-term (Rodrigues-Nikl 2015). In summary, and in the order of historical evo-
lution, we expect infrastructure to be:

• reliable and safe, since it is the critical stable platform upon which civilization
depends

• efficient and functional, since our quality of life is linked to it
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• equitable, since it “shapes” our world
• resilient and sustainable, since society has become painfully vulnerable when

infrastructure systems fail.

3 What We Know, What We Should Know, What We
Don’t Know

In recent years the notion of the “unknowable unknown” (UU) has taken a life on
its own. Because of its relation to extraordinary low-probability, high-consequence
events, it is worthwhile examining its genesis, its use—and its misuse—from the
point of view of decision making (DM). The notion and the use of UUs in offshore
structures design and operations was popularized by Bea (1997). In an industry that
is heavily self-centred and famous for its unwillingness to share experiences and its
failure to learn and adapt in the wake of serious incidents, the UU transformed itself
into the ultimate excuse: we did not know, we could not know, and we could never
have known, no matter what.

In 1979 a British Columbia royal commission of inquiry into the benefits and the
dangers of uranium mining first used the term UU in its final report (British
Columbia Royal Commission of Inquiry 1979). The commission referred to UUs as
“unforeseeable conditions which pose a potentially greater risk [than known
unknowns] because they cannot be anticipated based on experience or investiga-
tions”. In other words, should indicators of a threat to people be present or be
suspected then these “known unknowns” (KU) can/should be the subject of sci-
entific risk assessment. If neither indicators, nor an experience base, nor a
knowledge base exist, then we deal with UUs. The question of whether or not a UU
should “pose a potentially greater risk” is debatable, for if we know nothing about
the UU, not even its existence, then there is a priori no compelling reason to fear
“it”, let alone associate it with potential greater risk.

A 1982 investigation of the metal fatigue failures of the 1950s Havilland air-
crafts also cited the role of UUs. At the time of the incidents, fatigue was not an
established concept of its own right. It was “unknown” as a cause of failure, but as
failures accumulated, one can hardly continue to blame evidence of malfunction to
an unknowable unknown: the effect was known but not the cause. This points to
epistemic limitations rather than UUs: as the experience-base broadened and
research intensified, a proper “name” was eventually given to the phenomenon. As
in the case of a new virus or infectious disease, its sudden observation or realization
(“discovery”) is rather like a black swan: an epistemic breakthrough of something
that was certainly not meant to remain “un-knowable”.

It would be tempting to divide the knowledge base using the breakdown shown
in Fig. 1a. Apart from the trivial class of knowns (K), the largest set of uncertainties
consists of KUs, i.e. those of which decision makers are well aware and upon which
their uncertainty modelling focuses (Maes and Milke 2015). Then there would be
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the class of UK which would include information or data that is either not (easily)
recalled or (intentionally) suppressed. Finally there would be a separate group of
UUs (Haugen and Vinnem 2015).

However, this picture is definitely flawed by our obsession to break down (un)
certainty along abstract lines. Informed decision making (DM) is intrinsically
concerned with the framework for developing optimal decisions based on:

• what we know
• what we should know, or what we need to know

This basis for traditional DM therefore includes K and KU. We possess tech-
niques to resolve, learn about, update, monitor, and model any of the uncertainties
involved in this process. Now, to add a third component to the “knowledge basis”
in the form of:

• what we do not know (and can never know)

would suggest that there are uncertainties we should be able to know but cannot
know. But this leads to a paradox, as either such uncertainties are already part of
system of beliefs/knowledge (but we may be unaware of them or give them dif-
ferent names), or else they lie truly outside our domain of knowledge. In the first
case the supposed UU is in fact a KU; in the second case, Platonic logic tells us that
we can never learn what we do not know since if we would “find” it, we would not
be able to recognize it.

Either way the supposed UU can never be an issue in the context of rational and
informed decision making. Therefore, a “true UU” can as well not exist since it can,
by definition, never penetrate the state of knowledge and, accordingly it does not
influence DM in any formal or informal way. If a specific uncertainty is marked as a
UU, perhaps, but not necessarily, in an a posteriori sense, then it ceases to be a UU
and becomes a KU since it is then part of the decision maker’s basis of beliefs.

(a) (b)

KU

K UK

UU KU

K

Fig. 1 Knowledge base breakdown (K = known, KU = known unknown, UK = unknown
known, UU = unknowable unknown)
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For informed DM, it is, on balance, better to replace Fig. 1a by Fig. 1b which
does not show UUs and dilates UK into K (through investigation and research) or
into KU (using uncertainty modelling).

4 Black Swans and Perfect Storms

Before 1697, expressions in the English language that used the term “black swans”
(BS) were in fact very common. They pointed to something that was non-existent or
physically or conceptually impossible. In that year the first reports of actual BS
sightings in Western Australia reached Europe. Subsequently, the BS terminology
became synonym of any perceived impossibility that is, or may, later be disproven.

In 2000 unexpected financial market fluctuations were baptized BSs and since
that time BSs came to denote almost any unexpected high-impact event. In that
same year the use of the term “perfect storm” (PS) was popularized by the movie
based on Junger’s (1997) novel. Both BS and PS concepts have many aspects in
common:

• they are both “freakish” in nature, causing surprise and generating sudden
newsworthiness

• they both may result in significant damage and widespread impact
• they can both be rationalized by hindsight (Taleb 2007):

– a BS may never have been observed before but may have precursors or (at
least) vague indicators: they can be imagined a priori and explained a
posteriori

– for a PS, root-cause scenarios can be proposed and verified; usually, the
(regular) individual underlying events/processes are well understood, but, a
priori, their very rare conjunction or sequencing is subject to considerable
uncertainty

• before their occurrence or observation, they are considered “truly unthinkable”;
this is normally a correct and rational point of view with respect to the specific
knowledge base and the state of belief at the point in time that such an evalu-
ation is made.

One possible distinction that could set apart a BS from a PS, is suggested by
Paté-Cornell (2012): a BS engenders the ultimate epistemic uncertainty due to a
profound lack of fundamental knowledge, while a PS embodies the ultimate rare
conspiracy of aleatory uncertainties, an extremely bad roll of dice so to speak. It is
important, however, to realize that even this possible distinction between BS and PS
depends entirely on one’s perspective and state of belief. It is hardly relevant before
the fact, as well as after the fact.
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In modern use, a BS or a PS refers to a very unexpected event (with respect to
the a priori knowledge base), that is felt to be nightmarish in terms of the high
profile consequences that it carries. This points to two explosive ingredients: fear
and surprise.

Fear is known to possess considerable potential to interfere with informed DM
and effective risk management (Maes and Milke 2015). As soon as fear looms over
the decision making process, it has the potential to start weighing too heavily
(Schneier 2013).

As pointed out in the case of UU, the knowledge base as well as the system of
beliefs expand as a function of time. Any surprise event, i.e. yesterday’s BS, is
short lived once the event is experienced. The surprise punctures at least some
bubble of (yesterday’s) epistemic limitations.

There can of course be many epistemological reasons why the BS remained
unexposed in the timeline before its first “sighting”:

• inappropriate assumptions and models suggesting that such a BS cannot occur
• improper uncertainty models/analysis leading to incorrect likelihood evaluation
• overall chance of occurrence of a possible BS deemed too small to be consid-

ered; this assessment can either be valid, i.e. justified using risk-based accep-
tance, or may stem from incorrect analysis

• erroneous induction/deduction due to serious fallacies in logic
• incomplete information
• failure of the knowledge management systems (e.g. incompetence, illusory

superiority)
• inappropriate belief structures, e.g. the use of priors that express faith in like-

lihoods (Haugen and Vinnem 2015)
• ignorance of lower-level signals/warnings/precursors
• local “thinking”, i.e. focusing on one link in the chain rather than on the entire

chain, and lack of creative thinking and network modelling

Following a similar line of thought, Aven (2015) identified three types of BSs:

(A) (true) UUs
(B) UUs only for the decision maker(s) prior to the occurrence of the BS, but not

to (some) others
(C) UKs (originally) estimated to have a negligible probability of occurrence

The notion (A) of true UUs was questioned in the previous section; the second
type (B) goes back to the above list of epistemological shortcomings. Group (C) is
discussed next.
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