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Foreword

With the exception of the tragedy on September 11, the year 2001 was

relatively normal and uneventful: remember, this should have been the year of the

Clarke’s  Kubrick’sand  Space Odyssey, mission to Juiter; it should have been the year

of the HAL-9000 computer.

Today, the Personal Computer is as ubiquitous and omnipresent as was HAL

on the Discovery spaceship. And the rate of technology development and market

growth in electronics industry still follows the famous ‘Moore Law’, almost four

decades after it has been first formulated: in 1965,  of Intel CorporationGordon Moore

predicted the doubling of the number of transistors on a chip every 2 years, corrected

to 18 months in 1967; at that time, the landing on the Moon was in full preparation.

Curiously enough, today noone cares to go to the Moon again, let alone

Jupiter. And, in spite of all the effort in digital engineering, we still do not have

anything close to 0.1% of the HAL capacity (fortunately?!). Whilst there are many

research labs striving to put artificial intelligence into a computer, there are also

rumors that this has already happened (with Windows-95, of course!).

In the early 1990s it was felt that digital electronics will eventually render

analog systems obsolete. This never happened. Not only is the analog sector vital as

ever, the job market demands are expanding in all fields, from high-speed

measurement instrumentation and data acquisition, telecommunications and radio

frequency engineering, high-quality audio and video, to grounding  and shielding,

electromagnetic interference suppression and low-noise printed circuit board design,

to name a few. And it looks like this demand will be going on for decades to come.

But whilst the proliferation of digital systems attracted a relatively high

number of hardware and software engineers, analog engineers are still rare birds. So,

for creative young people, who want to push the envelope, there are lots of

opportunities in the analog field.

However, analog electronics did not earn its “Black-Magic Art” attribute in

vain. If you have ever experienced the problems and frustrations from circuits found

in too many ‘cook-books’ and ‘sure-working schemes’ in electronics magazines, and

if you became tired of performing exorcism on every circuit you build, then it is

probably the time to try a different way: in our own experience, the ‘hard’ way of

doing the correct math first often turns out to be the ‘easy’ way!

Here is the book . The book is intended to serve both“Wideband Amplifiers”

as a design manual to more experienced engineers, as well as a good learning guide to

beginners. It should help you to improve your analog designs, making better and faster

amplifier circuits, especially if time-domain performance is of major concern. We

have strieved to provide the complete math for every design stage. And, to make

learning a joyful experience, we explain the derivation of important math relations

from a design engineer point of view, in an intuitive and self-evident manner (rigorous

mathematicians might not like our approach). We have included many practical

applications, schematics, performance plots, and a number of computer routines.

- XI -
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However, as it is with any interesting subject, the greatest problem was never

what to include, but rather what to leave out!

In the foreword of his popular book “A Brief History of Time”, Steven

Hawking wrote that his publisher warned him not to include any math, since the

number of readers would be halved by each formula. So he included the I œ 7-
#

and bravely cut out one half of the world population.

We went further: there are some 220 formulae in Part 1 only. By estimating

the current world population to some 6×10 , of which 0.01% could be electronics
9

engineers and assuming an average lifetime interest in the subject of, say, 30 years, if

the publisher’s rule holds, there ought to be one reader of our book once every:

 2 6 10 10 30 356 24 3600 3 10  seconds
220 9 4 51

Î ‚ ‚ ‚ ‚ ‚ ‚ ¸ ‚a b
�

or something like 6.6×10 the total age of the Universe!
33

‚

Now, whatever you might think of it, this book is  about math! It is aboutnot

getting your design to run right first time! Be warned, though, that it will be not

enough to just read the book. To have any value, a theory must be put into practice.

Although there is no theoretical substitute for hands-on experience, this book should

help you to significantly shorten the trial-and-error phase.

We hope that by studying this book thoroughly you will find yourself at the

beginning of a wonderful journey!

Peter Starič and Erik Margan,

Ljubljana, June 2003

Important Note:

We would like to reassure the Concerned Environmentalists

that during the writing of this book, no animal or plant had suffered

any harm whatsoever, either in direct or indirect form (excluding the

authors, one computer ‘mouse’ and countless computation ‘bugs’!).

- XII -
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Release Notes

The manuscript of this book appeared first in spring of 1988.

Since then, the text has been revised sveral times, with some minor errors

corrected and figures redrawn, in particular in Part 2, where inductive peaking

networks are analyzed. Several topics have been updated to reflect the latest

developments in the field, mainly in Part 5, dealing with modern high-speed circuits.

The Part 6, where a number of computer algorithms are developed, and Part 7,

containing several algorithm application examples, were also brought up to date.

This is a release version 3 of the book.

The book also commes in the Adobe Portable Document Format (PDF),

readable by the Adobe Acrobat™ Reader program (the latest version can be

downloaded free of charge from  ).http://www.adobe.com/products/Acrobat/

One of the advantages of the book, offered by the PDF format and the Reader

program, are numerous , which enable easy access tolinks (blue underlined text)

related topics by pointing the ‘mouse’ cursor on the link and clicking the left ‘mouse’

button. Returning to the original reading position is possible by clicking the right

‘mouse’ button and select “Go Back” from the pop-up menu (see the AR HELP

menu). There are also numerous  relating to thehighlights (green underlined text)

content within the same page.

The  relate to the contents in different PDFcross-file links (red underlined text)

files, which open by clicking the link in the same way.

The  and  links are in violet (dark magenta) and areInternet World-Wide-Web

accessed by opening the default browser installed on your computer.

The book was written and edited using ™, the Scientific Word Processor,ê

version 5.0, (made by Simon L. Smith, see  ).http://www.expswp.com/

The computer algorithms developed and described in Part 6 and 7 are intended

as tools for the amplifier design process. Written for Matlab™, the Language of

Technical Computing (The MathWorks, Inc., ), they havehttp://www.mathworks.com/

all been revised to conform with the newer versions of Matlab (version 5.3 ‘for

Students’), but still retaining downward compatibility (to version 1) as much as

possible. The files can be found on the CD in the ‘Matlab’ folder as ‘*.M’ files, along

with the information of how to install them and use within the Matlab program. We

have used Matlab to check all the calculations and draw most of the figures. Before

importing them into , the figures were finalized using the Adobe Illustrator,ê

version 8 (see ).http://www.adobe.com/products/Illustrator/

All circuit designs were checked using Micro-CAP ™, the Microcomputer

Circuit Analysis Program, v. 5 (Spectrum Software,  ).http://www.spectrum-soft.com/

Some of the circuits described in the book can be found on the CD in the ‘MicroCAP’

folder as ‘*.CIR’ files, which the readers with access to the MicroCAP program can

import and run the simmulations by themselves.
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Part 1

The Laplace Transform

There is nothing more practical than a good theory!

(William Thompson, Lord Kelvin)
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About Transforms

The Laplace transform can be used as a powerful method of solving

linear differential equations. By using a time domain integration to obtain

the frequency domain transfer function and a frequency domain integration

to obtain the time domain response, we are relieved of a few nuisances of

differential equations, such as defining boundary conditions, not to speak of

the difficulties of solving high order systems of equations.

Although Laplace had already used integrals of exponential functions

for this purpose at the beginning of the 19  century, the method we now
th

attribute to him was effectively developed some 100 years later in

Heaviside’s operational calculus.

The method is applicable to a variety of physical systems (and even

some non physical ones, too! ) involving trasport of energy, storage and

transform, but we are going to use it in a relatively narrow field of

calculating the time domain response of amplifier filter systems, starting

from a known frequency domain transfer function.

As for any tool, the transform tools, be they Fourier, Laplace,

Hilbert, etc., have their limitations. Since the parameters of electronic

systems can vary over the widest of ranges, it is important to be aware of

these limitations in order to use the transform tool correctly.
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1.0  Introduction

With the advent of television and radar during the Second World War, the behavior

of wideband amplifiers in the time domain has become very important [Ref. 1.1]. In today’s

digital world this is even more the case. It is a paradox that designers and troubleshooters of

digital equipment still depend on oscilloscopes, which — at least in their fast and low level

input part — consist of  wideband amplifiers. So the calculation of the time domainanalog

response of wideband amplifiers has become even more important than the frequency,

phase, and time delay response.

The emphasis of this book is on the amplifier’s time domain response. Therefore a

thorough knowledge of time related calculus, explained in Part 1, is a necessary

pre-requisite for understanding all other parts of this book where wideband amplifier

networks are discussed.

The time domain response of an amplifier can be calculated by two main methods:

The first one is based on  and the second uses the differential equations inverse Laplace

transform ( transform)_
�"

 . The differential equation method requires the calculation of

boundary conditions, which — in case of high order equations — means an unpleasant and

time consuming job. Another method, which also uses differential equations, is the so

called  calculation, in which a differential equation of order  is split into state variable 8 8

differential equations of the first order, in order to simplify the calculations. The state

variable method also allows the calculation of non linear differential equations. We will use

neither of these, for the simple reason that the Laplace transform and its inverse are based

on the system poles and zeros, which prove so useful for network calculations in the

frequency domain in the later parts of the book. So most of the data which are calculated

there is used further in the time domain analysis, thus saving a great deal of work. Also the

use of the  transform does not require the calculation of boundary conditions, giving the_
�"

result directly in the time domain.

In using the  transform most engineers depend on tables. Their method consists_
�"

firstly of splitting the amplifier transfer function into partial fractions and then looking for

the corresponding time domain functions in the  transform tables. The sum of all these_

functions (as derived from partial fractions) is then the result. The difficulty arises when no

corresponding function can be found in the tables, or even at an earlier stage, if the

mathematical knowledge available is insufficient to transform the partial fractions into such

a form as to correspond to the formulae in the tables.

In our opinion an amplifier designer should be self-sufficient in calculating the time

domain response of a wideband amplifier. Fortunately, this can be almost always derived

from simple rational functions and it is relatively easy to learn the  transforms for such_
�"

cases. In Part 1 we show how this is done generally, as well as for a few simple examples.

A great deal of effort has been spent on illustrating the less clear relationships by relevant

figures. Since engineers seek to obtain a first glance insight of their subject of study, we

believe this approach will be helpful.

This part consists of four main sections. In the first, the concept of harmonic (e.g.,

sinusoidal) functions, expressed by pairs of counter-rotating complex conjugate phasors, is

explained. Then the Fourier series of periodic waveforms are discussed to obtain the

discrete spectra of periodic waveforms. This is followed by the Fourier integral to obtain

continuous spectra of non-repetitive waveforms. The convergence problem of the Fourier
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integral is solved by introducing the complex frequency variable , thus coming= œ � 45 =

to direct Laplace transform (  transform)._

The second section shows some examples of the  transforms. The results are_

useful when we seek the inverse transforms of simple functions.

The third section deals with the theory of functions of complex variables, but only

to the extent that is needed for understanding the inverse Laplace transform. Here the line

and contour integrals (Cauchy integrals), the theory of residues, the Laurent series and the

_ _
�" �"

 transform of rational functions are discussed. The existence of the  transform for

rational functions is proved by means of the Cauchy integral.

Finally, the concluding section deals with some aspects of the  transforms and_
�"

the convolution integral. Only two standard problems of the  transform are shown,_
�"

because all the transient response calculations (by means of the contour integration and the

theory of residues) of amplifier networks, presented in Parts 2–5, give enough examples and

help to acquire the necessary know-how.

It is probably impossible to discuss Laplace transform in a manner which would

satisfy both engineers and mathematicians. Professor  said: “Ivan Vidav If we

mathematicians are satisfied, you engineers would not be, and vice versa”. Here we have

tried to achieve the best possible compromise: to satisfy electronics engineers and at the

same time not to ‘offend’ the mathematicians. But, as late colleague, the physicist Marko

Kogoj Engineers never know enough of mathematics; only mathematicians, used to say: “

know their science to the extent which is satisfactory for an engineer, but they hardly ever

know what to do with it! ” Thus successful engineers keep improving their general

knowledge of mathematics — far beyond the text presented here.

After studying this part the readers will have enough knowledge to understand all

the time domain calculations in the subsequent parts of the book. In addition, the readers

will acquire the basic knowledge needed to do the time-domain calculations by themselves

and so become independent of  transform tables. Of course, in order to save time, they_

will undoubtedly still use the tables occasionally, or even make tables of their own. But

they will be using them with much more understanding and self-confidence, in comparison

with those who can do  transform only via the partial fraction expansion and the tables_
�"

of basic functions.

Those readers who have already mastered the Laplace transform ,and its inverse

can skip this part up to Sec. 1.14, where the  transform of a two pole network is dealt_
�"

with. From there on we discuss the basic examples, which we use later in many parts of the

book; the content of Sec. 1.14 should be understood thoroughly. However, if the reader

notices any substantial gaps in his/her knowledge, it is better to start at the beginning.

In the last two parts of this book, Part 6 and 7, we derive a set of computer

algorithms which reduce the circuit’s time domain analysis, performance plotting and pole

layout optimization to a pure routine. However attractive this may seem, we nevertheless

recommend the study of Part 1: a good engineer must understand the tools he/she is using in

order to use them effectively.
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1.1  Three Different Ways of Expressing a Sinusoidal Function

We will first show how a sinusoidal function can be expressed in three different

ways. The most common way is to express the instantaneous value  of a sinusoid of+

amplitude  and angular frequency , ( frequency) by the well knownE œ # 0 0 œ= 1" " "

formula:

+ œ 0Ð>Ñ œ E >sin=" (1.1.1)

The reason that we have appended the index ‘ ’ to  will become apparent very" =

soon when we will discuss complex signals containing different frequency components.

The amplitude vs. time relation of this function is shown in Fig. 1.1.1a. This is the most

familiar display seen by using any sine-wave oscillator and an oscilloscope.
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Fig. 1.1.1:  a) b) Three different presentations of a sine wave:  amplitude in time domain;  a phasor

of length , rotating with angular frequency ;  two complex conjugate phasors of length ,E EÎ#=" c)

rotating in opposite directions with angular frequency , at ;  the same as c), except at= =" "> œ ! d)

= 1"> œ Î%.

In electrical engineering, another presentation of a sinusoidal function is often used,

coming from the vertical axis projection of a rotating phasor , as displayed in Fig. 1.1.1b,E

for which the same Eq. 1.1.1 is valid. Here both axes are real, but one of the axes may also

be imaginary. In this case the corresponding mathematical presentation is:

0Ð>Ñ œ E œ Es
e (1.1.2)
4 >=

"

where  is a complex quantity and e  is the basis of natural logarithms.E œ #Þ(") #)"ás

However, we can also obtain the real quantity  by expressing the sinusoidal function by+

two complex conjugate phasors of length  which rotate in opposite directions, asEÎ#
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displayed in a three-dimensional presentation in Fig. 1.1.1c. Here both phasors are shown at

= = 1 1> œ ! > œ # % á + (or , , ). The sum of both phasors has the instantaneous value ,

which is . This is ensured because both phasors rotate with the same angularalways real

frequency  and , starting as shown in Fig. 1.1.1c, and therefore they are always� �= =" "

complex conjugate at any instant. We express  by the well-known  formula:+ Euler

+ œ 0Ð>Ñ œ E > œ �

E

#4

sin="

4 > �4 >

  

e e (1.1.3)Š ‹= =
" "

The  in the denominator means that both phasors are imaginary at . The sum of both4 > œ !

rotating phasors is then zero, because:

0Ð!Ñ œ � œ !

E E

#4 #4    

e e (1.1.4)
4 ! �4 != =

" "

Both phasors in Fig. 1.1.1c and 1.1.1d are placed on the frequency axis at such a

distance from the origin as to correspond to the frequency . Since the phasors rotate„ ="

with time the Fig. 1.1.1d, which shows them at , helps us to acquire the idea: = 1œ > œ Î%
1

of a three-dimensional presentation. The understanding of these simple time-frequency

relations, presented in Fig. 1.1.1c and 1.1.1d and expressed by Eq. 1.1.3, is essential for

understanding both the Fourier transform and the Laplace transform.

Eq. 1.1.3 can be changed to the  function if the phasor with  is multipliedcosine �="

by e  and the phasor with  by e . The first multiplication means a4 œ � �4 œ
4 Î# �4 Î#

"

1 1

=

counter clockwise clockwise-  rotation by ° and the second a  rotation by °. This causes*! *!

both phasors to become real at time , their sum again equaling :> œ ! E

0Ð>Ñ œ � œ E >

E E

#4 #4    

e e (1.1.5)
4 > �4 >

"

= =
" "

cos=

In general a sinusoidal function with a non-zero phase angle  at  is expressed as:: > œ !

E Ð > � Ñ œ �

E

#4

sin = :

  

e e (1.1.6)’ “4Ð >� Ñ �4Ð >� Ñ= : = :

 The need to introduce the frequency axis in Fig. 1.1.1c and 1.1.1d will become

apparent in the experiment shown in Fig. 1.1.2. Here we have a unity gain amplifier with a

poor loop gain, driven by a sinewave source with frequency  and amplitude , and=" "E

loaded by the resistor . If the resistor’s value is too low and the amplitude of the inputV
L

signal is high the amplifier reaches its maximum output current level, and the output signal

0Ð>Ñ E becomes distorted (we have purposely kept the same notation  as in the previous

figure, rather than introducing the sign  for voltage). The distorted output signal containsZ

not just the original signal with the same fundamental frequency , but also a third="

harmonic component with the amplitude  and frequncy :E � E œ $$ " $ "= =

0Ð>Ñ œ E > � E $ > œ E > � E >" " $ " " " $ $sin sin sin sin= = = = (1.1.7)
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Fig. 1.1.2: The amplifier is slightly overdriven by a pure sinusoidal signal, , with a frequency Z
i

="

and amplitude . The output signal  is distorted, and it can be represented as a sum of twoE Z
i o

signals, . The fundamental frequency of  is  and its amplitude  is somewhat lower.Z � Z Z E" $ " " "=

The frequency of  (the third harmonic component) is  and its amplitude is .Z œ $ E$ $ " $= =

Now let us draw the output signal in the same way as we did in Fig. 1.1.1c,d. Here

we have two pairs of harmonic components: the first pair of phasors  rotating with theE Î#"

fundamental frequency , and the second pair  rotating with the third harmonic„ E Î#=" $

frequency , which are three times more distant from the origin than . This is shown„ = =$ "

in Fig. 1.1.3a, where all four phasors are drawn at time . Fig. 1.1.3b shows the phasors> œ !

at time . Because the third harmonic phasor pair rotates with an angular> œ Î%1 =

frequency three times higher, they rotate up to an angle  in the same time.„ $ Î%1
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Fig. 1.1.3: The output signal of the amplifier in Fig. 1.1.2, expressed by two pairs of complex

conjugate phasors:  at ;  at .a) b)= = 1" "> œ ! > œ Î%

Mathematically Eq. 1.1.7, according to Fig. 1.1.2 and 1.1.3, can be expressed as:

 œ E > � E >0Ð>Ñ " " $ $sin sin= =

 e e e e (1.1.8)

    

œ � � �

E E

#4 #4

" $4 > �4 > 4 > �4 >Š ‹ Š ‹= = = =
" " $ $
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The amplifier output obviously cannot exceed either its supply voltage or its

maximum output current. So if we keep increasing the input amplitude the amplifier will

clip the upper and lower peaks of the output waveform (some input protection, as well as

some internal signal source resistance must be assumed if we want the amplifier to survive

in these conditions), thus generating more harmonics. If the input amplitude is very high

and if the amplifier loop gain is high as well, the output voltage  would eventually0Ð>Ñ

approach a square wave shape, such as in Fig. 1.2.1b in the following section. A true

mathematical square wave has an infinite number of harmonics; since no amplifier has an

infinite bandwidth, the number of harmonics in the output voltage of any practical amplifier

will always be finite.

In the next section we are going to examine a generalized harmonic analysis.
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1.2  The Fourier Series

In the experiment shown in Fig. 1.1.2 we have  the sinusoidal waveformscomposed

with the amplitudes  and  to get the output time-function . Now, if we have aE E 0Ð>Ñ" $

square wave, as in Fig. 1.2.1b, we would have to deal with many more discrete frequency

components. We intend to calculate the amplitudes of them, assuming that the time

function of the square wave is known. This means a  of the time functiondecomposition

0Ð>Ñ into the corresponding harmonic frequency components. To do so we will examine the

Fourier Jean Baptiste Joseph de Fourier series, following the French mathematician .
1

The square wave time function is periodic. A function is periodic if it acquires the

same value after its characteristic period , at any instant :X œ # Î >" "1 =

0Ð>Ñ œ 0Ð> � X Ñ" (1.2.1)

Consequently the same is true for , where  is an integer. According to0Ð>Ñ œ 0Ð> � 8X Ñ 8"

Fourier this square wave can be expressed as a sum of harmonic components with

frequencies . If  we have the fundamental frequency  with a phasor0 œ „ 8ÎX 8 œ " 08 " "

E Î# 0 E Î# œ E Î#" �" " �", rotating counter-clockwise. The phasor  with the same length 

rotates clockwise and forms a complex conjugate pair with the first one. A true square wave

would have an infinite number of odd-order harmonics (all even order harmonics are zero).
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Fig. 1.2.1: b)A square wave, as shown in , has an infinite number of odd-order frequency

components, of which the first 4 complex-conjugate phasor pairs are drawn in  at timea)

> œ Ð! „ #8 ÑÎ 81 =", where  is an integer representing the number of the period.

1
It is interesting that Fourier developed this method in connection with thermal engineering. As a general in

the Napoleon's army he was concerned with gun deformation by heat. He supposed that one side of a straight

metal bar is heated and then bent, joining the ends, to form a thorus. Then he calculated the temperature

distribution along the circle so formed, in such a way that it would be the sum of sinusoidal functions, each

having a different amplitude and a different angular frequency.
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 In Fig. 1.2.1, we have drawn the complex-conjugate phasor pairs of the first 4

harmonics. Because all the phasor pairs are always complex-conjugate, the sum of any pair,

as well as their total sum, is always real. The phasors rotate with different speeds and in

opposite directions. Fig. 1.2.2a shows them at time  to help the reader’s imagination.X Î)"

Although this figure looks confusing, the phasors shown have an exact inter-relationship.

Looking at the positive  axis, the phasor with the amplitude  has rotated in the= E Î#"

counter-clockwise direction by an angle of . During the same interval of  the1Î% X Î)"

remaining phasors have rotated:  by ;  by ;  by ; etc. TheE Î# $ Î% E Î# & Î% E Î# ( Î%$ & (1 1 1

corresponding complex conjugate phasors on the negative  axis rotate likewise, but in the=

opposite (clockwise) direction. The sum of all phasors at any instant  is the instantaneous>

amplitude of the time domain function. In general, the time function with the fundamental

frequency  is expressed as:="

 e

  

œ0Ð>Ñ

E

#

"
_

8œ�_

8 48 >=
"

   e e e

      

œ â � �â� �

E E E

# # #

�8 �# �"�48 > �4 # > �4 >= = =
" " "

 e e e (1.2.2)

      

�E � � �â� �â

E E E

# # #
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" # 84 > 4 # > 4 8 >= = =
" " "

ω

t

ℜ 

= =

ℑ 

A
1

2

ω
1

ω3
1

ω5
1

ω7
1

ω
1

ω3
1

ω5
1

ω7
1

4π

b)a)

t

T
1

1

1

ω
1 =

2 π

T
1

0

ϕ

ω
1

ϕ

ϕ

ϕ ω
1 /

f t( ) =

1,

1,

0 < t

t

<

T<
1

<−

T
1

2

T
1

2

−

−

−

−

−

−

Fig. 1.2.2: a)As in Fig. 1.2.1, but at an instant ;  the spectrum,> œ Ð Î% „ #8 ÑÎ1 1 ="

expressed by complex conjugate phasor pairs, corresponds to the instant  in .> œ Î: =" b)

Note that for the square wave all the even frequency components are missing. For

other types of waveforms the even coefficients can be non-zero. In general  may also beE
i

complex, thus containing some non-zero initial phase angle . In Eq. 1.2.2 we have also:
i

introduced , the DC component, which did not exist in our special case. The meaning ofE!

E! can be understood by examining Fig. 1.2.3a, where the so-called sawtooth waveform is

shown, with no DC component. In Fig. 1.2.3b, the waveform has a DC component of

magnitude .E!
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Eq. 1.2.2 represents the  of the function , while Fig. 1.2.1complex spectrum 0Ð>Ñ

represents the corresponding most significant part of the complex spectrum of a square

wave. The next step is the calculation of the magnitudes of the rotating phasors.

a) b)

( )

= 0
0

f t ( )f t

A

0
A

t t

Fig. 1.2.3: a) b) A waveform without a DC component;  with a DC component .E!

If we want to measure safely and accurately the diameter of a wheel of a working

machine, we must first stop the machine. Something similar can be done with our Eq. 1.2.2,

except that here we can mathematically stop the rotation of any single phasor. Suppose we

have a phasor , rotating counter-clockwise with frequency k  with an initialE Î# œ
k k

= ="

phase angle  (at ), which is expressed as::
k

> œ !

    

e e  e (1.2.3)

E E

# #

œ
k k4Ð >� Ñ 4 > 4= : = :

k k k k

Now we multiply this expression by a unit amplitude, clockwise rotating phasor e
�4=

k

(having the same angular frequency ) to cancel the e  term, [Ref. 1.2]:=
k

4=
k

    

e  e  e e (1.2.4)

E E

# #

œ
k k4 4 > �4 > 4: = = :

k k k k

and obtain a non-rotating component which has the magnitude  and phase angle  E Î#
k k

: at

any time. With this in mind let us attack the whole time function . The duration of the0Ð>Ñ

multiplication must last exactly one whole period and the corresponding expression is:

  

  

  e (1.2.5)

E "

# X

œ 0Ð>Ñ .>
k (

XÎ#

�XÎ#

�4 >=
k

Since we have integrated over the whole period  in order to get the average value of thatX

harmonic component, the result of the integration must be divided by , as in Eq. 1.2.5. IfX

there is a DC component (with ) in the spectrum, the calculation of it is simply:= œ !

E œ 0Ð>Ñ .>

"

X
!

XÎ#

�XÎ#

  

  (1.2.6)(

To return to Eq. 1.2.5, let us explain the meaning of the integration Eq. 1.2.5 by

means of Fig. 1.2.4.
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By multiplying the function  by e  we have stopped the rotating phasor0Ð>Ñ
�4 >=

k

E Î#
k

, while during the time interval of integration all the other phasors have rotated

through an angle of  (where  is an integer),  the DC phasor , because it is8 # 8 E1 including !

now multiplied by e . The result of the integration for all these rotating phasors is zero,
�4 >=

k

as indicated in Fig. 1.2.4a, while the phasor  has stopped, integrating eventually to itsE Î#
k

full amplitude; the integration for this phasor only is shown in Fig. 1.2.4b.

The understanding of the effect described of the multiplication e  is0Ð>Ñ
�4 >=

essential to understanding the basic principles of the Fourier series, the Fourier

integral and the Laplace transform.
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over a full period of a non-rotating phasor , gives its amplitude, , the symbolX .E Î# E Î# Ð
k k

. .>ÎX .>p > > œ Î%Ñ stands for  — in this figures  such that . Note that a stationaryJ J = 1
k

phasor retains its initial angle .:
k

For us the Fourier series represents only a transitional station on the journey towards

the Laplace transform. So we will drive through it with a moderate speed “via the Main

Street”, without investigating some interesting things in the side streets. Nevertheless, it is

useful to make a practical example. Since we have started with a square wave, shown in

Fig. 1.2.5, let us calculate its complex spectrum components , assuming that theE Î#8

square wave amplitude is .E œ "
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 Fig. 1.2.5: Fig. 1.2.6:A square wave signal.  The frequency spectrum of a square wave,

 expressed by  values (magnitudes) only.real

For a  the corresponding mathematical expression for this function is:single period

       

for   

for      

0Ð>Ñ œ

�" �XÎ# � > � !

�" ! � > � XÎ#
œ
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According to Eq. 1.2.5 we calculate:

 e e

  

  

œ Ð�"Ñ .> � Ð�"Ñ .>

E "

# X

8

!

�XÎ#

�4 # 8 >ÎX �4 # 8 >ÎX

XÎ#

!

Ô ×
Ö Ù
Õ Ø

( (1 1

 e e

      

œ �

" X X

X 4 # 8 �4 # 8
� �º º

1 1

�4 # 8 >ÎX �4 # 8 >ÎX

! XÎ#

�XÎ# !

1 1

 e e

    

 e e  

œ " � � � " œ � "

" �" �

4 # 8 4 8 #1 1

Š ‹ Œ �4 8 �4 8

4 8 �4 8

1 1

1 1

 (1.2.7)

  

œ 8� "

�"

4 81

1ˆ ‰cos

The result is zero for  (the DC component ) and for any even . For any8 œ ! E 8!

odd  the value of , and for such cases the result is:8 8 œ �"cos1

    

  

(1.2.8)

E # �#4

# 4 8 8

œ œ
8

1 1

The factor  in the numerator means that for any positive  (and for , , ,�4 8 > œ ! # %1 1

' á 81, ) the phasor is negative and imaginary, whilst for negative  it is positive and

imaginary. This is evident from Fig. 1.2.1a.

Let us calculate the first eight phasors by using Eq. 1.2.8. The lengths of phasors in

Fig. 1.2.1a and 1.2.2.b correspond to the values reported in Table 1.2.1. All the phasors

form complex conjugate pairs and their total sum .always gives a real value

Table 1.2.1: The first few harmonics of a square wave

„ 8 ! " $ & ( * "" "$

… E Î# ! #4Î #4Î$ #4Î& #4Î( #4Î* #4Î"" #4Î"$8 1 1 1 1 1 1 1        

However, a spectrum can also be shown with real values only, e.g., as it appears on

the cathode ray tube screen of a spectrum analyzer. To obtain this, we simply sum the

corresponding complex conjugate phasor pairs (e.g., ) and placelE Î#l � lE Î#l œ E8 �8 8

them on the abscissa of a two-dimensional coordinate system, as shown in Fig. 1.2.6. Such

a non-rotating spectrum has only the positive frequency axis. Although such a presentation

of spectra is very useful in the analysis of signals containing several (or many) frequency

components, we will continue calculating with the complex spectra, because the phase

information is also important. And, of course, the Laplace transform, which is our main

goal, is based on a complex variable.

Now let us recompose the waveform using only the harmonic frequency

components from Table 1.2.1, as shown in Fig. 1.2.7a. The waveform resembles the square

wave but it has an exaggerated overshoot 18 % of the nominal amplitude.$ ¶

The reason for the overshoot  is that we have abruptly cut off the higher harmonic$

components from a certain frequency upwards. Would this overshoot be lower if we take
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more harmonics? In Fig. 1.2.7b we have increased the number of harmonic components

three times, but the overshoot remained the same. No matter how many, yet for any finite

number of harmonic components, used to recompose the waveform, the overshoot would

stay the same (only its duration becomes shorter if the number of harmonic components is

increased, as is evident from Fig. 1.2.7a and 1.2.7b ).

This is the ’ phenomenon. It tells us that we should not cut off the frequencyGibbs

response of an amplifier abruptly if we do not wish to add an undesirably high overshoot to

the amplified pulse. Fortunately, real amplifiers can not have an infinitely steep high

frequency roll off, so a gradual decay of high frequency response is always ensured.

However, as we will explain in Part 2 and 4, the overshoot may increase as a result of other

effects.
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Fig. 1.2.7: a) The Gibbs’ phenomenon;  A signal composed of the first seven harmonics of a

square wave spectrum from Table 1.2.1. The overshoot is 18 % of the nominal amplitude;$ ¶

b) Even if we take three times more harmonics the overshoot  is nearly equal in both cases.$

In a similar way to that for the square wave, any periodic signal of finite

amplitude and with a finite number of discontinuities within one period, can be

decomposed into its frequency components. As an example the waveform in Fig. 1.2.8

could also be decomposed, but we will not do it here. Instead in the following section we

will analyze another waveform which will allow us to generalize the method of frequency

analysis.
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Fig. 1.2.8: An example of a periodic waveform (a typical flyback switching power supply), having

a finite number of discontinuities within one period. Its frequency spectrum can also be calculated

using the Fourier transform, if needed (e.g., to analyze the possibility of electromagnetic

interference at various frequencies), in the same way as we did for the square wave.
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1.3  The Fourier Integral

Suppose we have a function  composed of square waves with the duration  and0Ð>Ñ 7

repeating with a period , as shown in Fig. 1.3.1. For this function we can also calculate theX

Fourier series (the corresponding spectrum is shown in Fig. 1.3.2) in the same way as for

the continuous square wave case in the previous section.

f t

T

t

τ

1

0

1

( )

−

The difference between the continuous square wave spectrum and the spaced square

wave in Fig. 1.3.1 is that the integral of this function can be broken into two parts, one

comprising the length of the pulse, , and the zero-valued part between two pulses of a7

length . The reader can do this integration for himself, because it is fairly simple. WeX � 7

will only write the result:

    

(1.3.1)

E 8 Ð Î%Ñ

# 8 Ð Î%Ñ

œ �4
8 "

#

"

7

= 7

= 7

sin c d

where , assuming that the pulse amplitude is  (if the amplitude were  it= 1" œ # ÎX " E

would simply multiply the right hand side of the equation). For the conditions in Fig. 1.3.1,

where  and , the spectrum has the form shown in Fig. 1.3.2, with .X œ & E œ " œ # Î7 = 1 7
7
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Fig. 1.3.2: Complex spectrum of the waveform in Fig. 1.3.1.

Fig. 1.3.1: A square wave with duration 7 7 and period X œ & .
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A very interesting question is that of what would happen to the spectrum if we let

the period ? In general a function  can be recomposed by adding all its harmonicX p_ 0Ð>Ñ

components:

0Ð>Ñ œ

E

#

"
_

8œ�_

8 48 >
  

 e (1.3.2)
=
"

where  may also be complex, thus containing the initial phase angle . Again, as in theE8 :
i

previous section, each discrete harmonic component can be calculated with the integral:

  

  

  e (1.3.3)

E "

# X

œ 0Ð>Ñ .>
8

XÎ#

�XÎ#

�4 8 >( =
"

For the case in Fig. 1.3.1 the integration should start at  and the integral has the form:> œ !

  

  

 e (1.3.4)

E "

# X

œ 0Ð>Ñ .>
8

X

!

�48 >( =
"

Insert this into Eq. 1.3.2:

0Ð>Ñ œ 0Ð Ñ .

"

X

"
Ô ×
Õ Ø

(
_

8œ�_

X

!

�48 4 8 >

  

 e e (1.3.5)7 7
= 7 =
" "

Here we have introduced a dummy variable  in the integral, in order to distinguish it from7

the variable  outside the brackets. Now we express the integral inside the brackets as:>

 e e (1.3.6)( ( Š ‹
! !

X X

�48 �4 # 8 ÎX

"0Ð Ñ . œ 0Ð Ñ . œ J œ J 8

#8

X

7 7 7 7 =

1
= 7 1 7
"

Ð Ñ

Thus:

 e  e

    

  

œ JÐ8 Ñ œ JÐ8 Ñ0Ð>Ñ

" " #

X # X

" "
_ _

8œ�_ 8œ�_

" "

4 8 > 4 >
= =

1

1
= =
" "

 e (1.3.7)

  

œ JÐ8 Ñ

"

#1

= ="
_

8œ�_

" "

4 >=
"

where . If we let  then  becomes infinitesimal, and we call it . Also# ÎX œ X p_ .1 = = =" "

8= =" becomes a continuous variable . So in Eq. 1.3.7 the following changes take place:

      " (
_

8œ�_

_

�_

" "Ê Ê . 8 Ê= = = =

With all these changes Eq. 1.3.7 is transformed into Eq. 1.3.8:

0Ð>Ñ œ JÐ Ñ .

"

#  

   e (1.3.8)

1

= =(
_

�_

4 >=
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Consequently Eq. 1.3.6 also changes, obtaining the form:

JÐ Ñ œ 0Ð>Ñ .>= (
_

!

�4 >
e (1.3.9)

=

In Eq. 1.3.9  has no discrete frequency components but it forms a JÐ Ñ= continuous

spectrum. Since  the DC part vanishes (as it would for  pulse shape, not justX p_ any

symmetrical shapes), according to Eq. 1.2.6:

E œ 0Ð>Ñ .> œ !

"

X
!

Xp_

X

!

lim

  

(1.3.10)(

Eq. 1.3.8 and 1.3.9 are called . Under certain (usually ratherFourier integrals

limited) conditions, which we will discuss later, it is possible to use them for the

calculation of transient phenomena. The second integral ( Eq. 1.3.9 ) is called the direct

Fourier transform, which we express in a shorter way:

Y =˜ ™0Ð>Ñ œ JÐ Ñ (1.3.11)

 The first integral (Eq. 1.3.8) represents the  and it isinverse Fourier transform

usually written as:

Y =
�"˜ ™JÐ Ñ œ 0Ð>Ñ (1.3.12)

In Eq. 1.3.9,  means a  spectrum and the factor e  means the rotation ofJÐ Ñ= firm
4 >=

each of the corresponding infinite spectrum components contained in  with its angularJÐ Ñ=

frequency , which is a continuous variable. In Eq. 1.3.8  means the complete time= 0Ð>Ñ

function, containing an infinite number of  phasors and the factor e  means therotating
�4 >=

rotation ‘in the opposite direction’ to stop the rotation of the corresponding rotating phasor

e  contained in , at its particular frequency .
4 >=

0Ð>Ñ =

Let us now select a suitable time function  and calculate its continuous0Ð>Ñ

spectrum. Since we have already calculated the spectrum of a periodic square wave, it

would be interesting to display the spectrum of a single square wave as shown in

Fig. 1.3.3b. We use Eq. 1.3.9:

   e  e e (1.3.13)JÐ Ñ œ 0Ð>Ñ .> œ Ð�"Ñ .> � Ð�"Ñ .>= ( ( (
_ !

� Î# � Î#

�4 > �4 > �4 >

Î#

!7 7

= = =

7

Here we have a single square wave with a ‘period’  from  to .X > œ � Î# �_7

However, we need to integrate only from  to , because  is zero> œ � Î# > œ Î# 0Ð>Ñ7 7

outside this interval. It is important to note that at the discontinuity where , we have> œ !

started the second integral. For a function with more discontinuities, between each of them

we must write a separate integral. Thus it is obvious that the function  must have a0Ð>Ñ

finite number of discontinuities for it to be possible to calculate its spectrum.
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The result of the above integration is:

 e e

   

 e e  

œ �" � � � " œ " �JÐ Ñ

" # �

�4 4 #

=

= =

Š ‹ � �4 Î# � 4 Î#

4 Î# � 4 Î#

= 7 = 7

= 7 = 7

 

         

œ " � œ # œ

�# 4 �# 4 �% 4

# % %= = =

= 7 = 7 = 7Š ‹ Š ‹cos sin sin
# #

 (1.3.14)

  

  

  
œ �4

%

%

7

= 7

= 7

sin
#

A three-dimensional display of a spectrum, corresponding to this result, is shown in

Fig. 1.3.3a. Here the frequency scale has been altered with respect to Fig. 1.2.1a in order to

display the spectrum better.
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Fig. 1.3.3: a) The frequency spectrum of a single square wave is expressed by complex

conjugate phasors. Since the phasors are infinitely many, they merge in a continuous planar

form. Also the spectrum extends to . The corresponding waveform is shown in .= œ „_ b)

Note that all the even frequency components  are missing (  is an integer).# 8Î 81 7

By comparing Fig. 1.2.1a and 1.3.3a we may draw the following conclusions:

1. Both spectra contain no even frequency components, e.g., at , ,„ # „ %= =
7 7

etc., where ;= 1 7
7
œ # Î

2. In both spectra there is no DC component ;E!

3. By comparing Fig. 1.3.2 and 1.3.3 we note that the envelope of both spectra can

be expressed by Eq. 1.3.14;

4. By comparing Eq. 1.3.1 and 1.3.14 we note that the discrete frequency  from8="

the first equation is replaced by the continuous variable  in the second equation.=

Everything else has remained the same.
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In the above example we have decomposed an aperiodic waveform (also called a

transient), expressed as , into a   spectrum . Before0Ð>Ñ J Ð Ñcontinuous complex =

discussing the functions which are suitable for the application of the Fourier integral let us

see some common periodic and non-periodic signals. A sustained tone from a trumpet we

consider to be a periodic signal, whilst a beat on a drum is a non-periodic signal (in a strict

mathematical sense, both signals are non-periodic, because the first one also started out of

silence). The transition from silence to sound we call the . In accordance with thistransient

definition, of the waveforms in Fig. 1.3.4 only a) and b) show a periodic waveform, whilst

c) and d) display transients.

a)

b)

c)

d)

( )f t ( )f t

( )f t( )f t

t t

t t

Tk

The question arises of whether it is possible to calculate the spectra of the transients

in Fig. 1.3.4c and 1.3.4d by means of the Fourier integral using Eq. 1.3.8?

The answer is , because the integral in Eq. 1.3.8 does not converge for any ofno

these two functions. The integral is also non-convergent for the most simple step signal,

which we intend to use extensively for the calculation of the step response of amplifier

networks.

This inconvenience can be avoided if we multiply the function  by a suitable0Ð>Ñ

convergence factor, e.g., e , where  and its magnitude is selected so that the integral
�->

- � !

in Eq. 1.3.2 remais finite when . In this way, the problem is solved for . In doing> p_ >   !

so, however, the integral becomes divergent for , because for negative time the factor> � !

e  has a positive exponent, causing a rapid increase to infinity. But this, too, can be
�->

avoided, if we assume that the function  is zero for . In electrical engineering and0Ð>Ñ > � !

electronics we can always assume that a circuit is dead until we switch the power on or we

apply a step voltage signal to its input and thus generate a transient. The transform where

0Ð>Ñ > � ! must be zero for  is called a .unilateral transform

For functions which are suitable for the unilateral Fourier transform the following

relation must hold [Ref. 1.3]:

lim
Xp

X

!

�->

_

 e   (1.3.15)( l0Ð>Ñl .> � _

where  is a single-valued function of  and  is positive and real.0Ð>Ñ > -

Fig. 1.3.4: a) and b) periodic functions, c) and d) aperiodic functions.


