

George Dimitrakopoulos

Current Technologies in Vehicular Communication

Current Technologies in Vehicular Communications

George Dimitrakopoulos • George Bravos

Current Technologies in Vehicular Communications

Springer

George Dimitrakopoulos
Department of Informatics and Telematics
Harokopio University of Athens
Athens, Greece

ISBN 978-3-319-47243-0
DOI 10.1007/978-3-319-47244-7

ISBN 978-3-319-47244-7 (eBook)

Library of Congress Control Number: 2016953610

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book covers all aspects relevant to vehicular communication technologies in one place. It classifies all relevant standards, protocols, and applications, so as to enable the reader to gain a holistic approach towards the extremely intriguing subject of vehicular communications.

The book's purpose is to become the unique place where a reader can turn to study everything that is related to vehicle to vehicle (V2V) as well as vehicle to infrastructure (V2I) technologies, classified appropriately and in a unique manner, so as to facilitate understanding.

Particular interest is placed on state-of-the-art research and development results in the field as well as research areas envisaged to attract immense research effort.

The book's main methods lie in algorithmic processes and simulation results as well as in trying to simplify all relevant technologies through a careful classification.

The book is structured as follows.

Chapter 1 provides the motivation for getting involved in the vehicular communications field, through presenting transport drawbacks and challenges.

Chapter 2 contains an extensive overview of the commonly used (and researched) standards and protocols related to V2V and V2I communications.

Chapter 3 provides a description of the context in which V2V and V2I communications operate, namely smart cities, as well as explains why smart cities are in need of novel sustainable vehicular communications. Indicative case studies give an overview of related applications in the field.

Chapter 4 focuses on Advanced Driver Assistance Systems (ADAS), presenting their main focus areas as well as including a number of case studies for exemplifying the operation of ADAS solutions.

Chapter 5 focuses on the management functionality that is researched, in the context of ADAS, focusing on the related algorithms commonly utilized.

Last, Chapter 6 gives an overview of the earlier as well as the latest trends in the field of automated and autonomous driving, providing also an outlook on the future, with some interesting perspectives for future research.

Athens, Greece

George Dimitrakopoulos

Contents

1	Introduction: The History of Vehicular Communications	1
1.1	Goals	1
1.2	Motivation: Transportation and Its Drawbacks	1
1.3	Overview of Latest Advances in Transportation Research	2
1.3.1	Transport Mode Rail	2
1.3.2	Transport Mode Road	3
1.3.3	Transport Mode Air	5
1.3.4	Transport Mode Waterway/Sea	6
1.3.5	Intermodal Transport	7
1.4	Road Transport: Utilization of ICT in Vehicles: Intelligent Transport Systems (ITS)	9
1.5	Conclusions	11
1.6	Review Questions	11
2	Vehicular Communications Standards	13
2.1	Goals	13
2.2	Introduction	13
2.3	Wireless Access for Vehicular Environments (WAVE) and Its Migration Towards IEEE 802.11p	14
2.3.1	Safety-Oriented	15
2.3.2	Traffic Control-Oriented	16
2.3.3	User Comfort-Oriented	16
2.4	IEEE 1609	17
2.5	SAE J2735	18
2.6	LED-Enabled Visible Light Communications (IEEE TG 802.15.7)	19
2.7	Bluetooth	21
2.8	2G and 3G Mobile Communication Infrastructures	23
2.9	4G/5G-D2D	24
2.9.1	Concept Overview	24
2.9.2	Information Sources	26

2.9.3	Example Data to Be Aggregated	27
2.9.4	Processing and Outcomes	27
2.9.5	Benefits of Framework.....	28
2.9.6	Operational Scenarios	29
2.10	ETSI and CEN Standards for V2X Communications	32
2.11	Conclusions	33
2.12	Review Questions.....	33
3	Sustainable Mobility in Smart Cities: Traffic Assessment, Forecasting, and Management.	35
3.1	Goals	35
3.2	Urban Transportation Inefficiencies.....	35
3.3	Smart Cities and Smart City Operations (SCOs).....	36
3.3.1	Basic Definitions	36
3.3.2	SCOs Challenges	37
3.4	Sustainable Mobility: Mobility as a Service (MaaS).....	41
3.5	Case Studies.....	42
3.5.1	Traffic Assessment, Forecasting, and Management Applications (TAFM).....	42
3.5.2	Road Luminosity Management Applications	43
3.5.3	Car Pooling (Ride-Sharing)	44
3.5.4	Intelligent Parking Management	59
3.6	Conclusions	60
3.7	Review Questions.....	61
4	Advanced Driver Assistance Systems (ADAS)	63
4.1	Goals	63
4.2	Introduction	63
4.3	Cooperative Mobility and Cooperative Driving.....	64
4.4	Green (eco) Driving	65
4.5	Connectivity in Road Transport	66
4.6	Information Sharing for Sustainable Multimodal Transport	67
4.7	Case Studies.....	68
4.7.1	Proactive Global Alerting Systems	68
4.7.2	Reconfigurable Driving Styles.....	83
4.7.3	Video-Based DAS	86
4.7.4	Radar-Based DAS	86
4.7.5	Head-up Display-Based DAS	87
4.7.6	Driver Fatigue Detection Systems	89
4.7.7	Obstacle Recognition	92
4.7.8	Distraction Detection	92
4.7.9	Lane Keeping and Lane Departing	94
4.7.10	Proactive Emergency Braking	94
4.7.11	Remote Vehicle Monitoring.....	95
4.8	Conclusions	96
4.9	Review Questions.....	96

5	ICT-Enabled, Knowledge-Based (Cognitive) Management Algorithms for ADAS	97
5.1	Goals	97
5.2	Introduction	97
5.3	The Current Wireless Landscape: Towards Cognitive Systems	98
5.4	Wireless Sensor Networks (WSNs)	100
5.5	Cognitive Management Systems	101
5.5.1	General Characteristics	101
5.5.2	Contextual Acquisition	102
5.5.3	Profiles Derivation	103
5.5.4	Policies Extraction	103
5.5.5	Output	103
5.5.6	Cognitive Features	103
5.6	Management Functionality Approaches for ADAS	104
5.6.1	High-Level Approach	104
5.6.2	Requirements	105
5.6.3	Indicative Architecture and Description of Components	106
5.6.4	Vehicle Sensors and WSNs	106
5.6.5	Vehicle Cognitive Management Functionality (V-CMF)	107
5.6.6	Infrastructure Cognitive Management Functionality (I-CMF)	108
5.6.7	Indicative Information Flow	109
5.7	Conclusions	110
5.8	Review Questions	110
6	The Future: Towards Autonomous Driving	113
6.1	Goal of Chapter	113
6.2	Highly Automated Driving	113
6.3	Autonomous Driving	114
6.3.1	Introduction	114
6.3.2	Advantages	115
6.3.3	Disadvantages and Obstacles	116
6.3.4	Legislation and Political Decisions	117
6.3.5	The Way to the Future	118
6.4	Conclusions	119
6.5	Review Questions	120

List of Figures

Fig. 1.1	Rail transport.....	3
Fig. 1.2	Road transport.....	4
Fig. 1.3	Air transport.....	5
Fig. 1.4	Waterway/sea transport.....	7
Fig. 1.5	Intermodal transport.....	8
Fig. 1.6	General ITS vision (ETSI, 2008).....	10
Fig. 2.7	IEEE 1609	17
Fig. 2.8	VLC as a standard for V2X communications.....	20
Fig. 2.9	Exploitation of 4G/5G mobile communication infrastructures in V2V and V2I	25
Fig. 2.10	Exploitation of mobile communication infrastructures in detail....	26
Fig. 2.11	Scenario 1—collision avoidance and eco-braking.....	30
Fig. 3.12	Fundamental SCO. http://www.ibm.com/smarterplanet/ us/en/smarter_cities/overview/ , accessed February 26th, 2015	38
Fig. 3.13	i-CAP context of operation	44
Fig. 3.14	(a) Context information, (b) personal profile parameters, (c) service parameters	45
Fig. 3.15	i-CAP functionality description	46
Fig. 3.16	Scenario 1—(a) parameters and respective weights, (b) uniform distribution of parameter values collected through the evaluation procedure, for the 3 drivers	51
Fig. 3.17	Scenario 1, first driver—(a) conditional probabilities for parameter “safety,” (b) conditional probabilities for parameter “cost,” (c) conditional probabilities for parameter “driving skills”	53
Fig. 3.18	Scenario 1—(a) probability density function values for the 3 drivers ($f(\bar{x}, i)$), (b) OF values of the 3 drivers.....	54

Fig. 3.19	Scenario 2— (a) parameters and respective weights, (b) parameter values collected through the evaluation procedure, for the 3 drivers	55
Fig. 3.20	Scenario 2, third driver— (a) conditional probabilities for parameter “safety,” (b) conditional probabilities for parameter “cost,” (c) conditional probabilities for parameter “driving skills”	56
Fig. 3.21	Scenario 2— (a) probability density function values for the 3 drivers ($f(\bar{x}, i)$), (b) OF values of the 3 drivers.....	57
Fig. 3.22	Scenario 3—parameter values collected through the evaluation procedure for the 3 drivers, split in three phases, namely 1st, 2nd, and 3rd	58
Fig. 3.23	Scenario 3— (a) conditional probabilities of parameter “driving skills” of the second driver in the 3 phases (the driving skills of the 2nd driver are assumed to improve in the 2nd and 3rd phases), (b) OF values of the 3 drivers in the 3 phases.....	59
Fig. 3.24	Intelligent parking management	60
Fig. 4.25	Functional block-diagram	70
Fig. 4.26	Membership function plot diagram.....	74
Fig. 4.27	Calculation of maximum angular deviation.....	77
Fig. 4.28	Calculation of maximum angular deviation monitoring the front-side areas of the subject vehicle	78
Fig. 4.29	Calculation of congestion ahead warning (1st stage)	80
Fig. 4.30	Calculation of congestion ahead warning (2nd stage)	81
Fig. 4.31	Reconfigurable driving styles—high-level description.....	84
Fig. 4.32	Highway toll control cameras (Source: www.nol.hu).....	87
Fig. 4.33	Radar-based measurement solution (Source: http://www.roadtraffic-technology.com , AGD Systems)	88
Fig. 4.34	Head-up display-based DAS. https://e27.co/korean-in-car-navigation-startup-launches-augmented-reality-driving-system-20141230/	90
Fig. 5.35	Operation of a cognitive system.....	100
Fig. 5.36	Information transfer in a WSN	101
Fig. 5.37	Cognitive management functionality	102
Fig. 5.38	High-level view of functionality	105
Fig. 5.39	Architecture of proposed functionality for ADAS.....	106
Fig. 5.40	Functionality components and indicative information flow.....	109

Chapter 1

Introduction: The History of Vehicular Communications

1.1 Goals

- To make the reader familiar at a high level with the concept of transport and the requirements and trends of urban mobility.
- To distinguish between the various transport modes in terms of their requirements and potentials.
- To explain the latest trends in the various transport modes in terms of the utilization of Information and Communication Technologies (ICT).
- To introduce the reader to the book and its logic behind.

1.2 Motivation: Transportation and Its Drawbacks

Economic growth has been strongly associated with urbanization, overwhelming cities with vehicles since transportation generally and infrastructure in particular are large segments of the economy. By 2030, it is expected that around 60 % of the global population will live in urban areas¹ charting the growing contribution of cities both to the world economy and to carbon emissions. Cities are also key drivers of global energy demand and greenhouse gas emissions, accounting for around 70 % of both, according to the International Energy Agency (IEA).

This incurs a series of negative outcomes, such as:

1. Environmental/natural resource degradation (smog, polluted waterways, increased energy consumption, and CO₂ emissions).

¹ Bertaud, A. and Richardson, A.W (2004), Transit and density: Atlanta, the United States and Western Europe, Figure 17.2 on p.6, available at http://courses.washington.edu/gmforum/Readings/Bertaud_Transit_US_Europe.pdf

2. Socioeconomic (enormous losses of time in congestions, accidents, and degradation in life quality/deaths).
3. Technical consequences (safety compromises, accidents).²

These facts reveal inefficiencies related to urban transport, as identified by research communities of both public agencies and private industry.³

1.3 Overview of Latest Advances in Transportation Research

In response to the aforementioned challenges, this section provides a holistic view upon transportation, describing the latest advances associated with its various means, namely rail, road, air, sea, and multimodal transport.

1.3.1 *Transport Mode Rail*

The trends in rail vehicle development focus on lightweighting and increased use of advanced polymer composite materials and lightweight alloys. This is because rail vehicles have got heavier over the past 30 years as passengers expect a better travel experience and vehicles incorporate more ancillary equipment to enhance passenger comfort (internet access, power points, air-conditioning, noise and temperature insulation, etc.). Increased safety is also an issue of development work which, apart from the bodyshell crashworthiness integrity, also concerns new designs to mitigate terrorist action (survivability after an on board explosion) and new materials to counter fire spread. In addition, development work is undertaken on safe interiors to minimize passenger injury in case of a collision.

Advanced driver aids are also an area of development which concerns both development of automated systems to override the driver if an impending collision is likely, as well as measures to counter driver fatigue, as well as detect and enhance driver attention span (Fig. 1.1).

Other developments include the implementation of sensor technologies and electronic engine and suspension management systems (e.g., the development of mechatronic bogies, induction brakes, and energy recovery systems). Such systems aid reliability, vehicle control, vehicle efficiency, and safety and will require maintenance procedures and staff knowledge well above the current state.

² Erika Fille Legara, Christopher Monterola, Kee Khoon Lee, Gih Guang Hung, “Critical capacity, travel time delays and travel time distribution of rapid mass transit systems”, *Physica A: Statistical Mechanics and its Applications*, Volume 406, 15 July 2014, pp. 100–106.

³ V. Corcoba Magaña, Muñoz-Orgaero, M., “Discovering Regions Where Users Drive Inefficiently on Regular Journeys”, *IEEE Transactions on Intelligent Transportation Systems*, vol.16, iss.1, 2015, pps. 221–234.