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Preface

The first volume of Successful Drug Discovery has been well received and the
International Union of Pure and Applied Chemistry (IUPAC) supported its con-
tinuation.
The main goal of this book series is to help experts of drug research and devel-

opment both in academia and industry with case histories desribed by their key
inventors or recognised experts whose contributions can also serve as teaching
examples.
This year marks the tenth anniversary of the approval of vorinostat, the first

marketed histone deacetylase inhibitor (HDAC). This event inaugurated a stream
of HDAC inhibitor approvals and confirmed the validity of this drug target and of
epigenetic modulation as a viable therapeutic mechanism. To celebrate this im-
portant milestone the volume presents a number of HDAC inhibitor drug discov-
ery stories.
The editors of the second volume focused on the following six parts:

I. HDAC Inhibitor Anticancer Drug Discovery
Part Editor: A. Ganesan (University of East Anglia, Norwich, UK)
1. Vorinostat

Ronald Breslow (ColumbiaUniversity, USA) describes the discovery of
vorinostat, which is a pioneer HDAC inibitor whose discovery started
from dimethylsulfoxide as a lead molecule.

2. Romidepsin
A. Ganesan (University of East Anglia, UK) gives an overview of
the discovery of romidepsin, a depsipeptide natural product. High-
throughput screening led to an anticancer drug that proved to be a
potent inhibitor of class I HDACs.

3. Belinostat
PaulW. Finn and coworkers (University of Buckingham,UK) report on
belinostat, which is a potent pan-inhibitor of class I and II HDACs. It
was approved in 2014 for the treatment of peripheral T-cell lymphoma.

4. Panobinostat
Peter Atadja and coworker (Novartis Institute for Biomedical Re-
search, US & China) present the story of how a functional high-



XIV Preface

throughput screen looking for inducers of cyclin-dependent kinase
2 (CDK2) inhibitor p21 provided hits that were identified as HDAC
inhibitors, ultimately resulting in the discovery of panobinostat.

5. Chidamide
Xian-Ping Lu and coworkers (ShenzenChipscreen Biosciences,China)
describe the discovery and development of chidamide which is a novel
benzamide type inhibitor of class I HDACs and class IIb HDAC10.

II. Steroidal CYP17 Inhibitor Anticancer Drug Discovery
Part Editor: Juan-Miguel Jimenez (Vertex Pharmaceuticals, UK)
6. Abiraterone acetate

Gabriel Martinez Botella and coworkers (SAGE Therapeutics, USA)
have written a chapter on the discovery of abiraterone acetate, which
is a key therapeutic in the treatment of metastatic castrate-resistant
prostate cancer.

III. Anti-infective Drug Discoveries
Part Editor: John Proudfoot (Boehringer Ingelheim, Ridgefield, USA)
7. Delamanid

Hidetsugu Tsubouchi and coworkers (Otsuka, Japan) summarise the
discovery of delamanid, which is a new drug for the treatment of
multidrug-resistant pulmonary tuberculosis.

8. Sofosbuvir
Michael J. Sofia (Arbutus Biopharma, USA) describes the discovery of
sofosbuvir, which has become the backbone agent of combination cura-
tive therapy for hepatitis C virus infection.

IV. Central Nervous System (CNS) Drug Discovery
Part Editor: Helmut Buschmann (Aachen, Germany)
9. Vortioxetine

Benny Bang-Andersen and coworkers (Lundbeck, Denmark and USA)
give an overview of the discovery of vortioxetine, a newmultimodal an-
tidepressant drug with serotonin modulator and stimulator activity.

V. Antiulcer Drug Discovery
Part Editor: Jörg Senn-Bilfiger (Konstanz, Germany)
10. Vonoprazan fumarate

Haruyuki Nishida (Takeda, Japan) describes the discovery of vono-
prazan fumarate, which is a novel, potent and long-lasting potassium-
competitive acid blocker showing several advantages over proton pump
inhibitors.

VI. Cross-Therapeutic Drug Discovery (Respiratory Diseases/Anticancer)
Part Editor: Stefan Laufer (University of Tübingen, Germany)
11. Nintedanib

Gerald J. Roth and coworkers (Boehringer Ingelheim, Biberach, Ger-
many) summarise the discovery and development of nintedanib, which
represents a pioneer discovery of a cross-therapeutic research for the
treatment of solid tumours and idiopathic pulmonary fibrosis.
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Chapter 1
From DMSO to the Anticancer Compound SAHA, an Unusual
Intellectual Pathway for Drug Design
Ronald Breslow

1.1
Introduction

This is an account of aspects of a collaboration between Ronald Breslow (origin-
ally Professor of Chemistry at Columbia University, also a member of the Bio-
logical Sciences Department, now University Professor at Columbia) and Paul
Marks (originally Professor ofHumanGenetics andMedicine, Dean of the Faculty
ofMedicine, thenVice President forHealth Sciences andDirector of theCompre-
hensive Cancer Center at Columbia University, then President and Chief Execut-
ive Officer at Memorial Sloan Kettering Cancer Center, now President Emeritus
and Member of the Sloan Kettering Institute) in the invention and development
of suberoylanilide hydroxamic acid (SAHA), an effective anticancer agent that has
been in human use for years after approval in the United States, Canada andmore
recently Japan. The Breslow group designed new potential molecules and carried
out their syntheses in the Columbia University chemistry department, and sub-
mitted them to Paul Marks and Richard Rifkind at the Columbia Cancer Center,
and later at the Sloan Kettering Institute for Cancer Research, for biological eval-
uation. PaulMarks instituted the collaboration, based on some work by Charlotte
Friend of Mount Sinai School of Medicine.
This is the way most modern pharmaceuticals are created in pharmaceutical

companies or in academic medicinal departments. Biologists may be aware of a
promising area for drug development, medicinal chemists then design and create
candidate molecules and send them to the biologists, who then evaluate them.
With promising results, the chemists continue to create new, perhaps better, can-
didates while the biologists extend testing to animals and then to humans. Suc-
cessful medicines are then approved for human use.
Normally the chemists are aware of compounds that have some promise, based

on binding studies, and they can design around those structures. In the case of
SAHA, the initial lead, dimethylsulfoxide (DMSO) 1, was very far from a potential
medicine so the design was based on a series of hypotheses. Even so, the eventual
structure of SAHA proved to be ideal as a binder to the biological target, although
this is not how it was discovered. Thus the editors of this volume have invited

Successful Drug Discovery, 1. Edition. Edited by János Fischer and Wayne E. Childers.
©2017WILEY-VCHVerlagGmbH&Co.KGaA.Published2017byWILEY-VCHVerlagGmbH&Co.KGaA.
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me to describe the unusual intellectual history that led to its structure. I am a
physical organic chemist who had designed and created new molecules for novel
properties, such as unusual conjugative stability or instability, or effective catalytic
enzyme mimics, but not medicinal properties. However, I have a Master’s degree
inMedical Science fromHarvardUniversity in addition tomy Ph.D. in Chemistry,
and I had been a consultantwith pharmaceutical companies formany years. There
I proposed both new synthetic approaches to their target compounds and also
possible alternative medicinal targets themselves.
A few years ago, Paul Marks and I wrote a short review describing the work

of both our labs in the development of SAHA [1], but the present chapter will
concentrate only on the chemical approach that led to drug development. Thus it
does not describe in detail the brilliant biological work done by Paul Marks and
Richard Rifkind. The references are only those in which PaulMarks and I are both
authors, and it will not cover the many papers and a book produced by theMarks
lab alone and several papers from only our lab that related the SAHA story to our
other work.

1.2
The Discovery of SAHA (vorinostat)

Stem cells have two functions. They multiply to form additional stem cells, and
they differentiate to adult tissue cells with specialised functions. In 1966 Paul
Marks approached me with the information that Charlotte Friend had seen
something remarkable [2, 3].When a suspension of murine erythroleukemia cells
(MELC) was treated with dimethylsulfoxide (DMSO) (1) at 280mmolar approx-
imately 60% of the cells underwent cytodifferentiation to normal erythrocytes.
This was the first example in which such a process occurred, and it suggested
a new approach to cancer treatment generally. Of course such a required con-
centration was totally impractical for a medicine, so it was important to find
more potent analogs of DMSO. Marks and I agreed to collaborate and build a
research programme based on this finding. The Breslow lab with my students
and postdocs would conceive and create new compounds that would be tested
by Marks and his associates for cytodifferentiation of erythroleukemia cells, as
DMSO had done, but with more practical doses.Marks would also further evalu-
ate promising leads with biological testing. This led to the discovery of SAHA. In
time Marks and Breslow and Richard Rifkind formed a company, ATON Pharma
Inc. It received the patent rights from Columbia University and Sloan Kettering
and funded the Phase I human trials for SAHA.
Many small molecule linear and cyclic amides were examined. N-Methylacet-

amide (2) was fivefold more effective than DMSO, but still not effective enough
to be a practical drug [4]. Thus the chemists decided to create linked dimers
of acetamide, to take advantage of the well-known chelate effect that leads to
stronger binding, and thus should require lower doses for anticancer effective-
ness. Double binders have entropy advantages over single ligands if both ends
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Figure 1.1 1 N-methylacetamide, 2 dimethylsulfoxide (DMSO), 3 hexamethylene bis-
acetamide, 4 suberoyl-bis-N-methylamide.

contribute to the binding. This involved the hope that there were more binding
sites than a single one for the initial compounds, and thus linking them together
could be useful. The first compound, hexamethylene bis-acetamide (HMBA,
linked at the nitrogen atoms) (3), was indeed one order of magnitude (tenfold)
more potent than simple acetamide, and changing the linking groups from three
methylenes up to nine made it clear that a six methylene chain – the first one
we tried – was the optimum [5–7]. This preference will eventually be seen and
understood when we describe SAHA. We also prepared a dimer of acetamide
linked at the methyl groups, suberoyl-bis-N-methylamide (4), and it also showed
tenfold stronger binding than simple acetamide [8]. Various dimers including di-
mers of DMSO were also examined [8, 9]. HMBA had extensive biological study,
and indeed some human trials were performed with HMBA [10–13]. There were
some useful responses in cancer patients, but the doses required were too high
to be well tolerated in human patients. When even trimers and tetramers of acet-
amide were not more effective [14, 15], we concluded that simple amides were
not bound strongly enough.
We were already thinking that the target could be an enzyme, perhaps a

metalloenzyme, to explain the strong preference for particular lengths of our
compounds. Since DMSO and the amides had polar groups that could be metal
ligands, we decided to go to even better metal ion binders. We synthesised a
bis-amide like 4 but with hydroxyl groups instead of methyl groups, creating
compound 5 that we called suberoyl-bis-hydroxamic acid, SBHA [14]. Hydrox-
amic acids were known to be strong binders to metal ions. Compound 5 was
more effective than was HMBA, compound 3, suggesting that indeed there was
a metal ion in the biological target. Again the six-methylene chain length was
optimal. However, the chance that a receptor protein would have two metal ions
that distance apart seemed unlikely, so we decided to replace the hydroxyl of one
hydroxamic group with a hydrophobic phenyl group to see if it could make an
even better binder. This would bind to a metal ion with its hydroxamic group
while binding to a hydrophobic region of a protein with the phenyl group. This
was speculation, but it turned out to be correct.
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Figure 1.2 5 suberyol-bis-hydroxamic acid (SBHA), 6 suberyolanilide hydroxamic acid (SAHA).
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We created SAHA, suberoylanilide hydroxamic acid 6 [14]. It inhibited his-
tone deacetylases was approximately sixfold more potent than was SBHA in the
MELC assay and also in various other tests [15–17]. Again we varied the chain
length, and the six-methylene linkerwas optimal.We and others have replaced the
phenyl groupwithmany other larger hydrophobic units, whichmade compounds
much more strongly bound, but in animal studies the more strongly bound ana-
logs showed increased toxicity. This represents a fundamental problemnot always
recognised by medicinal chemists.
A binding constant is a ratio of two rate constants, the second-order rate con-

stant for binding over the first-order rate constant for dissociation. It is often dif-
ficult to increase the rate of binding, which is limited by the collision rate. Strong
binding instead often reflects slower dissociation, the first-order process, as the
attractive interactions must be broken. Thus strong binders are often bound to
biological receptors for a longer time. Putting it another way, for effectiveness a
drug must normally be 50% or so bound to the receptor, and with strong binders
a smaller dose is needed for 50% binding. If the strong binding reflects slower dis-
sociation, the drug will be present on the biological targets for a long time. In the
case of SAHA, physicians have found that unpleasant or dangerous side effects
are minimised in human patients if the drug is present for only 8 h or so before
excretion, so SAHA is administered once a day. With tenfold slower dissociation
the drug would be present for 80 h, and side effects could be serious. With any
SAHA analog significantly more strongly bound – and we looked at several with
subnanomolar dissociation constants – adverse toxic side effects appeared in an-
imal tests that could not be overcome by cutting back the dose.
SAHA proved to be an effective drug against a variety of cancers, as PaulMarks

and our other collaborators established. In some cases the cancer cells differenti-
ated into normal cells, as had happened with DMSO in the Charlotte Friend ex-
periments. Examples included human colon (HT-29) and adult leukemia (HL-60)
cells. The National Cancer Institute (NCI) then examined SAHA in sixty differ-
ent human cancer cell types and saw stasis (lack of growth) with all, and about
equal occurrences of either cytodifferention to normal cells or apoptosis (pro-
grammed cell death, not simple toxicity). SAHA also caused cytodifferention of
MCF-7 breast adenocarcinoma cells into normal functioning breast milk cells.
Very many cancers have been examined with SAHA.
The scientific question is, of course, how does SAHA cause these effects? A

strong clue came from the work of Yoshida with two other cytodifferentiating
agents, trichostatin A and trapoxin B. He showed that they induced cytodiffer-
entiation by inhibiting the enzyme histone deacetylase (HDAC) [18]. The struc-
ture of trichostatin A 7 is similar to that of SAHA, although it is a less attractive
drug. We saw that SAHA was also an inhibitor of HDAC and that the potency
of various SAHA derivatives as HDAC inhibitors ran parallel to their biological
anticancer effectiveness. We created a derivative 8 of SAHA with an azido group
on the phenyl para position and tritium labeling in the phenyl, and irradiated it
with HDAC in solution. The azido group lost nitrogen to form a reactive nitrene
that then attached it to HDAC, so it was clear that HDAC was the binding tar-
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get [19]. Finally, X-ray crystal structures were obtained in the lab of Pavletich that
showed the detailed structure of the complex of SAHA and of trichostatin A with
HDAC [20]. SAHA bound into HDAC by inserting into a pore with the phenyl
group bound to a surface hydrophobic face of the protein while the hydroxamic
acid group bound to a Zn2+ metal ion that was part of the HDAC protein. The
six methylenes were the perfect length to reach between these two binding sites.
We also synthesised a compound called pyroxamide 9 in which a pyridine ring
replaced the phenyl ring of SAHA, and it had similar properties to SAHA [21].
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Figure 1.3

The enzyme histone deacetylase binds an acetylated lysine from the protein
histone at the zinc of HDAC, which catalyzes the hydrolysis of the acetyl group –
hence histone deacetylase. The structure of SAHA bound to HDAC almost per-
fectly matches the structure of an acetylated lysine group of histone bound into
the pore of the protein, with the six-methylene chain mimicking the side chain
of an acetylated lysine. Although SAHA was not invented this way, it is ideal as a
mimic of the transition state for zinc-catalyzed hydrolysis of an acetylated lysine
group from histone. Other work not detailed here shows that particular lysines,
when acetylated, can induce differentiation of stem cells or cancer cells, so block-
ing the deacetylation as SAHA does upregulate (increase) the acetylation level
of the histone [22, 23]. Other studies suggest how apoptosis is also triggered by
SAHA.

1.3
Clinical Trials

Phase I trials of SAHA in human cancer patients showed that it was well toler-
ated and that it had useful clinical results. At this point more extensive trials were
needed, and several companies were interested in buying ATON for SAHA and
its patents and data. Merck and Co bought ATON in 2004, and performed tri-
als that were successful, so Merck obtained approval for the human use of SAHA
against disease, first in theUnited States in 2006, then in Canada in 2009 andmore


