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Preface

With the growing integration of machine learning techniques into robotics research,
there is a need to address this trend in the context of robot intelligence. The mul-
tidisciplinary nature of robot intelligence provides a realistic platform for robotics
researchers to apply machine learning techniques. One of the principal purposes
of this book is to promote idea exchanges and interactions between different com-
munities, which are beneficial and bringing fruitful solutions. Especially when the
tasks robots are programmed to achieve become more and more complex, impre-
cise perception of the environments renders a difficult deliberative control strategy
applied for robots for so many years. Understanding the environment where robots
operate and then controlling robots gradually rely on machine learning techniques.
It is more likely to better off with embedding control problems into the environment
perception.

The major challenges for programming autonomous robots stem mainly from
firstly the dynamic environment in which it is unable to predict when events will oc-
cur and the robots have to perceive their environment repeatedly, secondly uncertain
sensory information that is inaccurate, noisy, or faulty, thirdly imperfect actuators
that cannot guarantee perfect execution of actions due to mechanical, electrical,
and servo problems, and finally limited time that constrains time intervals needed
for sensor information processing, actuator control, and goal-oriented planning. As
such, the robots cannot rely on their actions to predict motion results. Heavy com-
putation would make the robots move and respond slowly to changes in the envi-
ronment.

For autonomous mobile robots, early programming approaches followed a se-
quence: sensing the environment, planning trajectories, and controlling motors to
move. With this kind of control strategies, the robot needs to “think” hard, consum-
ing large amounts of time to model the environment and reason about what to do.
In addition, modelling and reasoning methods vary with robot tasks and have not
reached a widely accepted level of development. Furthermore, this type of control
strategies is very fragile, as it can fail to deal with unpredictable events in dynamic
environments even if the robot can model and reason precisely. Meanwhile, it is im-
possible to predict all the potential situations robots may encounter and to specify
all the robot behaviors optimally in advance when programming them to achieve
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vi Preface

complicated tasks in complex environments. Thus, robots have to learn from and
adapt to their operating environments.

This volume aims to reflect the latest progresses made on central robotics issues,
including robot navigation, human security and surveillance, human-robot interac-
tion, flocking robots, multiple robot cooperation and coordination. The collected
chapters not only represent the state-of-the-art research in robot development and
investigation, but also demonstrate the application of a wide range of machine learn-
ing techniques that vary from artificial neural networks, evolutionary algorithms,
fuzzy logic, reinforcement learning, k-means clustering, to multi-agent reinforcing
learning. The book can be used as a valuable reference for robotics researchers, en-
gineers, and practitioners for advanced knowledge, and university undergraduates
and postgraduates who would like to specialize in robotics research and develop-
ment.

Thirteen chapters are carefully selected from the extensive body of recent re-
search work, which tackles the challenging issues of robotics development and
applications with machine learning techniques. The selection is featured with the
breadth of machine learning tools and emphasizes practical robot applications.

Skoglund et al. present a novel approach to robot skill acquisition from human
demonstration. Usually the morphology of a robot manipulator is very different
from that of the human arm. In this case, a human motion cannot be simply copied.
The proposed approach uses a motion planner that operates in an object-related
world-frame called hand-state to simplify a skill reconstruction and preserve the es-
sential parts of the skill. In this way, the robot is able to generalize the learned skills
to other similar skills without triggering a new learning process.

Palm et al. focus on the robot grasp recognition, which is a major part of the
approach for Programming-by-Demonstration. Their work describes three different
methods for grasp recognition for a human hand. The finger joint angle trajectories
of human grasps are modeled by fuzzy modeling. Three methods for grasp recogni-
tion are compared with each other.

Cheng et al. investigate the multiple manipulators which need to achieve the
same joint configuration to fulfill certain coordination tasks. Under the multi-agent
framework, a robust adaptive control approach is proposed to deal with this con-
sensus problem. Uncertainties and external disturbances in the robot’s dynamics are
considered, which is more practical in real-world applications. Due to the approxi-
mation ability of neural networks, the uncertain dynamics are compensated by the
adaptive neural network scheme.

Ji et al. propose an exemplar-based view-invariant human action recognition
framework to recognize the human actions from any arbitrary viewpoint image se-
quence. The proposed framework is evaluated in a public dataset and the results
show that it not only reduces computational complexity, but it is also able to accu-
rately recognize human actions using single cameras.

Khoury and Liu introduce the concept of fuzzy Gaussian inference as a novel
way to build fuzzy membership functions that map underlying human motions to
hidden probability distributions. This method is now combined with a genetic pro-
gramming fuzzy rule based system in order to classify boxing moves from natural
human motion capture data.



Preface vii

Zhou et al. consider the detection of hazards within the ground plane immediately
in front of a moving pedestrian. Using epipolar constraints between two views, de-
tected features are matched to compute the camera motion and reconstruct the 3-D
geometry. For a less feature based scene a new disparity velocity based obstacle
detection scheme is presented.

Tian and Tang explore the feasibility of using monocular vision for robot navi-
gation. The path depth is learned by using the images captured in a single camera.
Their work concentrates on finding passable regions from a single still color image
and making the robot vision less sensitive to illumination changes.

Liu et al. propose a new model to characterize camera distortion in the process of
the camera calibration. This model attempts to blindly characterize the overall cam-
era distortion without taking the specific radial, decentering, or thin prism distortion
into account. To estimate the parameters of interest, the well-known Levernburg-
Marquardt algorithm is applied. To initialize the Levernburg-Marquardt algorithm,
the results from the classical Tsai algorithm are estimated. After both the camera
intrinsic and distortion parameters have been estimated, the distorted image points
are corrected using again the Levernburg-Marquardt algorithm.

Wang and Gu present an approach to design a flocking algorithm by using fuzzy
logic. The design of three basic behaviors in a flocking algorithm is discussed. They
are alignment behavior, separation behavior, and cohesion behavior. Navigation
control component is used in the design of cohesion behavior. To avoid becoming
crowding or collision, an adaptive navigation gain is used. This gain changes with
the number of neighbors. The flocking stability is analyzed and stability conditions
are acquired from the stability analysis.

Oyekan et al. develop a behavior based control architecture for UAV surveillance
mission. This architecture contains two layers: atomic action layer and behavior
layer. They have also developed six atomic actions and ten behaviors for these lay-
ers. Various techniques have been used in the development, including adaptive PID
controller, fuzzy logic controller, SURF algorithm, and Kalman filter.

Guo et al. present a novel anti-disturbance control strategy named hierarchical
composite anti-disturbance control for a class of non-linear robotic systems with
multiple disturbances. The strategy is established which includes a disturbance ob-
server based controller and an H∞ controller, stability analysis for two case studies
are provided.

Ballantyne et al. present some of the key considerations for human guided nav-
igation in the context of dynamic and complex indoor environments. Solutions and
issues related to gesture recognition, multi-cue integration, tracking, target pursuing,
scene association and navigation planning are discussed.

Kubota and Nishida discuss the adaptation of perceptual modules of a partner
robot based on classification and prediction through actual interactions with a hu-
man. They proposed a prediction-based perceptual system consisting of the input
layer, clustering layer, prediction layer, and perceptual module selection layer. They
apply the proposed method to the actual interaction between a human and a human-
like partner robot.

We would like to express our sincere thanks to all the authors who have con-
tributed to the book and support during the book preparation. Without their support,
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it is impossible to see the advent of this book. Thanks also go to Natasha Harding
from Springer UK who kindly and effectively communicated between the publisher
and our editors of this book. We feel especially grateful to our publisher, Springer,
who kindly supports the research direction of robot intelligence and the publica-
tion of the book. Finally, it would be our pleasure that this book would be valuable,
for in-depth understanding of robot intelligence from the advanced knowledge pro-
cessing point of view, to a wide range of audience from multi-disciplinary research
communities and industrial practitioners.

Portsmouth, UK Honghai Liu
Colchester, UK Dongbing Gu
Brighton, UK Robert J. Howlett
Aberystwyth, UK Yonghuai Liu
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Chapter 1
Programming-by-Demonstration of Robot
Motions

Alexander Skoglund, Boyko Iliev,
and Rainer Palm

Abstract In this chapter a novel approach to skill acquisition from human demon-
stration is presented. Usually the morphology of a robot manipulator is very dif-
ferent from the human arm and cannot simply copy a human motion. Instead the
robot has to execute its own version of the skill demonstrated by the operator. Once
a skill has been acquired by the robot it must also be able to generalize to other
similar skills without starting a new learning process. By using a motion planner
that operates in an object-related world-frame called hand-state, we show that this
representation simplifies a skill reconstruction and preserves the essential parts of
the skill.

1.1 Introduction

This article presents a method for imitation learning based on fuzzy modeling and
a next-state-planner in a Programming-by-Demonstration (PbD) framework. For a
recent comprehensive overview of PbD, (also called Learning from Demonstration)
see [1]. PbD refers to a variety of methods where the robot learns how to perform a
task by observing a human teacher, which greatly simplifies the programming pro-
cess [2–5]. One major scientific challenge in PbD is how to make the robot capable
of imitating a human demonstration. Although the idea of copying human motion
trajectories using a simple teaching-playback method seems straightforward, it is
not realistic for several reasons. Firstly, there is a significant difference in morphol-
ogy between the human and the robot, known as the correspondence problem in im-
itation [6]. The difference in the location of the human demonstrator and the robot
might force the robot into unreachable parts of the workspace or singular arm con-
figurations even if the demonstration is perfectly feasible from human viewpoint.
Secondly, in grasping tasks the reproduction of human hand motions is not possible

A. Skoglund (�), B. Iliev, and R. Palm
Department of Technology, Orebro University, 70182 Orebro, Sweden
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DOI 10.1007/978-1-84996-329-9_1, © Springer-Verlag London Limited 2010

1

mailto:alexander.skoglund@aass.oru.se
mailto:boyko.iliev@aass.oru.se
mailto:rub.palm@t-online.de
http://dx.doi.org/10.1007/978-1-84996-329-9_1


2 A. Skoglund et al.

since even the most advanced robot hands cannot match neither the functionality
of the human hand nor its sensing capabilities. However, robot hands capable of
autonomous grasping can be used in PbD provided that the robot can generate an
appropriate reaching motion towards the target object, as we will demonstrate in this
article.

In this article, we present an approach to learning of reaching motions where
the robot uses human demonstrations in order to collect essential knowledge about
the task. This knowledge, i.e., grasp-related object properties, hand-object relational
trajectories, and coordination of reach and grasp motions is encoded and generalized
in terms of hand-state space trajectories. The hand-state components are defined
such that they are perception-invariant and define the correspondence between the
human and robot hand. The hand-state representation of the task is then embedded
into a next-state-planner (NSP) which enables the robot to perform reaching motions
from an arbitrary robot configuration to the target object. The resulting reaching
motion ensures that the robot hand will approach the object in such way that the
probability for a successful grasp is maximized.

An NSP plans one step ahead from its current state. This contrasts to traditional
robotic approaches which plan the entire trajectory in advance. One of the first re-
searchers to use a NSP approach in imitation learning were Ijspeert et al. [7], where
they encode the trajectory in an autonomous dynamical system with internal dy-
namic variables that shapes a “landscape” used for both point attractors and limit cy-
cle attractors. For controlling a humanoid’s reaching motion, Hersch and Billad [8]
considered a combined controller with two controllers running in parallel; one con-
troller acts in joint space, while the other one acts in Cartesian space. To generate
reaching motions and avoiding obstacles simultaneously Iossifidis and Schöner [9]
used attractor dynamics, where the target object acts as a point attractor on the end
effector. The end-effector as well as a redundant elbow joint avoids an obstacle as
the arm reaches for an object.

In our approach, a human demonstration guides the robot to grasp an object.
Our use of an NSP differs from previous work [7–9] in the way it combines the
demonstrated path with the robot’s own plan. The use of hand-state trajectories dis-
tinguishes our work from most previous work on imitation. According to [7], most
approaches in the literature use the joint space for motion planning while some other
approaches use the Cartesian space.

To illustrate the approach we describe three scenarios where human demonstra-
tions of goal-directed reach-to-grasp motions are reproduced by a robot. Specifi-
cally, the generation of reaching and grasping motions in pick-and-place tasks is
addressed. In the experiments we test how well the skills perform the demonstrated
task and how well they generalize over the workspace. The contributions of the work
are as follows:

1. We introduce a novel next-state-planner based on a fuzzy modeling approach to
encode human and robot trajectories.

2. We apply the hand-state concept [10] to encode motions in hand-state trajectories
and apply this in PbD.
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3. The combination of the NSP and the hand-state approach provides a tool to ad-
dress the correspondence problem resulting from the different morphology of the
human and the robot. The experiments show how the robot can generalize and
use the demonstration despite the fundamental difference in morphology.

1.2 Learning from Human Demonstration

In PbD the idea is that the robot programmer (here called demonstrator) shows the
robot what to do and from this demonstration an executable robot program is cre-
ated. In our case, the demonstrator shows the task by performing it in a way that
seems to be feasible for the robot. This means that we assume the demonstrator to
be aware of the particular restrictions of the robot. In this work we consider only
the body language of the demonstrator, i.e., the approach is entirely based on pro-
prioceptive information. Interpretation of human demonstrations is done under two
assumptions: the type of tasks and grasps that can be demonstrated are a priori
known by the robot; we consider only demonstrations of power grasps (e.g., cylin-
drical and spherical grasps) which can be mapped to–and executed by–the robotic
hand.

1.2.1 Interpretation of Demonstrations in Hand-State Space

To create the associations between human and robot reaching/grasping we employ
the hand-state hypothesis from the Mirror Neuron System (MNS) model of [10].
The aim is to mimic the functionality of the MNS to enable a robot to interpret hu-
man goal-directed motions in the same way as its own motions. Following the ideas
behind the MNS-model, both human and robot motions are represented in hand-state
space. A hand-state trajectory encodes a goal-directed motion of the hand during
reaching and grasping. Thus, the hand-state space is common for the demonstra-
tor and the robot and preserves the necessary execution information. Hence, a par-
ticular demonstration can be converted into executable robot code and experience
from multiple demonstrations is used to control/improve the execution of new skills.
Thus, when the robot tries to imitate an observed reach and grasp motion, it has to
move its own hand so that it follows a hand-state trajectory similar to the demon-
strated one. If such a motion is successfully executed by the robot, a new robot skill
is acquired. Seen from a robot perspective, human demonstrations are interpreted as
follows.

If hand motions with respect to a potential target object are associated with a
particular grasp type Gi , it is assumed that there must be a target object that matches
the observed grasp type. In other words, the object has certain grasp-related features,
also called affordances [10], which makes this particular grasp type appropriate.
The position of the object can be retrieved by a vision system, or it can be estimated
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from the grasp type and the hand pose, given some other motion capturing device.
For each grasp type Gi , a subset of suitable object affordances is identified a priori
and learned from a set of training data. In this way, the robot is able to associate
observed grasp types Gi with their respective affordances Ai .

According to [10], the hand-state must contain components describing both the
hand configuration and its spatial relation with respect to the affordances of the
target object. Thus, the hand-state is defined in the form:

H = {h1, h2, . . . , hk−1, hk, . . . , hp

}
(1.1)

where h1 . . . hk−1 are hand-specific components which describe the motion of the
fingers during grasping. The remaining components hk . . . hp describe the motion
of the hand in relation to the object. Thus, a hand-state trajectory contains a record
of both the reaching and the grasping motions as well as their synchronization in
time and space.

The hand-state representation equation (1.1) is invariant with respect to the ac-
tual location and orientation of the target object. Thus, demonstrations of object-
reaching motions at different locations and initial conditions can be represented in a
common domain. This is both the strength and weakness of the hand-state approach.
Since the hand-state space has its origin in the goal object, a displacement of the
object will not affect the hand-state trajectory. However, when an object is firmly
grasped then the hand-state is fixed and will not capture a change in the object posi-
tion relative to the base coordinate system. This implies that for object handling and
manipulation the use of hand-state trajectories is limited.

1.2.2 Skill Encoding Using Fuzzy Modeling

Once the hand-state trajectory of the demonstrator is determined, it has to be mod-
eled for several reasons. In [11] Ijspeert enumerates five important desirable prop-
erties for encoding movements have been identified. These are:

1. The representation and learning of a goal trajectory should be simple.
2. The representation should be compact (preferably parameterized).
3. The representation should be reusable for similar settings without a new time

consuming learning process.
4. For recognition purpose, it should be easy to categorize the movement.
5. The representation should be able to act in a dynamic environment and be robust

to perturbations.

Several methods for encoding human motions include Splines [12]; Hidden
Markov Models (HMM) [13]; HMM combined with Non-Uniform Rational B-
Splines [14]; Gaussian Mixture Models [2]; dynamical systems with a set of Gaus-
sian kernel functions [11]. We developed a method based on fuzzy logic which deals
with the above properties in a sufficient manner [15].
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Let us examine the properties of fuzzy modeling with respect to the above enu-
merated desired properties. Fuzzy modeling is simple to use for trajectory learning
and is a compact representation in form of a set of weights, gains and offsets (i.e.,
they fulfill property 1 and 2) [16]. To change a learned trajectory into a new one for a
similar task with preserved characteristics of a motion, we proposed modification to
the fuzzy time modeling algorithm [17], thus addressing property 3. Furthermore,
the method satisfies property 4, as it was successfully used for grasp recognition
by [15].

The algorithm for fuzzy time modeling of motion trajectories is briefly described
as follows. Takagi and Sugeno proposed a structure for fuzzy modeling of input-
output data of dynamical systems [18]. Let X be the input data set and Y be the
output data set of the system with their elements x ∈ X and y ∈ Y. The fuzzy model
is composed of a set of c rules R from which rule Ri reads:

Rule i: IF x IS Xi THEN y = Aix + Bi (1.2)

Xi denotes the ith fuzzy region in the fuzzy state space. Each fuzzy region Xi is
defuzzified by a fuzzy set

∫
wxi

(x)|x of a standard triangular, trapezoidal, or bell
shaped type. Wi ∈ Xi denotes the fuzzy value that x takes in the ith fuzzy region Xi .
Ai and Bi are fixed parameters of the local linear equation on the right hand side of
(1.2).

The variable wi(x) is also called degree of membership of x in Xi . The output
from rule i is then computed by:

y = wi(x)(Aix + Bi). (1.3)

A composition of all rules R1 . . .Rc results in a summation over all outputs
from (1.3):

y =
c∑

i=1

wi(x)(Aix + Bi) (1.4)

where wi(x) ∈ [0,1] and
∑c

i=1 wi(x) = 1.
The fuzzy region Xi and the membership function wi can be determined in ad-

vance by design or by an appropriate clustering method for the input-output data. In
our case we used a clustering method to cope with the different non linear charac-
teristics of input-output data-sets (see [19] and [20]). For more details about fuzzy
systems see [21].

In order to model time dependent trajectories x(t) using fuzzy modeling, the time
instants t take the place of the input variable and the corresponding points x(t) in
the state space becomes the outputs of the model.

The Takagi-Sugeno fuzzy model is constructed from captured data from the end-
effector trajectory described by the nonlinear function:

x(t) = f(t) (1.5)

where x(t) ∈ R3, f ∈ R3, and t ∈ R+.
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Fig. 1.1 Time-clustering
principle

Equation (1.5) is linearized at selected time points ti with

x(t) = x(ti) + �f(t)
�t

∣∣∣∣
ti

· (t − ti ) (1.6)

resulting in a locally linear equation in t .

x(t) = Ai · t + di (1.7)

where Ai = �f(t)
�t

|ti ∈ R3 and di = x(ti) − �f(t)
�t

|ti · ti ∈ R3. Using (1.7) as a local
linear model one can express (1.5) in terms of an interpolation between several local
linear models by applying Takagi-Sugeno fuzzy modeling [18] (see Fig. 1.1)

x(t) =
c∑

i=1

wi(t) · (Ai · t + di ) (1.8)

wi(t) ∈ [0,1] is the degree of membership of the time point t to a cluster with the
cluster center ti , c is number of clusters, and

∑c
i=1 wi(t) = 1.

The degree of membership wi(t) of an input data point t to an input cluster Ci is
determined by

wi(t) = 1
∑c

j=1(
(t−ti )

T Mipro(t−ti )

(t−tj )T Mj pro
(t−tj

)
1

m̃proj −1

. (1.9)

The projected cluster centers ti and the induced matrices Mipro define the input
clusters Ci (i = 1 . . . c). The parameter m̃pro > 1 determines the fuzziness of an
individual cluster [19].

1.3 Generation and Execution of Robotic Trajectories Based
on Human Demonstration

This section covers generation and execution of trajectories on the actual robot ma-
nipulator. We start with a description of how the mapping from human to robot
hand is achieved and how the hand-state components are defined. Then follows a
description of the next-state-planner, which produces the actual robot trajectories.
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1.3.1 Mapping Between Human and Robot Hand States

In the PbD framework, the hand-state components h1, . . . hp must be such that they
can be recovered from both human demonstrations and the perception system of
the robot. That is, the definition of H is perception invariant and can be updated
from arbitrary types of sensory information. Figure 1.2 shows the definition of the
hand-state in this article.

Let the human hand be at some initial state H1. Then the hand moves along a
certain path and reaches the final state Hf where the target object is held by the
hand [17]. That is, the recorded motion trajectory can be seen as a sequence of
states, i.e.,

H(t) : H1(t1) → H2(t2) → ·· · → Hf (tf ). (1.10)

To determine the hand-state representation of a demonstration the robot needs
to have access to the complete motion trajectories of the teacher’s hand since the
motion must be in relation to the target object. This means that the hand-state tra-
jectories can only be computed during a motion if the target object is known in
advance.

Let Hdes(t) be the desired hand-state trajectory recorded from a demonstration.
Since Hdes(t) cannot be executed by the robot without modification in the general
case, we have to construct the robotic version of Hdes(t), denoted by Hr(t), see
Fig. 1.3 for an illustration.

To find Hr(t) a mapping from the human grasp to the robot grasp a transforma-
tion is needed, denoted by T r

h . This mapping is created as follows. We can measure
the pose of the demonstrator hand and the robot hand holding the same object at
fixed position and obtain T r

h as a static mapping between the two poses. Thus, the
target state Hr

f will be derived from the demonstration by mapping the goal con-
figuration of the human hand Hf into a goal configuration for the robot hand Hr

f ,
using the transformation T r

h :

Hr
f = T r

h Hf . (1.11)

The pose of the robot hand at the start of a motion defines the initial state Hr
1 . Since

Hr
f represents the robot hand holding the object, it has to correspond to a stable

Fig. 1.2 The hand-state describes the relation between the hand pose and the object affordances.
Nee is the normal vector, Oee the side (orthogonal) vector and Aee is the approach vector. The
vector Qee is the position of the point. The same definition is also valid for boxes, but with the
restriction that the hand-state frame is completely fixed, it cannot be rotated around the symmetry
axis
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Fig. 1.3 Mapping from human hand to robotic gripper

grasp. For a known object, suitable Hr
f can either be obtained by simulation [22],

grasp planning or by learning from experimental data. Thus, having a human hand-
state Hf and their corresponding robot hand-state Hr

f , T r
h is obtained as:

T r
h = Hr

f H−1
f . (1.12)

It should be noted that this method is only suitable for power grasps. In the gen-
eral case it might produce ambiguous results or rather inaccuarate mappings.

One advantage of using one demonstrated trajectory as the desired trajectory
over trajectory averaging (e.g., [2] or [23]) is that the average might contain two
essentially different trajectories [14]. By capturing a human demonstration of the
task, the synchronization between reach and grasp is also captured, demonstrated
in [24]. Other ways of capturing the human demonstrating, such as kinesthetics [2]
or by a teach pendant (a joystick), cannot capture this synchronization easily.

1.3.2 Definition of Hand-States for Specific Robot Hands

Having the initial state Hr
1 and the target state Hr

f defined, we have to generate the
trajectory between the two states. In principle, we could transform Hdes(t) using
(1.11) in such way that it has its final state in Hr

f . Then, the robot starts at Hr
1 ,

approaches the displaced demonstrated trajectory and tracks it until the target state
is reached. However, such an approach would not take trajectory constraints into
account. Thus, it is also necessary to specify exactly how to approach Hdes(t) and
what segments must be tracked accurately. driving the hand.

A hand-state trajectory must be constructed from the demonstrated trajectory.
From the recorded demonstration we reconstruct the end-effector trajectory, repre-
sented by a time dependent homogeneous matrix Tee(t). Each element is represented
by the matrix

Tee =
(

Nee Oee Aee Qee

0 0 0 1

)
(1.13)
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where Nee , Oee and Aee are the normal vector, the side vector, and the approach
vector respectively. The last vector Qee is the position. The matrix Tee is defined
differently for different end-effectors, for example, the human hand is defined as in
Fig. 1.2.

There is evidence that the internal models of arm dynamics found in biological
systems are state-dependent rather than time-dependent [25]. Therefore, when we
transform human demonstrations into robot motions we define distance to object d ,
as an additional scheduling variable for hand-state trajectories. To preserve the ve-
locity profile from the human demonstration the distance to the target is modeled
as a function of time using fuzzy time-modeling, see Sect. 1.2.2. The inputs to the
fuzzy modeling is the Euclidean distance at each instance t of time:

d(t) =
√

(Qee(t) − P)2 (1.14)

where Qee and P are the end-effector position and object position respectively.
The same procedure is applied to the hand-state trajectories. Two types of models

are needed: one modeling of the hand-state as a function of time, and one as a
function of distance. In this article a general formulation of the hand-state is adopted
to fit the two states (open and close) for the anthropomorphic hand. We formulate
the hand-state as:

H(t) = [dn(t) do(t) da(t) φn(t) φo(t) φa(t)]. (1.15)

The individual components denote the position and orientation of the end-effector.
The first three components, dn(t), do(t) and da(t), describe the distance from the
object to the hand along the three axes n, o and a with the object as the base frame.
The next three components, φn(t), φo(t) and φa(t), describe the rotation of the hand
in relation to the object around the three axes n, o and a. The notion of the hand-state
used in this section is illustrated in Fig. 1.2.

The components of the hand-state, as a function of distance, are given by:

H(d) = [dn(d) do(d) da(d) φn(d) φo(d) φa(d)] (1.16)

where the hand-state components are the same as in (1.15), but with d ∈ R1 instead
of t . The role of the scheduling variable d is important since it expresses when the
robot should move to the next state, while the hand-state variables reflect where the
hand should move. Thus, d synchronizes the motions’ when (dynamics and syn-
chronization) and where (desired path) of the reach and grasp.

Note that with this simplified definition of H we cannot determine the human
grasp type, since we have omitted the finger specific components of the hand-state.
In [24] we give an account of how these components can be used to synchronize
reaching with grasping. Grasp classification is out of scope of this article, because
only power grasps are used in our experiments. Thus, the grasp type is assumed to be
known G = {cylindrical, spherical,plane}; the affordances are: position, size, and
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cylinder axis A = {width,axis} or box A = {width, length,N-axis,O-axis,A-axis}.
See [26] for grasp taxonomy.

1.3.3 Next-State-Planners for Trajectory Generation

In this section we present the next-state-planner (NSP) that balances its actions be-
tween following a demonstrated trajectory and approaching the target, first pre-
sented in [24]. The NSP is inspired by the Vector Integration To Endpoint (VITE)
planner suggested by Bullock and Grossberg [27]. The VITE planner is a biolog-
ically inspired planner for human control of reaching motions. The NSP-approach
requires a control policy, i.e., a set of equations describing the next action from the
current state and some desired behavior.

The proposed NSP generates a hand-state trajectory for the robot using the TS
fuzzy-model of a demonstration. As the resulting hand-state trajectory Hr(t) can
easily be converted to Cartesian space, we can use the inverse kinematics provided
by the controller for the robot arm. The TS fuzzy-model serves as a motion primitive
for the arm’s reaching motion. The initial hand-state of the robot is determined from
its current configuration and the position and orientation of the target object, since
these are known at the end of the demonstration. Then, the desired hand-state Hr

d

is computed from the TS fuzzy time-model (see (1.8)). The desired hand-state Hd

is fed to the NSP. Instead of using only one goal attractor as in VITE [27], and
additional attractor—the desired hand-state trajectory—is used at each state. The
system has the following dynamics:

Ḧ = α(−Ḣ + β(Hg − H) + γ (Hd − H)) (1.17)

where Hg is the hand-state goal, Hd the desired state, H is the current hand-state,

Ḣ and Ḧ are the velocity and acceleration respectively. α is a positive constant and
β , γ are positive weights for the goal and tracking point, respectively.

If the last term γ (Hd − H) in (1.17) is omitted, i.e., γ = 0, then the dynamics is
exactly as the VITE planner [27]. Indeed, if no demonstration is available the planner
can still produce a motion if the target is known. Similarly, if the term β(Hg −H) is
omitted, the planner becomes a trajectory following controller. If the final position
from the demonstration can be used for gasping, as in [28], it is possible to set β = 0,
which we do in our experiments in Sects. 1.5.1 and 1.5.2. The reason for setting β to
zero is that the demonstration towards the goal will end at the goal, making the term
β(Hg − H) redundant if the goal cannot be estimated more accurately using some
other sensor system as in [29]. Then the variance across multiple demonstrations is
used to determine γ , which controls the behavior of the NSP.

Analytically, the poles in (1.17) are:

p1,p2 = −α

2
±
√

α2

4
− αγ . (1.18)
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Fig. 1.4 The dynamics of the planner for six different values of γ . The tracking point is tanh(t),
with dt = 0.01 and α is fixed at 8. A low value on γ = 2 produces slow dynamics (black dot-dashed
line), while a high value γ = 64 is fast but overshoots the tracking point (black dashed line)

Fig. 1.5 Hand-state planner
architecture. Hg is the desired
hand-state goal, Hdes is the
desired hand-state at the
current distance to target

The real part of p1 and p2 will be ≤ 0, which will result in a stable system [30].
Moreover, α �≤ 4γ and α ≥ 0, γ ≥ 0 will contribute to a critically damped system,
which is fast and has small overshoot. Figure 1.4 shows how different values γ

affect the dynamics of the planner.
The controller has a feedforward structure as in Fig. 1.5. The reason for this

structure is that a commercial manipulator usually has a closed architecture, where
the controller is embedded in the system. For this type of manipulators, a trajectory
is usually pre-loaded and then executed. Therefore, we generate the trajectories in
batch mode for the ABB140 manipulator. Since our approach is general, for a given
different robot platform with hetroceptive sensors (e.g., vision) our method can be
implemented in a feedback mode, but this requires that the hand-state H(t) can be
measured during execution.



12 A. Skoglund et al.

1.3.4 Demonstrations of Pick-and-Place Tasks

The demonstration of the task is performed with the demonstrator (teacher) stand-
ing in front of the robot. Then the task, i.e., a pick-and-place of an object, is shown.
The target object is determined from the task demonstration, where the center point
of the grasp can be estimated from the grasp type. For example, grasp recognition
(see [31]) can improve the estimate of the object position and orientation. In our ex-
periments we assume a power grasp to determine the orientation of the object, while
the motion capturing system is used to record the position of the object. The task
demonstration contains the trajectories which the robot should execute to perform
the task.

1.3.4.1 Variance from Multiple Demonstrations

When multiple demonstrations of a skill are available to the robot we can obtain a
generalized version of that skill. We exploit the fact that when humans grasp the
same object several times they seem to repeat the same grasp type which leads to
similar approach motions. Based on that, multiple demonstrations of a skill become
more and more similar to each other the closer one gets to the target state. This
implies that successful grasping requires an accurate positioning of the hand in a
region near the object while the path towards this area is subject to less restrictions.
Therefore, by looking at the variance of several demonstrations the importance of
each hand-state component can be determined. The variance of the hand-state as a
function of the distance to target d is given by:

var(kh(d)) = 1

n − 1

n∑

i=1

(khi(d) − mean(kh(d)))2 (1.19)

where d is the Euclidean distance to the target, khi is the kth hand-state parameter
of ith demonstration and n is the number of demonstrations. Figure 1.6 shows how
the variance decreases as the distance to the object decreases. This means that the
position and orientation of the hand are less relevant when the distance to the target
increases.

1.4 Experimental Platform

For these experiments human demonstrations of a pick-and-place task are recorded
with two different subjects, using the PhaseSpace Impulse motion capturing system
described below. The Impulse motion capturing system consists of four cameras
mounted around the operator to register the position of the LEDs. Each LED has a
unique ID by which it is identified. Each camera can process data at 480 Hz and has
12 Mega pixel resolution resulting in sub-millimeter precision. The Impulse systems
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Fig. 1.6 Position- and orientation-variance of the hand-state trajectories as function of distance,
across 22 demonstrations of a reaching to grasp motion. Note that distances over 0.47 are extrapo-
lations made by the clustering method

Fig. 1.7 Left: The glove used in the Impulse motion capturing system from PhaseSpace. The glove
from the top showing the LEDs. Right: The system in use showing one of the cameras and the LED
on the glove

can be seen in the upper right picture in Fig. 1.7. The operator wears a glove with
LEDs attached to it, see upper left picture in Fig. 1.7. Thus, each point on the glove
can be associated with a finger, the back of the hand or the wrist. To compute the
orientation of the wrist, three LEDs must be visible during the motion. The back of
the hand is the best choice since three LEDs are mounted there and they are most
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Fig. 1.8 The anthropomorphic gripper KTHand used in the experiments

of the time visible for at least three cameras. One LED is mounted on each finger
tip, and the thumb has one additional LED in the proximal joint. One LED is also
mounted on the target object.

The motions are automatically segmented into reach and retract motions using
the velocity profile and distance to the object. The robot used in the experiments is
the industrial manipulator ABB IRB140. In this experiment we use the anthropo-
morphic gripper KTHand (Fig. 1.8), which can perform power grasps (i.e., cylindri-
cal and spherical grasps) using a hybrid position/force controller. For details on the
KTHand, see [32].

1.5 Experimental Evaluation

In this section we provide an experimental evaluation of the methods presented. The
1st experiment deals with the task to learn a robot skill from human demonstration.
The 2nd experiment shows how well the learned trajectories can be generalized w.r.t.
different workspaces especially the workspace of the human operator and the robot’s
workspace. In the 3rd experiment a complete pick-and-place task is executed.

1.5.1 Experiment 1: Learning from Demonstration

For this experiment 26 task demonstrations of a pick-and-place task were performed
using a soda can for performing a spherical grasp. To make the scenario more real-



1 Programming-by-Demonstration of Robot Motions 15

istic the object is placed with respect to what is convenient for the human operator
and what seems to be feasible for the robot.

Five of the 26 demonstrations were discarded in the segmentation (see [4]) and
modeling process for reasons such as failure to segment the demonstrations into
three distinct motions (approach, transport and retract) or the amount of data were
not enough for modeling because of occlusions. Only the reach-to-grasp phase is
considered in this experiment. All 21 demonstrations were used for trajectory gen-
eration and to compute the variance, shown in Fig. 1.6. Moreover, the variance is
used to compute the γ -gain, which determines how much the robot can deviate from
the followed trajectory. The trajectory generator produced 21 reaching motions, one
from each demonstration, which are loaded to the robot controller and executed. By
using each demonstrated trajectory as the desired trajectory Hd instead of build-
ing an average of them we avoid fusing of essentially different trajectories into a
possibly incoherent trajectory. Large differences will instead affect the variance,
resulting in a small γ -gain. In eight attempts, the execution succeeded while 13 at-
tempts failed because of unreachable configurations in joint space. This could be
prevented by placing the robot at a different location with better reachability. More-
over, providing the robot with more demonstrations, with higher variations in the
path, will lead to fewer constraints. Two sample hand-state trajectories of the suc-
cessfully generated ones are shown in Fig. 1.9. In the top graphs it is shown how
for different initial locations the generated trajectory converges towards the desired
trajectory. The bottom graphs shows how γ varies over time, to make the generated
trajectory Hr follow the desired Hd .

In the eight successfully executed reaching motions we measured the variation
in position of the gripper, shown in Fig. 1.10, which is within the millimeter range.
This means that the positioning is accurate enough to enable successful grasping
using an autonomous gripper, such as the Barrett hand [33] or the KTHand.

1.5.1.1 Importance of the Demonstration

The weight γ reflects the importance of the path, acquired from variance, see
Sect. 1.3.4.1. For experiment 1 and 2, we have empirically found γ to produce
satisfying results at:

γpos = 0.3
1

√
Var(Hxyz(d))

,

γori = 5
1

√
Var(Hrpy(d))

where γpos and γori are the weights for position and orientation, respectively.
Var(Hxyz(d)) and Var(Hrpy(d)) are the variance for the position and orientation
respectively, from (1.19), of the respective hand state component. αpos and αori are
fixed during our experiments at 8 and 10, respectively, with a time step dt = 0.01.
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Fig. 1.10 The end effector position at the end of the motion for the 8 successfully executed trajec-
tories. The positioning accuracy is within the millimeter range; 6 mm along x, 4 mm along y and
12 mm along z

These gains were chosen to provide dynamic behavior similar to the demonstrated
motions, but other criteria can also be used.

The next-state planner uses the demonstration to generate a similar hand-state
trajectory, using the distance as a scheduling variable. Hence, the closer to the ob-
ject the robot is the more important it becomes to follow the demonstrated trajectory.
This property is reflected by adding a higher weight to the trajectory-following dy-
namics when we get closer to the target; in reverse a long distance to the target leads
to a lower weight to the trajectory following dynamics.

1.5.2 Experiment 2: Generalization in Workspace

In this experiment, the generalization of the method is tested. This is done by ex-
amining whether feasible trajectories are generated when the object is placed at
arbitrary locations and when the initial configuration of the manipulator is very dif-
ferent from the demonstration. This determines how the trajectory planner handles
the correspondence problem in terms of morphological differences. In experiment 2
the same data set was used as in experiment 1. Three tests were performed to eval-
uate the trajectory generator in different parts of the workspace.

1. Trajectories are generated when the manipulator’s end-effector starts directly
above the object at the desired final position with the desired orientation, that
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Fig. 1.11 Left: A trajectory generated when the initial position is the same as the desired final
position, showing that the method generate trajectories as similar to the demonstration as possible
based on the distance. Right: The object is placed at four new locations within the workspace

is Hr
1 = Hr

f . The resulting trajectory is shown to the left in Fig. 1.11. Four addi-
tional cases are also tested displacing the end-effector by 50 mm in +x, −y, +y,
and +z direction from Hf , all with very similar results (from the robot’s view:
x is forward, y left and z up).

2. The object is placed at four different locations within the robot’s workspace;
displaced 100 mm along the x-axis, and −100 mm, +100 mm, +200 mm, and
+300 mm along the y-axis, seen to the right in Fig. 1.11. The initial pose of the
manipulator is the same in all reaching tasks. The planner successfully produces
four executable trajectories to the respective object position.

3. We tested the reaching of the object at a fixed position from a random initial
configuration. Figure 1.12 shows the result from two random initial positions
where one trajectory is successfully tracked but the other one fails. The failure
is a result of operation in hand-state space instead of joint space, and it might
therefore have a tendency to go onto unreachable joint space configurations, as
seen in the right column of Fig. 1.12. To prevent this it is possible to combine two
controllers: one operating in joint space and the other in hand-state space, similar
to the approach suggested by [34], but at the price of violating the demonstration
constraints.

The conclusion from this experiment is that the method generalizes well in the
tested scenarios, thus adequately addressing the correspondence problem. However,
the unreachability problem has to be addressed in future research to investigate how
the robot should balance the two contradiction goals: reaching an object in its own
way, with the risk of collision, or reaching an object as the demonstrator showed.
Indeed, if the robot has more freedom to choose the path it is more likely to avoid
unreachable configurations. However, such freedom increases the risk for collision.


