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Preface

Location-Based Services (LBS) have become a research field since the early 2000s.
In recent years, lots of progress has been made in this research field, due to the
increasingly maturity of the underpinning communication technologies and mobile
devices. LBS have become more and more popular not only in citywide outdoor
environments, but also in shopping malls, museums, and many other indoor
environments. They have been applied for emergency services, tourism services,
intelligent transport services, social networking, gaming, assistive services, etc.

Since its initiation by Georg Gartner from TU Wien (Austria) in 2002, the LBS
conference series has become one of the most important scientific events dedicated
to LBS. The conferences have been held in Vienna (2002, 2004, 2005), Hong Kong
(2007), Salzburg (2008), Nottingham (2009), Guangzhou (2010), Vienna (2011),
Munich (2012), Shanghai (2013), Vienna (2014), and Augsburg (2015). Starting
from 2015, the LBS conferences have become the annual event of the newly
established Commission on Location-Based Services of the International Carto-
graphic Association (ICA). In November 2016, the 13th LBS conference (LBS
2016) will be hosted by TU Wien in Vienna, Austria.

This book contains a selection of peer-reviewed full papers submitted to LBS
2016. All the chapters have been accepted after a rigor reviewing process. The book
provides a general picture of recent research activities related to the domain of LBS.
Such activities emerged in the last years, especially concerning issues of
outdoor/indoor positioning, smart environment, spatial modeling, personalization,
context-awareness, cartographic communication, novel user interfaces, crowd
sourcing, social media, big data analysis, usability and privacy.

We would like to thank all the authors for their excellent work and all referees
for their critical and constructive reviews. We hope you enjoy reading these papers,
and look forward to your participation in the future LBS conferences.

Vienna, Austria Georg Gartner
Zürich, Switzerland Haosheng Huang
September 2016
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Part I
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Wi-Fi Fingerprinting with Reduced Signal
Strength Observations from Long-Time
Measurements

Guenther Retscher and Florian Roth

Abstract Indoor positioning which uses signal strength values of Wi-Fi networks
have become popular as these wireless networks often already exist and many
mobile devices, such as smartphones or tablets, have built-in Wi-Fi cards. Usually
fingerprinting is employed for positioning which achieves relatively low position-
ing accuracies on the several meter level. In the scope of this work two methods are
presented which have the potential to improve the fingerprinting performance using
long-time RSS observations at reference stations. Both methods employ the usage
of at least three reference stations surrounding the area of interest on which signal
strength observations are continuously performed during the whole measurement
process. Thereby the first method uses a 2-D linear plane-interpolation for the
deduction of real-time corrections. For that purpose, the measured signal strengths
are reduced by the long-time measurements which are interpolated at the approx-
imate position of the measuring point. In the second method the daily average of the
long-time measurements is applied and the improvements of the measurements are
calculated by the deviation from the daily average. For this method it is conceivable
that a single reference station may be sufficient if it is located in the middle of the
area of interest. Field tests were performed in an office building and are analyzed.
The fingerprinting algorithms reached an averaged positioning accuracy of around
5 m in dependence on the used smartphone. The daily average improvements
(DAI) method provided a better performance than the interpolation method which is
highly influenced by the required approximate position of the user.

Keywords Location fingerprinting ⋅ Reduced RSS observations ⋅ Interpolation
method ⋅ Daily average improvement method

G. Retscher (✉) ⋅ F. Roth
Department of Geodesy and Geoinformation, Research Group Engineering Geodesy,
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1 Introduction

The development of indoor navigation systems has become a growing field of
research interest in recent years as many applications nowadays require ubiquitous
positioning in combined out-/indoor environments. There are still many unresolved
challenges in such type of applications as satellite-based GNSS and GNSS-aided
inertial navigation systems (INS) are capable methods for mainly outdoor naviga-
tion only. Thus, alternative techniques are developed using different signals, such as
radio waves, acoustic signals, or other sensory information collected by mobile
devices. All of them have their own strengths as well as limitations. Following a
classification of Li and Rizos (2014), indoor localization technologies fall into three
categories, i.e., designated technologies based on pre-deployed signal transmission
infrastructure, technologies based on ‘signals-of-opportunity’ and technologies not
based on signals. To the first categories belong systems using infrared or ultrasonic
signals, magnetic fields, Ultra Wide Band (UWB) or other RF-based systems.
Signals-of-opportunity include RF signals originally not intended for positioning,
for instance, Wi-Fi, digital television, mobile telephony, FM radio and others. Dead
reckoning (DR) using inertial sensors (accelerometers and gyroscopes) as well as
vision/camera systems belong to the third category. This paper focuses on Wi-Fi
location fingerprinting where it is investigated whether long-time signal strength
measurements could lead to an improvement as the positioning accuracy is highly
related to the fluctuation of signal strength. Because long-time measurements show
the trend of the received signal strength (RSS) and contain the fluctuation of the
emitted signal they provide the potential to minimize these effects. Two methods
are used to reduce the influence of the fluctuations and compared to standard
fingerprinting.

The remainder of the paper is organized as follows: Sect. 2 reviews briefly the
fundamentals of the Wi-Fi positioning principle and its methods. In Sect. 3 the two
new methods for the reduction of the RSS observations for the establishment of a
radio map of RSS distributions for fingerprinting are described. Section 4 presents
the setup and the results of the experiments which were performed to survey the
effect of RSS observations from long-time measurements. Finally, Sect. 5 contains
the discussion of the major results and the concluding remarks as well as an outlook
on future investigations.

2 Wi-Fi Positioning Principle

Wi-Fi technology uses microwave signals to provide an electronic device access to
the internet. The ability to measure the RSS of a certain Wi-Fi access point
(AP) and the coherence between this signal strength and the distance to the AP
provides the possibility to use Wi-Fi for positioning. For positioning in RSS-based
solutions usually two different methods are employed, i.e., location fingerprinting

4 G. Retscher and F. Roth



and trilateration. In this study only fingerprinting is considered. In the following,
the challenges are briefly reviewed and then fingerprinting is discussed in detail
including its performance.

2.1 Challenges of Wi-Fi Positioning

The major aim of research concerning Wi-Fi positioning is to significantly improve
positioning accuracy to the one meter or even to sub-meter level. The low posi-
tioning accuracy of several meters achieved so far, however, is mainly caused by the
fluctuation of the RSS which is caused by the following reasons (Bai et al. 2014).

• Humans consist of a large part of water (around 60 to 70 %) and the signal is
absorbed significantly by water,

• The signal is reflected by metal in walls causing multipath propagation which
falsifies the observation of the RSS,

• The emitted signal strength of some APs is depending on the number of users
which are connected to the network,

• Radio interference, which is caused by other devices like for example micro-
wave ovens or shop door openers, and

• Different smartphones have different in-built hardware and so the measured RSS
differs from phone to phone or other mobile device.

2.2 Wi-Fi Location Fingerprinting

Wi-Fi fingerprinting needs reference points (RPs) with uniquely defined RSS values
from every received AP. The current position of the user is then the location which
has the greatest similarity to the RSS. Fingerprinting works with a radio map
(R) which is based on a number of RPs containing the RSS distributions. These RPs
are located in the area of interest and distributed in a representative grid. Figure 1
illustrates the operational principle of fingerprinting.

Fig. 1 Operational principle
of location fingerprinting

Wi-Fi Fingerprinting with Reduced Signal Strength … 5



Every RP has a position and an associated fingerprinting matrix (F) (Huang
2014) as described in:

R= pl!,Fi
� �

i=1, 2, . . . ,m ð1Þ

Fi = r ⃗RPi T1ð Þ, r ⃗RPi T2ð Þ, . . . , r ⃗RPi Tnð Þ½ � ð2Þ

rR⃗Pi tð Þ= RSSAP1
RPi

tð Þ,RSSAP2
RPi

tð Þ, . . . ,RSSAPk
RPi

tð Þ� � ð3Þ

where pl! is the position of the RP, m the number of RPs, Tn the last time where the
sample is collected, t the selected time stamp, k the number of APs, and RSSAPk

RPi
the

RSS value.
The vector rR⃗PiðtÞ in Eq. (2) contains the RSS at the selected RP from all

received APs (see Fig. 1). For every time sample there is a rR⃗PiðtÞ labelled by a
unique time stamp. It depends on the type of positioning algorithm if just one value
for each AP is needed instead of the whole fingerprinting matrix. In case of a single
value per AP the median or mean is calculated and just one vector (location fin-
gerprint) rR⃗PiðtÞ further exists. The radio map data is saved in a so-called finger-
printing database (DB) which is fed in the training phase (Sect. 2.2.1). Because of
the dependency of the location fingerprint and position it is possible to estimate the
current user’s position with another RSS measurement and the comparison from
this measurement with the DB. This is called the positioning phase (see
Sect. 2.2.2). Figure 2 shows the main tasks to be carried out in the two phases.

2.2.1 Training Phase

The task of the training, offline or calibration phase is to find the system’s design
and to collect data for the fingerprinting DB. The RPs form usually a rectangular
grid (compare Fig. 1) and the system’s designer has to find the suitable number of
RPs and the distance between them (i.e., grid spacing). The aim is to provide a
suitable positioning resolution, best system performance and the reception of at

Fig. 2 Characteristics of the
two phases of location
fingerprinting
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least three APs at all RPs. It depends on the environment which system parameters
are best to improve the system accuracy and precision performance. Because of the
long time required to collect the reference RSS data it is not the best way to reduce
the grid spacing accordingly (Kaemarungsi 2005). As the human’s body absorbs
parts of the Wi-Fi signal and falsifies the measured signal strengths multiple
measurements in usually four smartphone orientations are performed at every
RP. After the grid design is accomplished, the location fingerprints are collected by
measuring the RSS from all received APs at every RP. Because of different devices
and orientations, multiple DBs are created (for every device and orientation) or
models are developed to simulate the influence of different hardware and the user’s
body.

2.2.2 Positioning Phase

In the positioning or online phase, the mobile device collects the RSS measure-
ments from every receivable AP at the location to be determined. If the finger-
printing DB of the training phase contains for example a statistical distribution the
received RSS vector must have the same number of elements. The result is a vector
which contains the average RSS from the received AP (location fingerprint) in the
form:

er ⃗= gRSSAP1
RPi

, gRSSAP2
RPi

, . . . , gRSSAPk
RPi

h i
ð4Þ

Once the measurements are performed and found to be correct, the location

fingerprint of the positioning phase er ⃗ has to be compared with the location fin-
gerprints of the DB. This comparison is performed by a positioning (Kaemarungsi
2005) or calculation (Mok and Retscher 2007) algorithm like the Nearest Neigh-
bour (Sect. 2.2.3) or K-Nearest Neighbour (Sect. 2.2.4).

2.2.3 Nearest Neighbour Algorithm

The simplest calculation algorithm is the Nearest Neighbour (NN) method because
it just requires mean or median vectors and no more other RSS data. The finger-
printing matrix becomes then just s single vector which contains one mean (or
median) value per AP. The algorithm then calculates most commonly the Euclidean
distance between the location fingerprint of the positioning phase and all finger-
prints in the DB. The estimated position is the position of the fingerprint with the

minimum distance. Equation (5) defines the selection of the fingerprint er ⃗ and its
position (bpNN) with the basic NN algorithm with Euclidean distance (Huang 2014;
Kaemarungsi 2005):

Wi-Fi Fingerprinting with Reduced Signal Strength … 7



dðx, yÞ= x!− y!�� ��
2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑l

j=1 ðxi − yiÞ2
q

ð5Þ

d er ⃗, rR⃗Pa tð Þ
� 	

< d er ⃗, r ⃗RPb tð Þ
� 	

∀a≠ b ð6Þ

bpNN =pi⃗ ð7Þ

where j is the number of elements.

2.2.4 K-Nearest Neighbour Algorithm

An extension of the NN algorithm is the k-Nearest Neighbour (kNN) algorithm.
First the fingerprints are sorted by their distance to the location fingerprint of the
positioning phase and the first k RPs (k has to be smaller than the number of RPs)
with minimal distance are chosen (Eq. (8)). The average over the coordinates of the
chosen RPs yields the estimated position (bpKNN ) of the mobile device (Huang
2014).

bpKNN =
1
K

∑
K

i=1
pi⃗ ð8Þ

with the position pi⃗ of the K chosen RPs.

2.3 Performance of Wi-Fi Fingerprinting

It is difficult to state a generally valid positioning accuracy for Wi-Fi fingerprinting
because of the dependence on the surrounding environment. Beside the multipath
propagation and signal interference, also the design of the grid of RPs influences the
accuracy. Usually averaged positioning accuracies in the range of 1-6 m are
obtained (Mok and Retscher 2007). Because of errors in such a range the altitude
determination is mostly not accurate enough to estimate the correct floor level. In
such cases height can be added using barometric measurements. This is possible
because air pressure is directly related to height (Retscher 2007).

3 Fingerprinting with Reduced RSS Observations

The spatial coverage of an AP is called radio cell. The size of this cell is defined on
the one hand by the surrounding environment and on the other hand by the
broadcasting power. An AP reacts to the rising number of connected clients by a
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regulation of the broadcasting power to supply all clients equally. The more clients
are connected in the cell, the RSS is the more decreasing and the cell size shrinking.
This effect occurs also as opposite if the number of clients decreases. Long-time
measurements could be used to reduce the influence of this fluctuation. Thus, two
new methods are developed and investigated which provide the possibility to model
these effects. The first one uses interpolation and the second is referred to as Daily
Average Improvement (DAI) method.

3.1 Interpolation Method

The concept for the reduction with long-time measurements in case of fingerprinting
is illustrated in the flowchart in Fig. 3. It is based on the assumption that a single
RSS value measured at a random point gRSSmes p ⃗, tð Þ can be separated in two parts as
follows:

gRSSmes p ⃗, tð Þ=RSStheo p ⃗, tð Þ+ΔRSSðp ⃗, tÞ ð9Þ

Theoretically RSStheo p ⃗, tð Þ is the RSS value at a certain point which is caused by
the spatial range of the Wi-Fi Signal. It is not affected by any influence of the
surrounding environment, but it contains the signal’s variation over time. Deviation
caused by the surrounding environment ΔRSSðp ⃗, tÞ  is the change in RSS (compared
to ideal conditions) which is caused by the measurement site assembly and current
conditions. So it contains the influences of present people, walls, radio interference,
etc. Those influences have a great spatial dependence which means that a point is
theoretically uniquely defined by ΔRSSðp ⃗, tÞ. Under the assumption (Eq. (10)) that
the theoretical signal strength RSStheo p ⃗, tð Þ is approximately represented by the

Fig. 3 Calculation steps of the interpolation method
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interpolated RSS of long-time measurements RSSintðp ⃗, tÞ resulting from Eq. (9) the
following subtraction (Eq. (11)) provides the deviation caused by the surrounding
environment ΔRSSðp ⃗, tÞ.

RSStheo p ⃗, tð Þ≈RSSintðp ⃗, tÞ ð10Þ

ΔRSS p ⃗, tð Þ≈gRSSmes p ⃗, tð Þ−RSSintðp ⃗, tÞ ð11Þ

Equation (11) is called reduction and ΔRSS p ⃗, tð Þ is the reduced RSS. The result
has a large spatial dependence but it is approximately free from signal’s variation
over time. Because of that ΔRSS p ⃗, tð Þ should be accurate enough for positioning
with Wi-Fi fingerprinting. To be able to compare the elements of the fingerprinting
DB from the training phase and the RSS vector with the location fingerprint (from
the positioning phase), both have to be reduced.

3.1.1 Reference Measurements

To be able to reduce RSS observations reference measurements have to be carried
out which are recorded at the same time as the measurements that have to be
reduced. Therefore, long-time measurements are performed which temporally
overlap the whole measuring process. Tests performed by Retscher and Tatschl
(2016a) have shown that it is important to place the reference measuring units
directly below the APs because of following reasons: (1) to get the strongest
possible RSS, (2) to have a lower risk of multipath propagation, and (3) the con-
struction of most of the antennas weaken the RSS of more distanced antennas
(Tatschl 2016). Another important aspect of the reference location is to choose a
useful spatial distribution of these stations. The aim is to be able to interpolate the
long-time measurements to every reference point of the fingerprinting DB (see
Sect. 3.1.2). So one possibility is to place the reference stations at the borders
surrounding the area of interest.

3.1.2 Training Phase

A grid of reference points is measured like in the training phase of the standard
Wi-Fi fingerprinting (described in Sect. 2.2.1) but the long-time measurements are
performed additionally (see Fig. 4). To get a fingerprinting database with reduced
RSS the long-time measurements are interpolated to the reference points as indi-
cated by arrows in Fig. 4 and a reduction is proceeded. For the interpolation of the
fingerprinting DB the first step is to find long-time measurements which were
recorded simultaneously with the reference points or were recorded only a short
time apart. After that a 2-D linear plane-interpolation (Eq. (12)) is calculated to get
a theoretical RSS for each reference point.
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RSSint AP, tð Þ= f x, yð Þ= a0 + a1x+ a2y ð12Þ

The coefficients of this polynomial function are dependent on time and a certain
AP. They are given by the following equation:

a ⃗ AP, tð Þ=A− 1*z ⃗ðAP, tÞ ð13Þ

or in more detail:

a1
a2
a3

2
4

3
5=

1 x1 y1
1 x2 y2
1 x3 y3

2
4

3
5

− 1

*
RSSlt1 AP, tð Þ
RSSlt2 AP, tð Þ
RSSlt3 AP, tð Þ

2
4

3
5 ð14Þ

where pj = ðxj, yjÞ are the coordinates of the reference station equipment which
performed the long-time measurements and RSSlt1 AP, tð Þ the RSS of the jth
equipment of a certain AP at a certain time.

This interpolation described in Eq. (12) produces a RSS value for a certain AP at
a certain reference point. After calculating a RSS value for each AP at each ref-
erence point the interpolated radio map is completed.

For the reduction of the fingerprinting DB the subtraction (Eq. (11)) of the
interpolated RSS of the long-time measurements and the measurement of the ref-
erence points results in the reduced RSS. This result is stored in a DB which defines
the radio map (Eq. (1)). The following Eq. (15) describes this fingerprinting DB for
the i-th reference point.

Fi = ½ΔAP1
RSS,RPi

,ΔAP2
RSS,RPi

, . . . ,ΔAPk
RSS,RPi

� ð15Þ

where k is the number of APs and ΔAPk
RSS,RPi

is the single value of the reduced RSS.

Fig. 4 Training phase of the
interpolation method

Wi-Fi Fingerprinting with Reduced Signal Strength … 11



3.1.3 Positioning Phase

Figure 5 illustrates the positioning phase. The positioning starts with the mea-
surement of the location fingerprint. So the RSS of each received AP is scanned and
stored in a vector (Eq. (4)):

er ⃗ðτÞ= gRSSAP1
RPi

, gRSSAP2
RPi

, . . . , gRSSAPk
RPi

h i
ð16Þ

where τ is the recording time of the location fingerprint and gRSSAPk
RPi

a single RSS
value of the location fingerprint of the positioning phase.

The evaluation of the positioning phase consists of two major parts: (1) an
approximate position is calculated to know which coordinates (x and y in Eq. (12);
see Fig. 5) are used to get the interpolated RSS, and (2) the interpolated RSS and
the reduction is calculated. After that the standard fingerprinting positioning
algorithm is performed with a DB containing reduced RSS values and a reduced
location fingerprint. For the approximate solution of the user’s position the
not-reduced RSS values of the reference points are needed. The approximate
position is calculated using the process described in Sect. 2.2.2. The results are the
coordinates of the approximate position pa⃗pp = ½xapp, yapp�. Then the interpolation for
a location fingerprint is performed. So for the time τ fitting RSS values from
long-time measurements exist:

z ⃗ AP, τð Þ= RSSlt1 AP, τð Þ,RSSlt2 AP, τð Þ,RSSlt3 AP, τð Þ½ � ð17Þ

With Eq. (12) an interpolated fingerprint is calculated:

rv⃗ec pa⃗pp, τ

 �

= RSSint AP1, τð Þ,RSSint AP2, τð Þ, . . . ,RSSint APk, τð Þ½ � ð18Þ

and using Eq. (11) the reduction is calculated. In Eq. (19) the reduction of a single
RSS value and in Eq. (20) the reduction of the whole fingerprint is described:

Fig. 5 Positioning phase of
the interpolation method
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ΔRSS APk, pa⃗pp, τ

 �

= gRSSAPk
RPi

−RSSintðAPk , τÞ ð19Þ

ΔRSS pa⃗pp, τ

 �

=er ⃗ τð Þ− r ⃗intðpa⃗pp, τÞ ð20Þ

With the reduced fingerprint ΔRSS pa⃗pp, τ

 �

and the reduced fingerprinting DB a
position determination can be performed. The resulting positioning vector pr⃗ed gives
the estimated coordinates of the location fingerprint.

So far only a simple linear interpolation has been applied. Future work considers
the use of other more advanced interpolation methods, such as Kriging or inverse
distance weighted (IDW) interpolation. A detailed performance analysis and
comparison with the linear interpolation approach will be carried out.

3.2 Daily Average Improvement Method

To get a numerical value which describes the fluctuation of the Wi-Fi signals the
difference between the fingerprints and a constant vector are calculated. This
constant vector should be representative of the normal or average behaviour of the
APs RSS. So the average of all long-time measurements over the whole day is
chosen as given in Eq. (21):

br ⃗= dRSSAP1, dRSSAP2, . . . , dRSSAPkh i
ð21Þ

To calculate the improvements, the average RSS value of all devices which
measure the long-time measurements at the moment when the measurement to be
improved was recorded (rl⃗t tð Þ), is needed. The following equation yields the
improvements of a certain measurement:

r ⃗corr tð Þ= r ⃗lt tð Þ−br ⃗ ð22Þ

The improved RSS is then calculated with Eq. (23):

r ⃗imp tð Þ= r ⃗ tð Þ+ r ⃗corrðtÞ ð23Þ

with the measured fingerprint r ⃗ tð Þ to be improved.
The implementation is as follows: Firstly, the reference points and reference

long-time measurements are recorded equally like the difference method described
in Sect. 3.1 in the training phase. After computing all improvements for the time
when the reference points were recorded and improving the measurements, there is
an improved fingerprinting database. Then in the positioning phase the process to
get an improved location fingerprint is similar to the training phase. In the begin-
ning, temporal suitable long-time measurements are searched and the average is
calculated (rl⃗t tð Þ). After the subtraction (Eq. (22)) with the daily average of all
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received APs the improved location fingerprint is calculated using Eq. (23). To get
the position with the improved RSS values, a standard fingerprinting algorithm
using the NN or kNN is performed (described in Sect. 2.2.3 or 2.2.4). Figure 6
shows the principle of operation illustrated as flowchart.

4 Indoor Experiments

To test the Wi-Fi-based indoor positioning system the ground floor of a multi-storey
office building of the TU Wien—Vienna University of Technology has been
chosen. Figure 7 shows the area including the entrance to the building, a foyer and
class rooms. In this area walls with different wall thickness, different ceiling height,
several floor levels, pillars, windows, computers and tables are present. It is public

Fig. 7 Floorplan and impressions of the test area

Fig. 6 Calculation steps of the daily average improvement (DAI) method
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space which is highly frequented by people. On 93 reference points in a regular grid
with a spacing of around 2.5 m RSS measurements were performed whereby six
well distributed APs are receivable at most test points. Three Raspberry Pi’s served
as reference stations which execute a Python script which records RSS values for all
received APs in an infinite loop and an interval of two seconds.

4.1 Long-Time Measurements

Figure 8 shows an example of a long-time variations of the RSS to six APs. As can
be seen some RSS scans to certain APs show a good stability, but on the other hand
large short-time variations can occur, e.g. for AP 4. Retscher and Tatschl (2016a, b)
developed a differential Wi-Fi (termed DWi-Fi) positioning concept which is
similar to the well-known DGPS principle. In this case, the RSS measured with the
Raspberry Pi’s at the reference station locations are used to derive correction
parameters and are applied at the mobile client. Thus, a significant improvement of
the positioning accuracies is achieved. In the following it is investigated if location
fingerprinting can be improved at a similar level.

4.2 Evaluation

To compare the different methods, the measured data was evaluated in four different
ways:

(1) Standard Wi-Fi Fingerprinting with the kNN where k was set to 5.

Fig. 8 Long-time reference station RSS observations
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(2) Interpolation method with reduced RSS observations and known user position.
In this case it was assumed that the user position is known and the long-time
measurements could be interpolated at this location. Although this assumption
is nonconvertible it could be determined whether the method is basically
possible.

(3) Interpolation method with reduced RSS observations and known approximate
user position. The approximate position is calculated with a standard finger-
printing algorithm and is used to interpolate the long-time measurement to this
point.

(4) Daily Average Improvement (DAI) method with reduced RSS observations. In
this case no approximate solution is needed.

4.3 Resulting Radio Maps of RSS Distribution

The radio maps in Fig. 9 show the spatial distribution of the measured RSS of one
AP located inside of the class room VII (compare Fig. 7). As can be seen there are
obvious differences in the measured RSS of three smartphones and the recorded
measurement runs. For the resulting radio map in Fig. 9a the three reference sta-
tions were located at three APs and for the other three Figures the reference stations
were placed at the borders surrounding the test site. Figure 9a, b are from the same
smartphone. It can be seen that regions of higher RSS are found in an approximate
rectangular form which spatially match with the class room (i.e., lecture room VII).
This means that the class room’s walls cover up a high percentage of the signal.

4.4 Positioning Results

The following three Figs. 10, 11 and 12 show the positioning accuracies of the
three used phones in numbers for the four different methods (i.e., standard fin-
gerprinting, interpolation with known position or approximate position and daily
average improvement DAI method). Furthermore, the results are shown for four
different training and positioning runs. On overview of the characteristics of the
four different training and positioning runs can be found in Table 1.

The results of the smartphone 1 in Fig. 10 demonstrate that the interpolation
method with known position of the user and the DAI method provide a similar
performance as standard fingerprinting. The interpolation method using an
approximate position, however, shows lower positioning accuracies. The main
reason for this is that the approximate user’s position at the ten meter level was not
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accurate enough. With an improvement of the approximate position higher resulting
positioning accuracies are achievable. This can be obtained if the Wi-Fi positioning
is augmented by dead reckoning with the smartphone inertial sensors. Then a more
precise approximate position is available.

In the results of the other two smartphones (Figs. 11 and 12) some tests are
found which show an improvement compared to the standard method. Especially
the DAI method’s positioning accuracy is higher and provides therefore better
performance than the two interpolation methods. Thus, the used phone has a great
influence on the positioning result as well. The first smartphone (compare Fig. 10)
measured the highest RSS values and shows overall the best positioning results
which confirms that a higher signal strength leads to a better positioning accuracy.
So the positioning accuracy is also dependent on the built-in hardware of the phone.

Fig. 9 Radio maps of three smartphones and two different measurement runs
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Fig. 10 Comparison of four measurement runs and positioning methods for smartphone 1

Fig. 11 Comparison of four measurement runs and positioning methods for smartphone 2
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4.5 Spatial Distribution of Positioning Results

The maps in Fig. 13 show the spatial distribution of the positioning accuracy for a
certain positioning and training run for smartphone 1. It should be noted that the
regions of poor accuracy are found at the periphery areas of the test site. The reason
for this is the interpolation of the RSS which is used in each method. The triangle
which is formed by the three Raspberry Pi’s does not cover up the whole measuring

Fig. 12 Comparison of four measurement runs and positioning methods for smartphone 3

Table 1 Overview of the characteristics of the four measurement runs

Measurement
run No.

Number of RSS
scans

Environmental conditions Location of reference
stations

101 5 Class room doors and blinds
closed

Under the AP

102 5 Class room doors and blinds
closed

Under the AP

103 9 Class room doors and blinds
open

Under the AP

104 5 Class room doors closed and
blinds open

At the borders of the
test site
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area which leads to an extrapolation outside of the triangle. In this area the inter-
polated RSS values leads to a significant inaccuracy. With a longer distance from
the triangle the positioning error increases which is also explained by the extrap-
olation in this areas.

4.6 Positioning Results Per Measurement Run

In Figs. 14 and 15 the four different measurement runs are compared. Figure 14
shows the accuracy (divided into the results of the four methods) of a measurement
run if it is used as training run. Figure 15 on the other hand presents that for the
positioning run. It can be seen that no measurement run stands out among the other.
Measurement run 104 is the best run if it is used as positioning run but it is the

Fig. 13 Spatial distribution of positioning result of smartphone 1 for training run 101 and
positioning run 102 for the four methods
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