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Preface

Statistical Models and Methods for Reliability and Survival

Analysis is a volume of contributions by specialists in

statistical theory and their applications that provide up-to-

date developments in methods used in survival analysis,

statistical goodness of fit, stochastic processes for system

reliability among others. Many of them are related to the

work of Professor M. Nikulin in statistics which has spanned

30 years. The contributors accepted this challenging project

to gather various contributions with a wide range of

techniques and results, all of them on the topics of the past

S2MRSA conference, 4–6th July 2012, dedicated to M.

Nikulin for his 20th anniversary as a professor in the

Bordeaux Segalen University (http://www.sm.u-

bordeaux2.fr/Stat.Bordeaux.2012). The book is intended for

researchers interested in statistical methodology and

models useful in survival analysis, system reliability and

statistical testing for censored and non-censored data.

Vincent COUALLIER

Léo GERVILLE-RÉACHE

Catherine HUBER-CAROL

Nikolaos LIMNIOS

Mounir MESBAH

October 2013

http://www.sm.u-bordeaux2.fr/Stat.Bordeaux.2012


Biography of Mikhail

Stepanovitch Nikouline

From his native city of St. Petersburg, whose name was

Leningrad when he was born there on April 29, 1944, Mikhail

Stepanovitch Nikulin (Nikouline by French passport) visited

many foreign countries due to his interest in several

different domains in his favorite disciplines: mathematics

and statistics. It was Professor Login N. Bolshev who allowed

him to be aware of his talent in mathematics and directed

his thesis in the field of “Probability Theory and

Mathematical Statistics”.

He obtained his Master’s degree in mathematics from the

State University in St. Petersburg in 1966. In the meanwhile,

he had met Valia, a young lady who had many admirers,

and he was proud and happy to be the one she chose to be

her husband. They married in early 1963 when they were

both under 20. Valia was a scientist like her husband and

they had a daughter named Hélène at the end of the same

year.

Then they decided to learn French intensively in order to

go to Brazzaville, capital of the “République Populaire du

Congo”, where they spent three years. There, both were

professors of mathematics in the Collège d’Enseignement

Général from 1966 to 1969. Just after leaving Congo, their

second child Alexis was born; both children were very

promising. Then they went back to their native country.

There, M.S. Nikouline became a PhD student at the Steklov

Mathematical Institute in Moscow, Academy of Science of

Russia, while Valia was doing research in mathematics at

the Department of Applied Mathematics at the State

University in St. Petersburg. Under the supervision of

Professor L.N. Bolshev, for whom Nikouline always had a



great admiration for both his mathematical skill and his

personal human qualities, and whose early death at the age

of 56 saddened Nikouline greatly, he obtained his PhD thesis

entitled “A generalization of chi square tests”.

From 1974 to 2006, he was a member of the famous Ildar

Ibragimov’s Laboratory of Statistical Methods at the

Mathematical Institute of V. Steklov (St. Petersburg).

From 1988 to 1992, M.S. Nikouline was a docent in the

Department of Statistics and Probability at the State

University in St. Petersburg. In 1992, he was hired as an

Associate Professor at the University Victor Segalen-

Bordeaux 2, France, where he spent his career serving in

various positions: Professor in 1996, Full Professor in 2006

and Distinguished Professor in 2008 until 2012 when he

became Emeritus. During the same time, from 1996 to

2001, he was the head of the Department “SCIMS- Science

et Modélisation”, and, from 1999 to 2006, he was the head

of the Laboratory “Equipe d’Accueil 2961: Mathematical

Statistics and its Applications”.

He published a large number of papers (more than 250),

alone for most of them, or jointly, with several colleagues

and friends from the USSR, Europe and Canada, such as V.

Solev, V. Bagdonavicius, V.G. Voinov, N.N. Lyashenko, K.

Dhzapridze, P. Greenwood, L. Gerville-Réache, J. Kruopis and

many others.

His first field of interest, following the theme of his PhD

thesis, was goodness-of-fit tests and best unbiased

estimators for parametric models. Between 1973 and 1992,

he published more than 30 papers on this subject.

From 1993 to 2013, his subjects of interest became more

diversified. We can see from the references of Nikulin’s

papers that although he was interested in parametric

models, goodness of fit for them and unbiased estimators,

he also tackled semi-parametric and non-parametric models

that are more general. In particular, he was interested in



human survival data analysis and he was one of the few

people who made the link with reliability whose traditional

field is industry that seemed for a long time to be very much

apart from the medical field. From a mathematical point of

view, many advances in any of these two domains could be

provided by the other domain. With this perspective in

mind, M.S. Nikouline organized with three French colleagues

M. Mesbah of the University of Vannes (Britanny) and then

University of Paris VI, N. Limnios of the University of

Technology of Compiègne and C. Huber-Carol of the

University of Paris Descartes, a European Seminar devoted

to the “Survival Analysis and Reliability Theory”.

During his career in Bordeaux, Nikouline has directed 11

PhD theses and most of his students have obtained good

positions either in universities or in industry.

Moreover, Nikouline was the author and editor of a number

of volumes on mathematical statistics. He has also written

several articles for the Encyclopaedia and was part of

several editorial boards and scientific societies such as the

International Statistical Institute (ISI) and the Mathematical

Society of St. Petersburg. Throughout his long career, he has

met a large number of colleagues and as he is a friendly and

generous person, many of them became his friends and

were always very faithful to him.
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Statistical Models and

Methods



Chapter 1

Unidimensionality,

Agreement and Concordance

Probability

The evaluation and comparison of various methods often

arise in medical research. For example, the evaluation of

reproducibility of a new measurement technique often needs

a comparison with the established technique, and image

interpretation is often read by two or more observers. In this

chapter, we provide a review of the measures of agreement

and association, describe the statistical models underlying

the Cronbach’s alpha coefficient (CAC) and the backward

reliability curve (BRC), the kappa coefficient, and present a

general approach based on the concept of concordance

probability. In particular, we illustrate the relationship

between the concordance probability and various existing

measures of agreement and association, namely Kendall’s τ

, Somer’s D, area under receiver operating characteristic

(ROC) curve and Harrell’s c-index. In addition, we review the

estimation of concordance probability and present its large

sample properties. Recent developments in the analysis of

right censored data are also presented.

1.1. Introduction
The evaluation and comparison of various methods often

arise in medical research. For example, the evaluation of

reproducibility of a measurement technique often needs a



comparison with the established technique, and the

interpretation of a computerized tomography (CT) or

magnetic resonance imaging (MRI) scan is often read by two

or more observers. There is considerable literature on the

measure of agreement (see [CHO 04], [BAR 07], [WAT 10],

[SHO 04] and [LIN 10]). The methods vary with different

types of measurement, i.e. continuous or categorical

measurements. When the response variable is continuous,

there are several intuitive approaches, namely comparison

of means, Cronbach’s coefficient alpha (CAC), various

correlation coefficients and the test of slope being 1 in a

simple linear regression, as well as alternative methods, the

limits of agreement [BLA 86, BLA 99], the concordance

correlation coefficient [LIN 89], mean squared deviation and

total deviation index [LIN 00], and coverage probability

approach [LIN 02]. When the response variable is

categorical, kappa statistic, Somer’s D-statistic and logistic

regression are commonly used. When one measure is binary

and the other measure is continuous, the methods of the

ROC curve and logistic regression approach are often

applied. These methods are related to typical concordance

correlation between repeated measurements through an

underlying linear or nonlinear parametric model. Recently

developed concordance probability is a non-parametric

approach. The concordance probability is commonly used as

a measure of discriminatory power and predictive accuracy

of statistical models. We show that the concordance

probability also provides a unified measure of agreement for

different types of measurement.

In this chapter, we present a review of the statistical

models underlying the CAC and the BRC in section 1.2, and

the kappa coefficient in section 1.3. In section 1.4, we

introduce the concordance probability and describe its

relationship with Kendall’s τ , Somer’s D and area of ROC

curve of sensitivity and 1–specificity for different cutoffs. In

section 1.5, we review the estimation of concordance



probability and present its large sample properties. In

section 1.6, we present recent developments on how to use

the concordance probability to assess the agreement among

different measures. We present the extension of the

approach to the right censored data in section 1.7 and

conclude with some discussion in section 1.8.

1.2. From reliability to

unidimensionality: CAC

and curve

1.2.1. Classical unidimensional

models for measurement

Latent variable models involve a set of observable variables

A = {X1, X2, …, Xk} and a latent (unobservable) variable θ

of dimension d ≤ k. In such models, the dimensionality of A

is captured by the dimension of θ, the value of d. When d =

1, the dimensionality of set A is called unidimensional.

In a health-related quality of life (HrQoL) study,

measurements are taken with an instrument: the

questionnaire, which consists of questions (or items). In such

cases, the Xij represents the random response of the jth

question by the ith subject and the Xj denotes the random

variable generating responses to the jth question.

The parallel model is a classical latent variable model

describing the unidimensionality of a set A = {X1, X2, …,

Xk} of quantitative observable variables. Let Xij be the

measurement of subject i, given by a variable Xj, i = 1, …, n,

j = 1, …k, then:



[1.1] 

where τij is the unknown true measurement corresponding

to the observed measurement Xij and εij a measurement

error. The model is called a parallel model if the τij can be

divided as:

where βj is an unknown fixed parameter (non-random)

representing the effect of the jth variable, and θi is an

unknown random parameter effect of the ith subject.

It is generally assumed that θi has zero mean and

unknown standard deviation σθ . It should be noted that the

zero-mean assumption is an arbitrary identifiability

constraint with consequence on the interpretation of the

parameter: its value must be interpreted comparatively to

the mean population value. In HrQoL setting, θi is the true

latent HrQoL that the clinician or health scientist wants to

measure and analyze. It is a zero mean individual random

part of all observed subject responses Xij, the same

whatever the variable Xj (in practice, a question j of an

HrQoL questionnaire). It is also generally assumed that εij

are independent random errors with zero mean and

standard deviation σ corresponding to the additional

measurement error. Moreover, the true measure and the

error are assumed to be uncorrelated, i.e. cov(θi, εij) = 0.

This model is known as the parallel model, because the

regression lines relating any observed item Xj, j = 1…, k,

and the true unique latent measure θi are parallel.

Model [1.1] can be obtained in an alternative way through

modeling the conditional moments of the observed

responses. Specifically, the conditional mean of Xij can be

specified as:



[1.2] 

where βj, j = 1, …, k, are fixed effects and θi, i = 1, …, n,

are independent random effects with zero mean and

standard deviation σθ. The conditional variance of Xij is

specified as:

[1.3] 

Assumptions [1.2] and [1.3] are classical in experimental

design. The model defines relationships between different

kinds of variable: the observed score Xij, the true score τij

and the measurement error εij. It is significant to make some

remarks about the assumptions underlying this model. The

random part of the true measure given by response by the

ith individual does not vary with the question number j as

the θi does not depend on j, j = 1, …, k. The model is

unidimensional in the sense that the random part of all

observed variables (questions Xj) is generated by the

common unobserved variable (θi). More precisely, let X*
ij =

Xij – βj be the calibrated version of the response to the jth

item by the ith subject, then models [1.2] and [1.3] can be

rewritten as:

[1.4] 

along with the same assumptions on β and θ and the

conditional variance model [1.3].

When both θi and εij are normally distributed, then we

have the so-called conditional independence property:

whatever j and j′, two observed items Xj and Xj′ are

independent conditional to the latent θi.

1.2.2. Reliability of an

instrument: CAC



A measurement instrument yields values that we call the

observed measure. The reliability ρ of an instrument is

defined as the ratio of two variances of the true over the

observed measure. Under the parallel model, we can show

that the reliability of any variable Xj (as an instrument to

measure the true value) is given by:

[1.5] 

This coefficient is also known as the intra-class coefficient.

The reliability coefficient, ρ, can easily be interpreted as a

correlation coefficient between the true measure and the

observed measure. When the parallel model is assumed, the

reliability of the sum of k variables is:

[1.6] 

This formula is known as the Spearman–Brown formula

[BRO 10, SPE 10].

The Spearman–Brown formula shows a simple relationship

between  and k, the number of variables. It is easy to see

that  is an increasing function of k.

The maximum likelihood estimator of , under the parallel

model with normal distribution assumptions, is known as

CAC [CRO 51, BLA 97], which is denoted as α:

[1.7] 

where

and



Under the parallel model, the variance–covariance matrix

of the observed items Xj and the latent trait θ is:

and the corresponding correlation matrix of the observed

items Xj and the latent trait θ is:

The marginal covariance VX and correlation matrix RX of

the k observed variables Xj, under the parallel model, are

and

This structure is known as a compound symmetry-type

structure. It is easy to show that the reliability of the sum of

k items given in [1.7] can be expressed as:



[1.8] 

with J a vector with all components being 1, and

[1.9] 

where SX is the observed variance, empirical estimation of

SX. There is, even in the recent literature, an understanable

confusion between Cronbach’s alpha as a population

parameter (theoretical reliability of the sum of items) or its

sample estimate.

In addition, it is easy to show a direct connection between

the CAC and the percentage of variance of the first

component in principal component analysis (PCA), which is

often used to assess unidimensionality. The PCA is mainly

based on the analysis of the latent roots of VX or RX (or, in

practice their sample estimate). The matrix RX has only two

different latent roots, the greater root is λ1 = (k − 1)ρ + 1,

and the other multiple roots are 

. So, using the Spearman–

Brown formula, we can express the reliability of the sum of

the k variables as .

This clearly indicates a monotonic relationship between ,

which can be consistently estimated by the CAC, and the

first latent root λx, which in practice is naturally estimated

by the corresponding observed sample correlation matrix

and thus the percentage of variance of the first principal

component in a PCA. So, CAC can also be considered as a

measure of unidimensionality.

Nevertheless such a measure is not very useful, because it

is easy to show, using the Spearman–Brown formula [BRO

10, SPE 10], that under the parallel model assumption, the

reliability of the total score is an increasing function of the

number of variables.


