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Introduction

Mesh generation techniques are widely employed in various

engineering fields including those related to physical models

described by partial differential equations (PDE). Numerical

simulations of such models are intensively used for design,

dimensioning and validation purposes. One of the most

frequently used methods, among many others, is the finite

element method (FEM). In this method, a continuous

problem (the initial PDE model) is replaced by a discrete

problem that can actually be computed thanks to the power

of currently available computers. The solution to this

discrete problem is an approximate solution to the initial

problem whose accuracy is based on the various choices

that were made in the numerical process.

The first step (in terms of actual computation) of such a

simulation involves constructing a mesh of the

computational domain (i.e., the domain where the physical

phenomenon under interest occurs and evolves) so as to

replace the continuous region by means of a finite union of

(geometrically simple and bounded) elements such as

triangles, quadrilaterals, tetrahedra, pentahedra, prisms,

hexahedra, etc., based on the spatial dimension of the

domain. For this reason, mesh construction is an essential

pre-requisite for any numerical simulation of a PDE problem.

Moreover, mesh construction could be seen as a bottleneck

for a numerical process in the sense that a failure in this

mesh construction step jeopardizes any subsequent

numerical simulation.

Mesh construction in general and more precisely for

numerical simulation purposes involves several different

fields and domains. These include (classical) geometry, so-



called computational geometry and numerical simulation

(engineering) topics coupled with advanced knowledge

about what is globally termed computer science. The above

classification in terms of disciplines which can interact in

mesh construction for numerical simulation clearly shows

why this topic is not so straightforward. Indeed, people with

a geometrical, a computational geometry or a numerical

background may not have the same perception of what a

mesh (and, a fortiori, a computational mesh) should be, and

subsequently do not share a common idea of what a mesh

construction method could be.

To give a rough idea of this problem, we mention, without

in any way claiming to be exhaustive, some commonly

accepted ideas about meshes based on the background of

those considering the issue.

From a purely geometrical point of view, meshes are

mostly of interest for the properties enjoyed by such or such

geometrical item, a triangle for instance. In this respect,

various issues have been investigated regarding the

properties of such an element including aspect ratios, angle

measures, orthogonality properties, affine properties and

various related constructions (centroids, circumcenters,

circumcircles, incircles, particular (characteristic) points,

projections, intersections, etc.).

A computational geometry point of view mainly focuses on

theoretical properties about triangulation methods including

a precise analysis of the corresponding complexity. In this

respect, Delaunay triangulation and its dual, the Voronoi’

diagram, have received much attention since nice

theoretical foundations exist and lead to interesting

theoretical results. However, triangulation methods are not

necessarily suitable for general meshing purposes and

must, to some extent, be adapted or modified.



Mesh construction from a purely numerical point of view

(where, indeed, meshes are usually referred to as

triangulations or grids) tends to reduce the mesh to a finite

union of (simply shaped) elements whose size tends

towards 0: “ Let  be a triangulation where h tends to 0,

then …, ” where  is provided in some way or other (with no

further details given on this point). The construction of is no

longer a relevant problem if a theoretical study is envisaged

(such as a convergence issue for a given numerical

scheme).

In contrast to all the previous aspects, people actually

involved in mesh construction methods face a different

problem. Provided with some data, the problem is to

develop methods capable of constructing a mesh (using a

computer) that conforms to the needs of "numerical" and

more generally "engineering" people. With regard to this,

the above subscript h does not vanish, the domain

geometry that must be handled could be of arbitrary

complexity and a series of requirements may be demanded

based on the subsequent use of the mesh once it has been

constructed. On the one hand, theoretical results about

triangulation algorithms (mainly obtained from

computational geometry) may not be so realistic when

viewed in terms of actual computer implementation. On the

other hand, engineering requirements may differ slightly

from what the theory states or needs to assume.

As a brief conclusion, people involved in “meshing” must

make use of knowledge from various disciplines, mainly

geometry and computation, then combine this knowledge

with numerical requirements (and computational limitations)

to decide whether or not an a priori attractive aspect (for a

particular discipline) is relevant in a meshing process. In

other words, good candidates for mesh construction

activities must have a sound knowledge in various



disciplines in order to be able to select from these what they

really require for a given goal.

Fortunately, we should point out that meshing things are

becoming increasingly recognized as a subject of interest in

its own right, not only in engineering but also at universities

as well. In practice the subject is being addressed in several

places all over the world, and a numerous people are

spending a great deal of time on it. A few specialized

conferences and workshops do exist and papers on meshing

technologies can be found in various journals. Currently a

few books1 entirely (or substantially) devoted to meshing

technologies are available.

Purpose and scope

The scope of this book is multiple and so are the potential

categories of intended readers. As a first remark, we like to

think that the theoretical background that is strictly

necessary to understand the book is anything but

specialized. We are confident that a reasonable knowledge

of basic geometry, a touch of computational geometry and

a good guess of what a numerical simulation is (for

instance, some basic notions about the finite element

method) provide a sufficient background for the reader to

profit from this material. With regard to this, one of our

objectives has been to make most of the presentations self-

contained.

One issue underlying some of the discussions developed in

the book was what material the reader might expect to find

in such a book. A tentative answer to this point has led us to

incorporate some material that could be judged trivial by

readers who are already familiar with some meshing

methods, yet we believe that its inclusion may well prove

useful to less experienced readers.



We have introduced some recent developments in

meshing activities, even if they have not necessarily been

well validated (at least to the industrial standard), so as to

allow advanced readers to initiate new progress based on

this material.

It might be said that constructing a mesh for a given

purpose (academic or industrial) does not strictly require

knowing what the meshing technologies are. Numerous

engineers confronted daily with meshing problems, as well

as graduate students facing the same problem, have been

able to complete what they need without necessarily having

a precise knowledge of what the software package they are

familiar with actually does. Obviously, this point of view can

be refuted and clearly a minimum knowledge of the

available meshing technologies is a key to making this mesh

construction task more efficient. Finally, following the above

observations, the book is intended for both academic

(educational) and industrial purposes.

Synopsis

Although we could have begun by a general purpose

introduction and led on to a presentation of classical

methods, followed by a discussion of advanced methods,

specialized topics, etc., we chose to structure the book in

such a way that it may be read sequentially. Relevant ideas

are introduced when they are strictly necessary to the

discussion, which means that the discussion about simple

notions is made easy while when more advanced

discussions are made, the more advanced ideas are given at

the same time. Also, some almost identical discussions can

be found in several sections, in an attempt to make each

section as self-contained as possible.



The book contains 24 chapters. The first three chapters

introduce some general purpose definitions (Chapter 1) and

basic data structures and algorithms (Chapter 2), then

classical mesh generation methods are briefly listed prior to

more advanced techniques (Chapter 3). The following

chapters provide a description of the various mesh

generation methods that are in common use. Each chapter

corresponds to one type of method. We include discussions

about algebraic, PDE-based or multi-block methods (Chapter

4), quadtree-octree based methods (Chapter 5), advancing-

front technique (Chapter 6), Delaunay-type methods

(Chapter 7), mesh generation methods for implicitly defined

domains (Chapter 16) and other mesh generation

techniques (Chapter 8) not covered by the previous cases.

Chapter 9 deals with Delaunay-admissible curve or surface

meshes and then discusses medial axis construction along

with the various applications that can be envisaged based

on this entity. Prior to a series of five chapters on lines,

curves and surfaces, a short chapter concerns the metric

aspects that are encountered in mesh generation activities

(Chapter 10). As previously mentioned, Chapters 12 to 16

discuss curves and surfaces while Chapter 11 recalls the

basic notions regarding differential geometry for curves and

surfaces. One chapter presents various aspects about mesh

modification tools (Chapter 17), then, two chapters focus on

optimization issues (Chapter 18 for planar or volumic

meshes and Chapter 19 for surface meshes). Basic notions

about the finite element method are recalled in Chapter 20

before looking at a more advanced mesh generation

problems, namely how to construct adapted, mobile or

deformable meshes (Chapters 21, 22 and 23). Parallel

aspects are discussed in Chapter 24. To conclude, an index

is provided to the readers.
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Symbols and Notations

Notations
d refers to the spatial dimension

set of integers, set of reals

Ω refers to a closed geometric domain of 
d

∂Ω refers to the (discretized) boundary of Ω

Γ (Ω) refers to the boundary of Ω

Γ, ∑ refers to a curve, a surface

γ, σ refers to the parametrization of a curve, a surface

refers to a triangulation or a mesh

refers to a set of vertices

Const refers to a constraint (a set of entities)

Conv ( ) refers to the convex hull of 

(Δ, H) refers to a control space

K refers to a mesh element

SK VK refers to the surface area, the volume of element K

K shape quality of mesh element K

dAB, d(A,B) (Euclidean) distance between A and B

Euclidean length of segment PQ

ι
ab (normalized) length of edge AB

Symbols
∇ gradient operator

Hessian tensor

|a| absolute value

integer part or restriction

||·|| Euclidean length of a vector

[a, b] a closed interval

�u, v� dot product of two vectors

( · Λ ·) cross product of two vectors

t
 u u transposed (also u

t
)

Abbreviations



ALE Arbitrary Lagrangian Eulerian

BRep, F-Rep Boundary Representation, Function Representation

CAD Computer Aided Design

CSG Constructive Solid Geometry

MAT Medial Axis Transform

FEM Finite Element Method

PDE Partial Derivative Equation

NURBS Non Uniform Rational B-Splines

LIFO Last In First Out

FIFO First In First Out

BST Binary Search Tree

AVL Adelson, Velskii and Landis tree



Chapter 1

General Definitions
Before going further, it seems important to clarify the

terminology and to provide some basic definitions together

with some notions of general interest. First, we define the

covering-up of a bounded domain, then we present the

notion of a triangulation before introducing a particular

triangulation, namely the well-known Delaunay

triangulation.

A domain covering-up simply corresponds to the naive

meaning of this word and the term may be taken at face

value. On the other hand, a triangulation is a specific

covering-up that has certain specific properties.

Triangulation problems concern the construction, of a

covering-up of the convex hull of a given set of points. In

general, a triangulation is a set of simplices, triangles in two

dimensions, tetrahedra in three dimensions, with certain

properties. If, in addition to a set of vertices, the boundary

of a domain (more precisely a discretization of this boundary

whose vertices are in the above set) is specified or, simply if

any set of required edges (faces) is provided, we encounter

a problem of constrained triangulation. In this case, the

expected triangulation of the convex hull must contain

these required items.

In contrast, the notion of a mesh may now be specified.

Given a domain, namely defined by a discretization of its

boundary, the problem comes down to constructing a

“triangulation” that accurately matches this specific domain.

In a way, we are dealing with a constrained triangulation



but, now, we no longer face a convex hull problem and,

moreover, the mesh elements are not necessarily simplices.

After having established triangulation and mesh

definitions, some other aspects are discussed, including a

suitable element definition (as an element is the basic

component of both a triangulation and a mesh), finite

element definition as well as mesh data structure definition

which are the fundamental ingredients of any further

processing (such as using a finite element method). In

addition, we introduce some definitions related to certain

data structures which are widely used in mesh construction

and mesh optimization processes. To conclude, we propose

measures of mesh quality and of mesh optimality.

Obviously this chapter cannot claim to be exhaustive. In

fact, more specific ideas will be introduced and discussed as

required throughout the book.

1.1 Covering-up and

triangulation

If  is a finite set of points in d (d = 2 or d = 3), the convex

hull of , denoted as Conv(S), defines a domain Ω in d. Let

K be a simplex1 (triangle or tetrahedron according to d,

always considered as a connected and closed set). Then a

covering up r of Ω by means of simplices corresponds to

the following definition:

Definition 1.1 r is a simplicial covering-up of Ω if the

following conditions hold

• (HO) The set of element vertices in r is exactly .

• (H1) , where K is a simplex.



• (H2) The interior of every element K in r is non empty.

• (H3) The intersection of the interior of two elements is

an empty set.

Here is a “natural” definition. With respect to condition

(H1) (where while not strictly necessary, we restrict

ourselves to simplicial elements), one can see that Ω is the

open set corresponding to the domain that means, in

particular, that . Condition (H2) is not strictly

necessary to define a covering-up, but KeTr it is

nevertheless practical with respect to the context and, thus,

will be assumed. Condition (H3) means that element

overlapping is proscribed.

Similarly, we will consider conforming coverings-up,

referred to as triangulations.

Definition 1.2 r is a conforming triangulation or simply a

triangulation of Ω if r is a covering-up following Definition

(1.1) and if in addition, the following condition holds:

• (H4) the intersection of two elements in r is either

reduced to

– the empty set or to

– a vertex, an edge or a face (for d = 3).

More generally, in d dimensions, such an intersection must

be a k-face2 , for k = − 1,…, d − 1, d being the spatial

dimension

Figure 1.1 Conformal triangles (left-hand side) and non-

conformal triangles (right-hand side). Note the vertex

located on one edge in this case.



Remark 1.1 For the moment, we are not concerned with

the existence and possibly uniqueness of such a

triangulation for a given set of points. Nevertheless, a

theorem of existence will be provided below and, based on

some specific assumptions, the particular case of a

Delaunay triangulation will be described.

Euler characteristics. The Euler formula, and its

extensions, the Dehn-Sommerville relationships, relate the

number of k-faces (k = 0, …,d − 1) in a triangulation of Ω.

Such formula can be used to check the topological validity

of a given mesh or also for other purposes, such as the

determination of the genus of a surface.

Definition 1.3 The Euler characteristics of a triangulation 

r, is the alterned summation:

(1.1)

where nk = 0,.., d denotes the number of the k-faces in the

triangulation.

When the triangulation is homotopic to the topological

ball, its characteristic is 1. If the triangulation is

homeomorphic to the topological sphere, its Euler

characteristic is 1 + (−l)d. In two dimensions, the following

relation holds:

where nv, ne and nt are respectively the number of vertices,

edges and triangles in the triangulation, c corresponds to

the number of connected components of the boundary of Ω.



More precisely, if the triangulation includes no hole, then nv

− ne + nt = 1. In three dimensions, the above formula

becomes:

where nf is the number of faces, nt the number of tets and g

stands for the genus of the surface (i.e., the number of

holes) of the triangulation. Thus, a triangulation of a closed

surface is such that nv − ne + nf = 2.

Delaunay triangulation. Among the different possible

types of triangulations, the Delaunay triangulation is of

great interest. Let us recall that  is a set (a cloud) of points

(sites) and that Ω is Conv(S), the convex hull of .

Definition 1.4 r is the Delaunay triangulation of Ω if the

open discs (balls) circumscribed to any of its elements does

not contain any vertex of S.

Figure 1.2 The empty sphere criterion is violated, the disc

of K encloses the point P. Similarly, the circumdisc of the

triangle with vertex P includes the vertex of triangle K

opposite the common edge (the criterion is symmetric for

any pair of adjacent elements).

This criterion, the so-called empty sphere criterion or

Delaunay criterion, means that all open balls associated

with all elements do not contain any vertex, a closed ball

containing the vertices of the element under consideration

only. This is the main characterization of the Delaunay

triangulation. The Delaunay criterion leads to several other



characteristics of any Delaunay triangulation. Figure 1.2

shows an example of an element K which does not meet the

Delaunay criterion.

A basic theoretical issue follows.

Theorem 1.1 There exists a unique Delaunay triangulation

of a set of points.

The proof is evident by involving the duality with the

Voronoï’ diagram associated with the set of points (cf.

Chapter 7). The existence is then immediate and the

uniqueness is achieved as the points are assumed in

general position3 if one wishes to have a simplicial

triangulation. Otherwise, the following remark holds.

Remark 1.2 In the case of more than three co-circular

(resp. four co-spherical) points, a circle (resp. sphere) exists

enclosing these points. If the related disk (resp. ball) is

empty, the Delaunay triangulation exists but contains non-

simplicial elements such as polygons (resp. polyhedra).

Hence, the uniqueness holds if non-simplicial elements are

allowed while if the latter are subdivided by means of

simplices, several solutions can be found. Nevertheless,

while it may be excessive, we will continue to speak of the

Delaunay triangulation by observing that all any partitions

of a non-simplicial element are equivalent after swapping4 a

k-face.

A brief digression. The notion of a Voronoï diagram

(though it had yet to be called as such!) first appeared in

the work of the French philosopher R. Descartes (1596-

1650) who introduced this notion in 1644 in his Principia

Philosophiae, which aimed to give a mathematical

description of the arrangement of matter in the solar

system. In 1850, G. Dirichlet (1805-1859) studied this idea

in two and three dimensions and this diagram came to be

called the Dirichlet tessellation [Dirichlet-1850]. However,

its definitive name came after M.G. Voronoï (1868− 1908),



who generalized these results in d dimensions [Voronoï–

1908].

Nature provides numerous examples of arrangements and

quasi-regular paving which bear a strange resemblance to

Voronoï diagrams. Figure 1.3 illustrates some of these

typical arrangements5.

Constrained triangulation. Provided a set of points and,

in addition, a set of edges (resp. edges and faces in three

dimensions), an important problem is to ensure the

existence of these edges (resp. these edges and faces) in a

triangulation. In the following, Const denotes a set of such

entities.

Definition 1.5 r is a constrained triangulation of Ω for

Const if all and any element of Const is an entity of r.

In particular, a constrained triangulation6 can satisfy the

Delaunay criterion locally, except in some neighborhood of

the constraints.

Remark 1.3 As above, provided a set of points and a

constraint, we are not concerned here with the existence of

a solution triangulation.

Figure 1.3 Top, the wings of a dragonfly (doc. A. LeBéon)

show an alveolar structure apparently close to a Voronoï

diagram (left-hand side) and one of the more representative

examples of regular paving (consisting of hexagonal cells) is

that of a bee’s nest (right-hand side). Bottom, two examples

of natural arrangements. Left-hand side: the basaltic rock

site of the Giant’s Causeway, Co Antrim, Northern Ireland

(photo credit: John Hinde Ltd.). Right-hand side, desert

region of Atacama (Chile), the drying earth forms patterns

close to Voronoï cells.


