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Preface

This monograph is the result of lectures given by the

author at the Université d’Aix-Marseille (France) to students

of the Diplôme d’Etudes Approfondies de Méanique (which is

now the Master de Mécanique). It is aimed mainly at

postgraduate students, PhD students and practicing

acoustical scientists and engineers.

Among the most important sources of noise pollution are

transport means, that is, cars, trucks, trains, planes, boats,

etc. All these vehicles are essentially composed of thin

vibrating structures. This is the reason why the present book

is devoted to the vibrations and vibro-acoustics of thin

structures only.

The simplest thin structure is the thin plate, then comes

the circular cylindrical thin shell and the spherical thin shell.

These basic structures provide a set of examples which

make it possible to understand the basis of the physical

phenomena of vibrations and sound radiation. Of course,

most of the practical situations involve more complex

structures, but their vibratory and acoustic behaviors are

very similar to those of the simple structures described

here, and the mathematical and numerical tools necessary

to predict their response are much the same as those used

for the simple examples.

Another aim of this monograph is to propose a

homogenous theoretical approach to plates and shells.

Chapter 1 is devoted to equations which describe a good

approximation of the vibrations of thin solids, and more

precisely: plates, circular cylindrical shells and spherical

shells. Analytical or numerical solutions of the mechanics

equations are always based on a variational principle, which

is, of course, the mathematical transcription of the



conservation of energy principle which governs any

phenomenon in physics. Thus, to establish the approximate

equations governing the vibrations of thin structures we

start from the expressions of the potential and kinetic

energies of three-dimensional elastic solids, written in a

convenient coordinate system: a Cartesian system for the

plate, a cylindrical or spherical system for the shells. The

hypothesis “thin structure” makes it possible to expand the

three components of the displacement and the six

independent components of the stresses as Taylor-like series

of the transverse variable, leading to an approximate

system of equations. We adopt the simplest approximations

which are quite sufficient for a good understanding of the

physical phenomena. Nevertheless, the method which is

used can easily provide more accurate equations as they

are proposed in the basic treatises cited in the bibliography.

Chapter 2 deals with the vibrations of in vacuo thin

structures. The most important part concerns beams and

plates. The classical method, based on the separation of

variables, used to solve the vibration equation of simple

plates of constant thickness (circular and rectangular) is

developed in detail. Then, similar methods are applied to

plates with a non-constant thickness. Finally, the Boundary

Element Method (BEM) is described in some detail and

illustrated by a comparison between numerical predictions

and experimental results.

The chapter then continues with the problem of shell

vibrations. For circular cylindrical shells, some of the

existing analytical methods are proposed which enable us to

give the expression of the resonance modes and of the

response to a harmonic excitation. The Boundary Element

Method is also described. For spherical shells, it seems that

no analytical method exists. The main reason is that the

equations are not separable. Thus, the presentation is

limited to the variational equations which govern the



resonance modes and the forced harmonic regime and to a

general method for solving them is briefly outlined.

The third and last chapter deals with the important

problems of acoustical engineering of sound generation by

vibrating structures and sound transmission through elastic

structures. It starts with a very simple academic one-

dimensional example: the transmission of acoustic energy

through a spring supported piston in a wave guide and the

radiation of sound by such a system. Although this system is

not realistic we do not see how an experiment could be

conducted its simplicity makes it possible to develop an

exhaustive study: the equations which describe the system

can be solved analytically, both in the frequency and time

domains. The interest of such an example is that it points

out clearly the main aspects of the phenomena involved in

sound transmission and sound radiation by vibrating

structures.

After a short section, in which the basic concepts and

equations of acoustics are recalled, several vibro-acoustics

problems are examined in some detail. These concern

plates and circular cylindrical shells. The important notion of

“fluid-loaded resonance modes” is introduced: these modes

are characteristics of the structure-fluid system and can be

used to predict the response to any excitation (harmonic,

transient, random). Numerical methods for computing either

the resonance modes of a fluid-loaded structure or its

response to an external excitation are described. Numerical

results are given and, as far as possible, compared with

experiments which have been selected from recent PhD

theses.

At the end of the three chapters, a few exercises are

proposed as complements of the text itself. At the end of

this monograph, the bibliography proposes two kinds of

references: basic textbooks in which the reader can find

much more detail on the different aspects which are



developed; specialized papers on the topics, and particularly

those from which numerical and experimental results have

been used to illustrate the theoretical developments.

The aim of this monograph is to present the basic

concepts and methods necessary for the study of vibro-

acoustics phenomena. As such, only classical analytical and

numerical methods are described: separation of variables,

series expansions in terms of special functions, matched

asymptotic expansions, Boundary Element Methods (BEM).

Nowadays, much more powerful numerical methods have

been developed, for example, Statistical Energy Analysis

(SEA), Finite Element Methods (FEM) and mixed methods

such as various BEM-FEM methods, medium and high

frequency approximations, numerical techniques for

improving the performances of BEM and FEM computer

programs (in particular the Fast Multi-pole Method), etc.

Several specialized books have already been published on

these topics. Several pieces of software for acoustics and

vibro-acoustics engineering are now available.



Chapter 1

Equations Governing the

Vibrations of Thin Structures

1.1. Introduction

1.1.1. General Considerations on Thin

Structures

Thin structures are commonly called thin plates, thin

shells, beams or rings (the term thin is generally omitted

when there is no ambiguity). A plate or a shell is a solid in

which one of its dimensions — called its thickness — is small

compared to the other two; beams and rings are solids

which have two dimensions which are small compared to

the third one. The term small means that some

approximations of the general equations of elasticity are

sufficient to describe stresses and strains accurately

enough: thus, depending on the accuracy which is required

to predict the physical phenomenon, different equations are

used. The present chapter deals with the simplest

approximation. More elaborated approximations can be

found in several textbooks, such as those mentioned in the

bibliography [FLU 90, LAN 67, LEI 69, LEI 73, LOV 44].

The geometry of a shell (or a plate) is described by three

variables: two of them — say ξ1 and ξ2 — are the

parametric coordinates of a surface Σ (a plane in the case of

a plate); the third one, ξ3, in the direction normal to Σ and

sometimes called the transverse variable, is a function of



the first two which varies within two bounds, -h−(ξ1,ξ2) and

+h+(ξ1,ξ2), which remain small compared to any

characteristic dimension of Σ. Beams and rings are

described in a similar way.

Approximate equations governing the vibrations of thin

structures are based on several hypotheses. The main one

is that the expansions of every mechanical quantity

(displacement, forces, momentums, etc.) into a Taylor series

of the transverse variable can be truncated at a low order.

The second hypothesis is that the two boundaries ξ3 = -h−

(ξ1,ξ2) and ξ3= +h+(ξ1,ξ2) can be considered as free of

any constraint: this means that the constraints exerted on

these surfaces are small compared to the volume

constraints. When vibrations are concerned, it is necessary

to assume that wavelengths involved are large compared to

the maximum thickness of the structure.

There are essentially two methods to establish

approximate equations for the vibrations of thin structures.

The most ancient one consists of approximating the forces

and momentums exerted of an elementary volume of solid.

This leads immediately to a system of partial differential

equations and, then, the energy equations can be deduced.

The second method — which we can call the energy

method — starts with the energy equation of the three-

dimensional solid and approximations are made: this leads

to the energy equation of the thin structure from which the

partial differential equations are deduced. This second

approach is adopted here. The main reason is that it leads

to a variational form of the problem which is perfectly

suitable for numerical computation (expansion of the

solution in terms of a set of basis functions or finite element

methods).



1.1.2. Overview of the Energy Method

Let Σ, with boundary ∂Σ, be a surface which can be

parametrized by a coordinate system -h−(ξ1,ξ2). It is

assumed that a unit normal vector  exists everywhere on

this surface. A point in the neighborhood of Σ can be defined

by local coordinates (ξ1,ξ2, ξ3), where ξ3 is counted along

the normal vector  For simplicity, it is assumed that this

coordinate system is an orthogonal system.

Let us define two regular functions h−(ξ1,ξ2)< 0 and h+

(ξ1,ξ2) > 0 with |h−| and h+ small compared to the

domains of variations of ξ1 and ξ2. Space domain Ω defined

by {(ξ1,ξ2) ∈ Σ h−(ξ1,ξ2) ≤ ξ3 ≤ h+(ξ1,ξ2)} is occupied by

an elastic (or visco-elastic) solid. It is assumed that

boundaries ξ3 = h−(ξ1,ξ2) and ξ3 h+(ξ1,ξ2) are free (or

submitted to loads which, in a first approximation, are

negligible).

Let ij be the strain tensor and ij the stress tensor, where

the subscripts i and j take the values 1, 2 and 3. The

potential energy of the solid is given by the integral:

In this equation, as well as throughout this chapter, the

convention of summation over repeated subscripts is

adopted, that is:

Because of the hypothesis that the wavelengths of the

vibratory waves are large compared with the thickness of

domain Ω, the strain and stress tensors are expected to vary



slowly with respect to variable ξ3. Thus, it is reasonable to

expand each of them into a Taylor series of this variable:

The hypothesis of free boundaries for ξ3 = h− and ξ3 =

h+ is written as:

This provides relationships between the terms of the stress

tensor expansion, in particular, we obtain:

The stress-strain relationship (here, Hooke’s law) is then

applied and relationships between the  are obtained. All

these results are introduced into the expression of the

potential energy. The quantity to be integrated is thus a

Taylor series with respect to transverse variable ξ3 and, as a

consequence, the integral over this variable can be

performed analytically. Finally, the potential energy is

expressed by a two-dimensional integral over the mean

surface Σ. The same approximation is made to express the

kinetic energy.

To obtain the variational form of the approximated

equation governing the vibrations of the thin body, the

virtual works theorem is applied. As is usually done, an

integration by parts leads to the corresponding partial

differential equations and provides boundary conditions

along ∂Σ

1.2. Thin Plates

Let Σ be a domain of the plane.(x1; x2), with boundary ∂Σ.

It is assumed that there exists almost everywhere a unit

vector  normal to ∂Σ and pointing outward; there also exists

a unit tangent vector  which makes an angle π/2 with . Let



Ω be the cylindrical domain with basis Σ and extending from

x3 = −h/2 to x3 = h/2, where h remains small compared to

any characteristic dimension of Σ: this means that the

thickness of Ω is a few percent of this characteristic length.

In section 1.2.1, it is assumed that h is constant; the

equations for a plate of variable thickness are given section

1.2.2.

A homogenous isotropic elastic solid occupies Ω: it has a

density μs, a Young’s modulus E and a Poisson’s ratio v. The

boundaries x3 = −h/2 and x3 h/2 are free (external forces

applied to the plate are zero or negligible). It is assumed

that there is no in-plane external force.

As is commonly done in mechanics, in the following, the

derivation of a function f with respect to variable xi is

denoted by f,i.

1.2.1. Plate with Constant Thickness

Let.(U1; U2; U3) be the components of the displacement of

a point of the solid. The strain tensor ij is defined by:

Let ij be the stress tensor. Assuming that Hooke’s law is

valid, the strain stress relationship is expressed by:

(1.1) 



We look for approximations of the displacement and the

stress tensor as truncated Taylor series in x3, that is:

The free boundary condition at x3 = ±h/2 is written as:

This implies the following equalities:

Introducing this result into Hooke’s law, it appears that all

the components of the displacement can be expressed in

terms of component  only; more precisely, we obtain:

(1.2) 

The potential energy of the solid is the integral over Ω of

quantity ij ij; it is approximated by the following positive

quantity:

(1.3) 

The same approximations of the displacement leads to the

following approximation for the kinetic energy:

(1.4) 

where  is the time derivative of w.

Let us now assume that a force, normal to Σ, with density f

is exerted on the plate. The virtual works theorem implies



that the work of the external force corresponding to a virtual

displacement δw obtained within a time interval δt is equal

to the variation of the total energy of the solid, that is:

(1.5) 

or equivalently:

(1.5′) 

The variation of the kinetic energy is obtained using the

following equality:

Integrations by parts lead to:

(1.6) 

where  is the curvilinear abscissae along ∂Σ. The different

operators in (1.6) are defined as follows:



REMARK.- An elementary calculation shows that Tr  Tr

w, where  is the derivation with respect to the curvilinear

abscissae.

PROOF OF EQUATION (1.6).- Let θ be the angle between the

axis x1 and the normal  at a point P of ∂Σ. The differential

operators with respect to (x1; x2) and to the directions (n, s)

are related as follows (see Figure 1.1):

Let us consider the first integral in equation (1.5′)

Its first component is integrated by parts with respect to x1

and we obtain:

Figure 1.1. Orientations of the normal and tangent unit

vectors with respect to the coordinate axes



In the same way, we obtain:

Gathering these results, we have that the first integral in

(1.5′) becomes:

Let us now consider the terms with a factor (1 − v). The

calculation method being the same, we give the results only.

In order to preserve the symmetric roles played by the



variables x1, and x2, the first integral is split into two equal

terms: the integrations by parts are performed with respect

to x1, and, then, to x2, on the first term, and in the reverse

order on the second term. The result is:

The third and fourth terms become:

Summing up these results leads to:

To end the proof, the derivation operators with respect to

variables (x1, x2) are expressed in terms of the derivation

operators with respect to (n, s). This is a simple, but

nevertheless, tedious calculation which is left to the reader.

The boundary integral in expression (1.6) represents the

work of the different forces and moments that the plate

exerts on its support. The physical meaning of the various

terms is, thus, easy:



– Eh3/12.(1 − v2) Tr ∂nΔw is the factor of δw: it

represents the density of shearing forces that the plate

boundary exerts on its support.

– ℓ1.(w)=-Eh3/12.(1 − v2) [Tr.Δw − (1 − v) Tr ∂s2w] is the

factor of Tr ∂nδw: it represents the density of bending

moments (rotation around the tangential direction).

– ℓ2.(w) = −(1 − v)Eh3/12(1 − v2) Tr ∂n∂sw is the factor

of Tr ∂sδw: it represents the density of twisting moments

(rotation around the normal direction).

Finally, in the case of a regular boundary ∂Σ, that is, a

boundary without angular points, the term ℓ 2(w) in

equation (1.6) is continuous and an integration by parts of

the term ℓ2(w) Tr  can be performed without

any caution. We obtain:

(1.7) 

The term -(1−v)Eh3/12(1−v2) ∂sTr ∂n∂sw is the tangential

derivative of the twisting moment density. The coefficient of

Tr δw is called the Kelvin-Kirchhoff edge reaction.

Integral relationship (1.7) must be satisfied for any virtual

displacement δw; thus, the integrals over Σ and over ∂Σ

must cancel separately. The cancellation of the integral over

Σ leads to the well-known thin plate equation:

(1.8) 



where D is called the plate flexural rigidity. If a harmonic

time dependence of the form e−ıwt is assumed, this

equation becomes:

(1.9) 

(because no confusion can occur, we have used the same

symbols f and w for the amplitudes of the harmonic

excitation and the corresponding displacement: this avoids

needless heavy notations).

The cancellation of the boundary integrals provides what is

called the natural boundary conditions (which, of course, are

a mathematical idealization of the physical conditions which

can be imposed geometrically or mechanically); their

expressions are the same for a transient or a harmonic

excitation:

 Clamped boundary:

 Free boundary:

The second of these two conditions is known as

Kirchhoff’s condition (Kirchhoff’s contribution to the

plates theory has been essential).

 Simply supported boundary:

These boundary conditions imply that there is no energy

loss across the plate boundaries. For that reason they are

called conservative boundary conditions.

To conclude this section, let us mention that the plate

equation obtained here is the simplest one. Many authors

have developed more accurate equations which are valid for

plates whose thickness is not very small; equally, equations

for plates made of non-isotropic material and for sandwich

plates can be found in the literature.



1.2.2. Plate with Variable Thickness

Accounting for a thickness variation does not present any

extra difficulty. Following exactly the same steps as in the

preceding section, we obtain:

(1.10) 

with

These terms are related to the physical efforts exerted by

the plate boundary on its support:

 = density of shearing forces;

= density of bending moments;

 = density of twisting moments.

If ∂Σ is a regular curve (no angular point), an integration by

parts of the third term of the boundary integral can be

performed, which leads to:

(1.11) 



This integral relationship must be satisfied for any virtual

displacement, so the surface integral and the boundary

integral must cancel separately. Thus, the plate

displacement w satisfies the following partial-differential

equation:

(1.12) 

The cancellation of the boundary integral is obtained by the

boundary conditions satisfied by w. As for the plate with

constant thickness, there are three classical boundary

conditions:

 Clamped boundary:

 Free boundary:

 Simply supported boundary:

The “clamped boundary” condition, which is purely

geometrical, is identical to the result obtained for a plate of

constant thickness. Conversely, the “free boundary” and the

“simply supported boundary” conditions, which are

essentially mechanical conditions, involve the variations in

plate rigidity. These boundary conditions are often called

natural boundary conditions because they appear naturally

when the partial differential equation of the plate is

established. However, in practice, the engineer is often

faced with more complex boundary conditions which are

more difficult to describe mathematically.

1.2.3. Boundary with an Angular

Point



In the last two sections, equations (1.6) and (1.10) present

no difficulty for performing an integration by parts because

we are assured that the terms ℓ 2 (w) and  are

continuous. If the boundary has an angular point, these

terms are not a priori continuous: indeed, they involve

derivatives with respect to normal and tangent vectors. At

an angular point, there are two normal vectors and two

tangent vectors (see Figure 1.2). Assume that ∂Σ has an

angular point Q. Let  and  be the two sets of

normal and tangent unit vectors. Let Q1 − resp. Q2 — be

the limit of a point P belonging to the arc (1) — resp. (2) —

tending to Q: of course Q1 and Q2 are geometrically the

same point (they coincide with Q), but the sets of normal

and tangent unit vectors are different. The integrals

involving ℓ2 (w) and  are taken along the curve ∂Σ, in the

trigonometric sense, starting from the point with normal and

tangent vectors  to the point with normal and tangent

vectors . Thus, they take the following forms:

Figure 1.2. The two sets of normal and tangent unit

vectors at an angular point



This result does not change the “clamped” and “simply

supported” boundary conditions, but the “free boundary”

condition must be modified as follows:

 constant thickness:

 variable thickness:

The additional condition expresses that the twisting

moments (rotation around the normal direction) must

remain continuous even if the normal direction has a jump.

1.3. Beams

Let Ω be a space domain defined by: Ω = [−L/2 ≤ x1 ≤ L/2,

(x2; x3) ∈ σ (x1)], the dimensions of the cross-section σ

being small compared to L. An elastic solid occupying such a

“long” and “linear” domain is called a beam. The aim of this

section is to establish the equations governing the pure



bending of a beam with a constant rectangular cross-

section, that is a σ≡(0 < |x2| < d/2, 0 < |x3| < h/2). By pure

bending, we mean that all the points of the solid which, at

rest, are in a given plane parallel to the (x1; x2)-plane

remain in this plane. Furthermore, it is assumed that the

strains are small. Nevertheless, the displacement of a point

can be rather large compared to d and h.

Beams with less simple geometries and submitted to more

complicated deformations are commonly studied in many

classical text-books (see, for example [LAN 67]): circular,

elliptical cross-sections, combination of bending in two

different directions, twisting around the axis, etc. The

interest of the beam here is purely mathematical: indeed,

the beam resonance modes provide a good basis for the

computation of the resonance modes for an in vacuo or

fluid-loaded rectangular plate. It is thus sufficient to pay

attention to beams with a constant rectangular cross-

section, made of a homogenous, isotropic and purely elastic

material.

Considering a beam as a narrow rectangular plate, its

displacement satisfies equation (1.5′). The hypothesis of

pure flexion implies that the displacement is independent of

the variable x2 and an integration with respect to this

variable leads to:

(1.13) 

with F = fd = force per unit length

After integrations by parts, we obtain:



(1.14) 

Classically, the factor v2, which is always small (less than

0.12) is neglected. Thus, the partial differential equation

which governs the beam flexion is:

(1.15) 

The quantity I is called the inertia momentum of the cross-

section with respect to a line parallel to x3 = 0 and D = EI is

called the flexural rigidity of the beam. This equation

remains valid for any constant cross-section which is

symmetric with respect to the plane x3 and the inertia

moment is defined by:

Three boundary conditions at x1 = L/2 and x1 = −L/2 are

commonly used:

 clamped boundaries: w = 0; ∂w/∂x1 = 0;

 free boundaries: , 

 simply supported boundaries: w = 0; 

Final Comment

To establish the plate equation, it is generally assumed

that there exists a neutral surface, that is, a surface along

which the distance between two points remains constant:

this is of course the case for a constant thickness plate and

for a plate with a thickness which varies symmetrically with



respect to the x3-plane. The method used here does not

require such a hypothesis.

Nevertheless, the result of the integration over variable x3

which is performed to obtain equations (1.6) or (1.11)

depends on the location of the plane x3 = 0. Thus, the more

accurate approximation is certainly obtained if this plane

coincides with the neutral surface. The same remark applies

equally to the beam equation.

1.4. Circular Cylindrical Shells

Let us consider a circular cylindrical surface Σ and a three-

dimensional domain Ω defined in cylindrical coordinates by

where h, the thickness of Ω, is small compared to both R

and L/2 (see Figure 1.3). An elastic, homogenous and

isotropic solid — characterized by a density μs, a Young’s

modulus E and a Poisson’s ratio v — occupies Ω. The two

boundaries r = −h/2 and r = +h/2 of the elastic solid are

free (zero or negligible forces). The displacement of a point

of the solid is denoted by 

Figure 1.3. The coordinate system of the cylindrical shell


