


Table of Contents

Foreword

Chapter 1. Sounds

1.1. Sound propagation

1.2. Music theory interlude

1.3. Different types of sounds

1.4. Representation of sound

1.5. Filtering

1.6. Study problems

1.7. Practical computer applications

Chapter 2. Music Instruments

2.1. Strings

2.2. Bars

2.3. Membranes

2.4. Tubes

2.5. Timbre of instruments

2.6. Study problems

2.7. Practical computer applications

Chapter 3. Scales and Temperaments

3.1. The Pythagorean scale

3.2. The Zarlino scale

3.3. The tempered scales

3.4. A brief history of A4

3.5. Giving names to notes



3.6. Other examples of scales

3.7. Study problems

3.8. Practical computer applications

Chapter 4. Psychoacoustics

4.1. Sound intensity and loudness

4.2. The ear

4.3. Frequency and pitch

4.4. Frequency masking

4.5. Study problems

4.6. Practical computer applications

Chapter 5. Digital Sound

5.1. Sampling

5.2. Audio compression

5.3. Digital filtering and the Z-transform

5.4. Study problems

5.5. Practical computer applications

Chapter 6. Synthesis and Sound

Effects

6.1. Synthesis of musical sounds

6.2. Time effects: echo and reverberation

6.3. Effects based on spectrum modification

6.4. Study problems

6.5. Practical computer applications

Bibliography



Index





First published in France in 2005 by Hermès

Science/Lavoisier entitled “Musique et acoustique : de

l’instrument à l’ordinateur“

First published in Great Britain and the United States in

2006 by ISTE Ltd

Apart from any fair dealing for the purposes of research or

private study, or criticism or review, as permitted under the

Copyright, Designs and Patents Act 1988, this publication

may only be reproduced, stored or transmitted, in any form

or by any means, with the prior permission in writing of the

publishers, or in the case of reprographic reproduction in

accordance with the terms and licenses issued by the CLA.

Enquiries concerning reproduction outside these terms

should be sent to the publishers at the undermentioned

address:

ISTE Ltd 

6 Fitzroy Square 

London W1T

5DX 

UK 

www.iste.co.uk

ISTE USA 

4308 Patrice Road 

Newport Beach, CA

92663 

USA 

© ISTE Ltd, 2006

© LAVOISIER, 2005

The rights of Philippe Guillaume to be identified as the

author of this work have been asserted by him in

accordance with the Copyright, Designs and Patents Act

1988.

Library of Congress Cataloging-in-Publication Data

http://www.iste.co.uk/


Guillaume, Philippe, 1955-

[Musique et acoustique. English]

Music and acoustics: from instrument to computer/Philippe

Guillaume.

p. cm.

Includes bibliographical references (p. ) and index.

ISBN-13: 978-1-905209-26-2

ISBN-10: 1-905209-26-6

1. Music--Acoustics and physics. 2. Computer sound

processing. I. Title.

ML3805.G8513 2006

781.2'3--dc22

2006028748

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British

Library

ISBN 10: 1-905209-26-6

ISBN 13: 978-1-905209-26-2



 

 

 

 

 

 

To Nicole, Cécile and Olivier



Foreword

How does a tuner achieve such a precise tuning of a piano

or an organ using nothing but his ears? Why does the

clarinet, though equal in length to the C flute, play one

octave lower? What difference is there between the

Pythagorean scale and the tempered scale? How can a

series of notes seem to rise indefinitely even though it

always repeats the same notes? What are the possibilities

offered by digital sound? What are its limitations? How can a

compression technology such as MP3 achieve a tenfold

reduction of a sound file’s size without significantly altering

it? What is the very simple principle underlying audio

synthesis in Yamaha’s famous keyboard, the DX7? These are

a few examples of the questions we will try to answer.

The goal of this book is to use these questions to give the

reader an overview of the nature of musical sound, from its

production by traditional musical instruments to sounds

obtained by audio synthesis, without trying to be exhaustive

however: this book is not meant as a catalogue, but instead,

I hope, as a first step that will enable the reader to move on

to more specific areas in this field. Musical sound is

addressed from a scientific standpoint, and the succession

of causes that lead to a specific type of sound are, as much

as possible, described in a simplified but precise manner.

The fact, for example, that a particular sound is composed

of harmonics (strings, pipes, etc.) or of partials (bells,

timpani, etc.) finds its causes in the physical laws that

govern the behavior of materials, laws that induce

mathematical equations, the nature of which leads to a

certain characteristic of the produced sound.

This book is intended for any reader interested in sound

and music, and with a basic scientific background: students,



teachers, researchers, people who work in a scientific or

technical field. It describes and relies on concepts of

acoustics, mathematics, psychoacoustics, computer science

and signal processing, but only to the extent that this is

useful in describing the subject. In order to broaden its

reach, it was written in such a way that the reader may

understand sound phenomena with simple analytical tools

and the smallest possible amount of required knowledge.

Those who teach this material will find diverse and

motivating study problems, and students will find ideas for

different kinds of ‘projects’ they may encounter in their

undergraduate and graduate studies. In the end, my

greatest wish would be to succeed in sharing with the

reader the pleasure I find in understanding the basic

mechanisms underlying the manifestation and the

perception of the sound and music phenomenon.

After an introduction to acoustics, a bit of music theory,

and a study of sounds and their representation in Chapter 1,

we will discuss vibrational modes and the timbre of a few

typical instruments in Chapter 2, and in Chapter 3, we will

relate this with the question of scales and tuning systems.

After wandering off into psychoacoustics in Chapter 4, and

using the opportunity to discover a beautiful acoustic

illusion, we will discuss several aspects of digital sound in

Chapters 5 and 6: sampling, compression technology based

on the properties of hearing (such as the widely known MP3

format), sound effects (vibrato, reverberation, the Leslie

effect) and synthesized sounds, such as for example those

produced using the Chowning technique, made popular by

DX7 synthesizers.

For further development, each chapter ends with the

following:

–study problems, to explore certain themes, or to study

them further in depth. For the reader’s information, the



difficulty and the amount of work required are indicated with

stars: (*) means easy, (**) is average and (***) is difficult;

–practical applications meant to be carried out on a

computer, where the reader will create different kinds of

sounds and play them on a crude synthesizer,

experimenting on the phenomena described in the book, as

well as put his or her hearing to the test, and practice his or

her scales! Practical instructions relevant to these

applications are given at the end of the first chapter.

Website. A website is available to illustrate the book. It

contains many examples of sounds, as well as the programs

used to generate them. It also contains the programs and

sound files necessary to perform the practical applications,

along with the answers. The address of the website is:

www-gmm.insa-toulouse.fr/~guillaum/AM/

Throughout the book, it will be referred to simply as the AM

website.

Reading advice. The chapters were written in a

particular, logical order, and the concept and methods

developed in a given chapter are assumed to be understood

in the chapters that follow. For example, the approach used

to go from the wave equation to the Helmholtz equation,

which is detailed in Chapter 1, will not be explained again

when studying the vibrations of sonorous bodies in Chapter

2. However, you can also browse through it in any other

order, referring if necessary to the previous chapters, and

using the cross-references and the index to easily find

where a given concept was discussed. Finally, because

some phenomena are easier heard than explained, listening

to the website’s audio examples should shed light on any

areas that may still be unclear!

Philippe GUILLAUME

http://www-gmm.insa-toulouse.fr/~guillaum/AM/


Chapter 1

Sounds

Sound and air are closely related: it is common knowledge

that the Moonians (the inhabitants of the Moon) have no

ears! This means we will begin our study of sound with the

physics of its traveling medium: air. Sounds that propagate

through our atmosphere consist of a variation of the air’s

pressure p(x, y, z, t) according to position in space x, y and

z and to the time t. It is these variations in pressure that our

ears can perceive. In this chapter, we will first study how

these sounds propagate as waves. We will then describe a

few different types of sounds and various ways of

representing them. Finally, we will explain the concept of

filtering, which allows certain frequencies to be singled-out.

1.1. Sound propagation
The propagation of a sound wave can occur in any

direction, and depends on the obstacles in its path. We will

essentially be focusing on plane waves, that is to say waves

that only depend on one direction of space. We will assume

that this direction is the x-axis, and therefore that the

pressure p(x, y, z, t) is independent of y and z. Hence it can

simply be denoted by p(x, t). This type of function

represents a plane wave propagating through space, but

also a sound wave inside a tube (see Figure 1.1), such as for

example the one propagating through an organ pipe.



1.1.1. A look at the physical

models

The propagation of sound through air is governed by the

wave equation (see page 21), an equation we will come

across several times since it also determines the movement

of sound waves in the vibrating parts (strings, membranes,

tubes...) of many instruments. In the following paragraphs,

we will see that, in the case of air, this equation is inferred

from three fundamental equations of continuum mechanics.

Figure 1.1. Pressure waves in a tube open at its right end,

with pressure imposed at the other end

Along with the pressure p(x, t), we rely on two other

variables to describe the state of air: its density ρ(x, t), and

the average speed v(x, t) of the air molecules set in motion

by the sound wave, which is not to be confused with the

norm of the individual speed of each molecule due to

thermal agitation, the magnitude of which is close to that of

the speed of sound, denoted by c. In the case of the plane

wave that we are studying, the air moves in a direction

parallel to the Ox-axis, and both the speed υ, and the

pressure are independent of y and z. In the absence of an

atmospheric perturbation, υ varies around the average



value 0, and p and ρ vary around their average values ρ0

and ρ0 (see section 1.1.2), that is to say, their values in the

equilibrium state: silence.

1.1.1.1. Mass conservation

In a fixed section of space, bounded by a cylinder with its

axis parallel to the Ox axis and the two surfaces Sa and Sb,

with respective x-coordinates a and b and areas S (see

Figure 1.2), the variation of the air mass m(t) is due to the

amount of air going through the two surfaces. Nothing goes

through the other interfaces, because the speed is parallel

to the Ox axis. The air mass located inside the section is

and the variation of the air mass per unit of time is the

derivative of m(t), denoted by m′(t). The incoming flux

through Sa, that is to say, the amount of air entering the

section per unit of time, is equal to Sρ(a, t)v(a, t). As for the

incoming flux through Sb, it is equal to –Sρ(b, t)v(b, t), the

change of sign being due to the fact that we are calculating

the balance of what is entering the section (and not of what

is going from left to right). The total flux is therefore

Figure 1.2. Mass balance in the air section: there is no

disappearance or creation of air!

The fact that the total flux Φ(t) is the derivative of the mass

m(t),



can be expressed, if ∂t denotes the partial derivative with

respect to t, by

If we divide by b — a and if b — a tends to 0 (calculation of

the derivative with respect to the first argument), then after

dividing both sides of the equation by x (who was on parole,

confined between a and b):

(1.1) 

The linear acoustics hypothesis consists of assuming that

the variations with respect to the equilibrium state are

small, hence the use of the parameter ε, assumed to be

‘small’:

If we substitute these two expressions in (1.1), and if we

neglect ε2, we get the conservation of mass equation, also

called continuity equation:

(1.2) 

1.1.1.2. The Euler equation

We are now going to observe an amount of air as it moves:

the section of air contained between the surfaces Sa(t) and

Sb(t), with x-coordinates a = a(t) and b = b(t), respectively

(see Figure 1.3), which follow the average movement of the

air molecules; their derivatives are therefore such that

Figure 1.3. The air section shown above is migrating. Its

acceleration results from the pressure forces applied to the

two surfaces Sa(t) and Sb(t)



The external force applied through the surface Sa(t) to the

air section is equal to S p(a, t), and the one applied through

the surface Sb(t) is equal to –S p(b, t). For the other

interfaces, the forces cancel each other out since p is

independent of y and z. We now write Newton’s second law

of motion F = d(mv)/dt:

If we divide by b — a and by S, and if b — a tends to 0, this

leads us to:

If we still assume that variations with respect to the

equilibrium state are small, with

we get, by neglecting the ε2 terms and those of higher

order, the Euler equation:

(1.3) 

1.1.1.3. The state equation

By assuming that there are no heat transfers from one air

section to the other or with the outside, or in other words

that compression and expansion are adiabatic (a hypothesis



confirmed by experiment if these effects are fast enough),

the state equation expresses the fact that pressure

variations are proportional to variations in density:

(1.4) 

This equation also means that air has an elastic behavior: it

acts like a spring. A constant c has appeared, we will see

later that it represents the speed of sound. If we substitute

this equation in (1.2), we find another expression for the

state equation:

(1.5) 

1.1.2. The wave equation

We now have at our disposal all the tools necessary to

describe the movement of sound waves through air. If we

differentiate the state equation (1.5) with respect to time

and the Euler equation (1.3) with respect to x, we get

The expression ∂t2 indicates two differentiations with

respect to time, ∂tx indicates one differentiation with

respect to time and another with respect to x, and so on. All

we have to do now is compare these two equations to

obtain the wave equation:

(1.6) 

Figure 1.4. Three snapshots of a traveling plane wave

along an axis



A mathematical analysis of this equation shows that the

general solution is of the form

The function g(x — ct) keeps a constant value in the case of

a point in motion, the trajectory of which is such that x — ct

= constant (such a trajectory is called a characteristic

trajectory); thus g(x — ct) represents a traveling wave

propagating along the x-axis at the speed of sound c from

left to right (Figure 1.4 shows the usual orientation for the

axis). Likewise, the function h(x + ct) is constant at the

points with x-coordinates such that x+ct = constant, and in

that case represents a traveling wave propagating at the

speed c from right to left. For air at a temperature T

expressed in Kelvin (with 32°F = 0°C = 273 K), the

approximate values for the speed of sound, the density and

the atmospheric pressure (in pascals and in bars) are

For example, the functions

with k = 2πf/c, are solutions to the wave equation. They are

periodic with respect to variables of time and space. The

space period

is called the wavelength. It is one of the most elementary

forms of musical sound, with a pitch, or a frequency f,

measured in hertz (1 Hz = 1 s-1), a unit named after

physicist H. R. Hertz, and with a timbre (the sound’s ‘color’)

similar to that of a recorder (a type of flute).

These two functions u+ and u- propagate in opposite

directions. Adding the two leads to an interesting wave, also

a solution to the wave equation:



As you can see, for all points x = nπ/k, n ∈  (the set of

integers), for which sin(kx) = 0, the pressure p = p0 + εp1

is constant and equal to p0: these points are called vibration

nodes, whereas for points x = (n + 1/2)π/k, n ∈ , the

pressure p(x, t) = p0 ± 2ε cos(2πft) undergoes its maximum

amplitude variations: these points are called antinodes.

Such waves are referred to as standing waves (see Figure

1.5).

Figure 1.5. Three snapshots of a standing plane wave

1.1.3. The Helmholtz equation

In physics, a wave containing only one frequency, i.e. of

the form

where φ can also be a complex function1 and where f ∈ 

(set of real numbers), is said to be harmonic. The real and

imaginary parts of such a wave are also harmonic. Functions

of the form

(1.7) 

are said to be separated variable functions. Additionally, if φ

is real, the wave is referred to as a standing wave: except



for a real multiplicative factor φ(x), all points simultaneously

undergo the same variation in pressure ψ(t).

If we substitute equation (1.7) in (1.6), we get, after

dividing by φ(x)ψ(t),

This expression cannot vary, since the term on the left

depends only on time, and the one on the right depends

only on x. Hence it is a constant, which will be denoted by –

(2πf)2, where f is an arbitrary real number2. Thus, on the

one hand, we get

the general solution of which is

If B = 0 or a = 0, the wave is harmonic with frequency ±f.

On the other hand, if we define k = 2πf/c, called the

wavenumber, we obtain the homogenous Helmholtz

equation:

(1.8) 

the general solution of which is

Thus, the harmonic pressure waves with frequency f are of

the form

where the constants a, β ∈  (set of complex numbers) are

determined by the conditions imposed at the interfaces with

objects. As for standing harmonic waves with frequency f,

they are of the form

where x0 is one of the vibration nodes.

If we follow the same process (i.e. start with three

fundamental equations), we come to the conclusion that, in

the general case, when the waves are not necessarily plane

waves, the pressure is a solution to the three dimensional

wave equation



(1.9) 

where Δ = ∂x
2 + ∂y

2 + ∂z
2 is called the Laplacian, and the

Helmholtz equation becomes

Figure 1.6. A harmonic plane wave. It propagates along the

Ox-axis (2D section) without any damping

For example, spherical harmonic waves, produced by a

punctual source assumed to be placed at the origin, are of

the type (with r = :

These waves are called spherical because, for a set value of

t, given a sphere with its center at the origin, the pressure is

the same at every point on the sphere. Note that these are

not standing waves.

1.1.4. Sound intensity



Earlier in this chapter, we denoted the pressure (in the

case of a plane wave) by p(x, t) = p0 + εp1(x, t) where p0 is

the pressure in the equilibrium state, or average pressure.

The difference p(x, t) — p0 is called the acoustic pressure

pa:

Figure 1.7. A spherical harmonic wave (2D section). It

decreases as 1/r

In order to set air in motion, a certain amount of energy had

to be provided. The propagation of the air deformation

corresponds to the propagation of the initial energy. The

term sound intensity (or acoustic intensity) refers to the

mean power — with respect to time — of the acoustic wave

per unit of surface. It is measured in watts/m2, depends on

the point where it is measured, x, and is obtained from the

formula



where the time scale T depends on the context. This integral

can be equal to zero if for example pa and v are in

quadrature (a difference in phase equal to π/2). In the case

of a traveling plane wave pa(x, t) = g(x — ct), the

calculations based on the Euler equation (1.3) and the state

equation (1.5) lead to v(x, t) = pa(x, t)/cρ0, hence

(1.10) 

In the case of a harmonic wave, for example pa(x, t) = pα

sin(kx — 2πft), we get, for T = 1/f,

with peff = pα/ , a formula often used when calculating the

intensity. In the case of a spherical wave pa(x, y, z, t) = pa

sin(kr — 2πft)/r, the calculation for a high enough value of r

leads to

Therefore the intensity of a sound originating from a

punctual source (in the absence of damping) is inversely

proportional to the square of the distance from that source.

The hearing threshold is approximately

the normal level for a conversation is 1.210-5 W/m2 and the

pain threshold is about 1 W/m2. We will see in Chapter 4

that these threshold values depend on certain parameters,

particularly frequency. Notice the impressive value for the

ear’s dynamic range, 1012! Rather than W/m2, the

preferred unit is the bel (named after Alexander Graham

Bell, a professor at a school for the hearing impaired, and

the inventor of the telephone) or the decibel, a

dimensionless unit that measures the tenth of the base 10



logarithm of a ratio to a given threshold, the hearing

threshold for example. If the sound intensity is denoted by

LI , then this can be expressed as:

As a consequence, the hearing threshold is set at 0 dB, the

pain threshold is 120 dB, and for a conversation, it is equal

to 70 dB. Note that at some rock concerts, the intensity

sometimes exceeds 140 dB!

Small question: what happens to a symphonic orchestra

when the number of violins is multiplied by 10?

Answer (see section 1.6.3): a 10 dB increase in the sound

level. In other words, going from 1 to 10 violins leads to the

same volume increase as when going from 10 to 100

violins! This is an example of Fechner’s law, named after the

German physiologist Gustav Fechner: a sensation varies

proportionally to the logarithm of the stimulus (see [LEI 80],

but also [ZWI 81] for a more moderate point of view,

discussed in Chapter 4).

1.2. Music theory

interlude
Before we go any further, it may be necessary to brush up

on a few elementary concepts of music theory and the

relevant vocabulary. A musical note is characterized by

three main parameters: its pitch, its duration and its

intensity. Here we will be focusing on the pitch. The pitch is

directly related to the note’s frequency3: low frequencies

correspond to low-pitched sounds, and high frequencies to

high-pitched sounds. The reference frequency for a musician

is the A at 440 Hz, the note made by a tuning fork, and also

the note used for most dial tones.



1.2.1. Intervals, octave

In music theory, the distance between two different notes

is called an interval. When our ears estimate the interval

between two notes, what affects their perception is the ratio

of their frequencies, and not the difference in frequencies.

This is another example of Fechner’s law, previously

mentioned in regards to intensity: our sensation of pitch

varies proportionally to the logarithm of the frequency (this

law does not apply to extremely high-pitched and low-

pitched sounds, as we will see in Chapter 4). For example,

the two musical intervals [110 Hz, 220 Hz] and [220 Hz, 440

Hz] are perceived as equal because the frequency ratios are

equal: 220/110 = 440/220 = 2, whereas in the

mathematical sense, the second interval is twice as long as

the first: 440–220 = 2 × (220–110). The interval between

two notes, in the case where their frequency ratio is equal

to two, is called an octave.

1.2.2. Scientific pitch notation

The sounds produced by two notes one octave apart from

each other are very similar (we will see why in section

2.1.2), to the point that they are referred to as the same

note. The frequency 880 Hz, for example, one octave above

the A of a tuning fork, will also produce an A, but at a higher

pitch. In order to tell them apart, we will use the scientific

pitch notation: the 440 Hz A will be denoted by A4, the next

one at 880 Hz will be denoted by A5, followed by A6 at 1,

760 Hz. Likewise, in the other direction we have A3 at 220

Hz, then A2 at 110 Hz, and so on. The same goes for other

notes, number 4 being used for the notes found between

the C at 261.6 Hz and the B at 493.9 Hz, all of which are

located near the middle of a piano keyboard.


