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Preface

This monograph is devoted to recent progress in the turnpike the-
ory. Turnpike properties are well known in mathematical economics.
The term was first coined by Samuelson who showed that an efficient
expanding economy would for most of the time be in the vicinity of a
balanced equilibrium path (also called a von Neumann path) [78, 79].
These properties were studied by many authors for optimal trajecto-
ries of a Neumann–Gale model determined by a superlinear set-valued
mapping. In the monograph we discuss a number of results concern-
ing turnpike properties in the calculus of variations and optimal control
which were obtained by the author in the last ten years. These results
show that the turnpike properties are a general phenomenon which holds
for various classes of variational problems and optimal control problems.

Turnpike properties are studied for optimal control problems on fi-
nite time intervals [T1, T2] of the real line. Solutions of such problems
(trajectories) always depend on the time interval [T1, T2], an optimality
criterion which is usually determined by a cost function, and on data
which is some initial conditions. In the turnpike theory we are inter-
ested in the structure of solutions of optimal problems. We study the
behavior of solutions when an optimality criterion is fixed while T1, T2

and the data vary. To have turnpike properties means, roughly speaking,
that the solutions of a problem are determined mainly by the optimality
criterion (a cost function), and are essentially independent of the choice
of time interval and data, except in regions close to the endpoints of the
time interval. If a point t does not belong to these regions, then the
value of a solution at t is closed to a trajectory (“turnpike”) which is
defined on the infinite time interval and depends only on the optimal-
ity criterion. This phenomenon has the following interpretation. If one
wishes to reach a point A from a point B by a car in an optimal way,
then one should enter onto a turnpike, spend most of one’s time on it
and then leave the turnpike to reach the required point.

The turnpike phenomenon was discovered by Samuelson in a spe-
cific situation. In further numerous studies turnpike properties were
established under strong assumptions on an optimality criterion (a cost
function). The usual assumptions were that a cost function is time in-
dependent and is convex as a function of all its variables. Under these
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assumptions the “turnpike” is a stationary trajectory (a singleton). The
simple form of the “turnpike” with a convex cost function allowed one
to discover the turnpike property in this case. Since convexity plays an
important role in mathematical economics, turnpike theory has many
applications in this area of research. It should be mentioned that there
are several interesting results concerning turnpike properties without
convexity assumptions. In these results convexity was replaced by other
assumptions. The verification of these assumptions was rather difficult
and they hold for a narrow class of problems. Thus the turnpike phe-
nomenon was considered by experts as an interesting property of some
very particular problems arising in mathematical economics for which
a “turnpike” was usually a singleton or a half-ray. This situation has
changed in the last ten years. In this monograph we discuss results
which were obtained during this period and allow us today to think
about turnpike properties as a general phenomenon which holds for var-
ious classes of variational problems and optimal control problems. To
establish these properties we do not need convexity of a cost function
and its time independence.

It was my great pleasure to receive on October 2000 the following let-
ter from Paul A. Samuelson, the discoverer of the turnpike phenomenon.

Dear Professor Zaslavski:

I note with interest your long paper “The Turnpike Property ...Func-
tions” in Nonlinear Analysis 42 (2000), 1465-98.

It may be of interest to report that this property and name originated
just over half a century ago when, as a Guggenheim Fellow on a 1948-
49 sabbatical leave from MIT, I conjectured it in a memo written at
the RAND Corporation in Santa Monica, California. In The Collected
Scientific Papers of Paul A. Samuelson, MIT Press, 1966, 1972, 1977,
1986, it is reproduced. R. Dorfman, P.A. Samuelson, R.M. Solow, Linear
Programming and Economic Analysis, McGraw-Hill, 1958 gives a pre-
Roy Radner exposition. I believe that somewhere Lionel McKenzie has
given a nice survey of the relevant mathematical-economics literature.

With admiration,
Paul A. Samuelson

Our studies are based on the following ideas. A “turnpike” is not
necessarily a singleton or a half-ray. It can be an absolutely contin-
uous time-dependent function (trajectory) or a compact subset of Rn.
To establish a turnpike property we consider a space of cost functions
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equipped with a natural complete metric and show that a turnpike prop-
erty holds for most elements of this space in the sense of Baire categories.
We obtain a turnpike theorem in the following way. We consider an op-
timality criterion (a cost function f) and show that for a problem with
this criterion there exists an optimal trajectory, say Xf , on an infinite
time interval. Then we perturb our cost function by some nonnegative
small perturbation which is zero only on Xf . We show that for our new
cost function f̄ the trajectory Xf is a turnpike, and that optimal solu-
tions of the problem with a cost function g which is closed to f̄ , are also
most of the time close to Xf .

Alexander J. Zaslavski

June 2005



Introduction

Let us consider the following problem of the calculus of variations:∫ T

0
f(v(t), v′(t))dt → min, (P0)

v : [0, T ] → Rn is an absolutely continuous function

such that v(0) = y, v(T ) = z.

Here T is a positive number, y and z are elements of the n-dimensional
Euclidean space Rn and an integrand f : Rn ×Rn → R1 is a continuous
function.

We are interested in the structure of solutions of the problem (P0)
when y, z and T vary and T is sufficiently large.

Assume that the function f is strictly convex and differentiable and
satisfies the following growth condition:

f(y, z)/(|y| + |z|) → ∞ as |y| + |z| → ∞.

Here we denote by | · | the Euclidean norm in Rn and by < ·, · > the
scalar product in Rn. In order to analyse the structure of minimizers of
the problem (P0) we consider the auxiliary minimization problem:

f(y, 0) → min, y ∈ Rn. (P1)

It follows from the growth condition and the strict convexity of f that
the problem (P1) has a unique solution which will be denoted by ȳ.
Clearly,

∂f/∂y(ȳ, 0) = 0.

Define an integrand L : Rn × Rn → R1 by

L(y, z) = f(y, z) − f(ȳ, 0)− < ∇f(ȳ, 0), (y, z) − (ȳ, 0) >

= f(y, z) − f(ȳ, 0)− < (∂f/∂z)(ȳ, 0), z > .
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Clearly L is also differentiable and srictly convex and satisfies the same
growth condition as f :

L(y, z)/(|y| + |z|) → ∞ as |y| + |z| → ∞.

Since f and L are strictly convex we obtain that

L(y, z) ≥ 0 for all (y, z) ∈ Rn × Rn

and
L(y, z) = 0 if and only if y = ȳ, z = 0.

Consider the following auxiliary problem of the calculus of variations:∫ T

0
L(v(t), v′(t))dt → min, (P2)

v : [0, T ] → Rn is an absolutely continuous function

such that v(0) = y, v(T ) = z,

where T > 0 and y, z ∈ Rn. It is easy to see that for any absolutely
continuous function x : [0, T ] → Rn with T > 0,∫ T

0
L(x(t), x′(t))dt

=
∫ T

0
[f(x(t), x′(t)) − f(ȳ, 0)− < (∂f/∂z)(ȳ, 0), x′(t) >]dt

=
∫ T

0
f(x(t), x′(t))dt + Tf(ȳ, 0)− < (∂f/∂z)(ȳ), x(T ) − x(0) > .

These equations imply that the problems (P0) and (P2) are equivalent:
a function x : [0, T ] → Rn is a solution of the problem (P0) if and only
if it is a solution of the problem (P2).

The integrand L : Rn × Rn → R1 has the following property:
(C) If {(yi, zi)}∞i=1 ⊂ Rn × Rn satisfies limi→∞ L(yi, zi) = 0, then

limi→∞ yi = ȳ and limi→∞ zi = 0.
Indeed, assume that

{(yi, zi)}∞i=1 ⊂ Rn × Rn and lim
i→∞

L(yi, zi) = 0.

By the growth condition the sequence {(yi, zi)}∞i=1 is bounded. Let (y, z)
be a limit point of the sequence {(yi, zi)}∞i=1. Then,

L(y, z) = lim
i→∞

L(yi, zi) = 0
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and (y, z) = (ȳ, 0).

This implies that (ȳ, 0) = limi→∞(yi, zi).
Let y, z ∈ Rn, T > 2 and a function x̄ : [0, T ] → Rn be an optimal

solution of the problem (P0). Then x̄ is also an optimal solution of the
problem (P2). We will show that∫ T

0
L(x̄(t), x̄′(t))dt ≤ 2c0(|y|, |z|)

where c0(|y|, |z|) is a constant which depends only on |y| and |z|.
Define a function x : [0, T ] → Rn by

x(t) = y + t(ȳ − y), t ∈ [0, 1], x(t) = ȳ, t ∈ [1, T − 1],

x(t) = ȳ + (t − (T − 1))(z − ȳ), t ∈ [T − 1, T ].

It follows from the definition of x̄ and x that∫ T

0
L(x̄(t), x̄′(t))dt ≤

∫ T

0
L(x(t), x′(t))dt

=
∫ 1

0
L(x(t), ȳ − y)dt +

∫ T−1

1
L(ȳ, 0)dt +

∫ T

T−1
L(x(t), z − ȳ)dt

=
∫ 1

0
L(x(t), ȳ − y)dt +

∫ T

T−1
L(x(t), z − ȳ)dt.

It is not difficult to see that the integrals∫ 1

0
L(x(t), ȳ − y)dt and

∫ T

T−1
L(x(t), z − ȳ)dt

do not exceed a constant c0(|y|, |z|) which depends only on |y|, |z|. Thus∫ T

0
L(x̄(t), x̄′(t))dt ≤ 2c0(|y|, |z|).

It is very important that in this inequality the constant c0(|y|, |z|)
does not depend on T .

We denote by mes(E) the Lebesgue measure of a Lebesgue mesurable
set E ⊂ R1.

Now let ε be a positive number. By the property (C) there is δ > 0
such that if (y, z) ∈ Rn×Rn and L(y, z) ≤ δ, then |y− ȳ|+ |z| ≤ ε. Then
by the choice of δ and the inequality

∫ T
0 L(x̄(t), x̄′(t))dt ≤ 2c0(|y|, |z|),

mes{t ∈ [0, T ] : |(x̄(t), x̄′(t)) − (ȳ, 0)| > ε}
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≤ mes{t ∈ [0, T ] : L(x̄(t), x̄′(t)) > δ}

≤ δ−1
∫ T

0
L(x̄(t), x̄′(t))dt ≤ δ−12c0(|y|, |z|)

and
mes{t ∈ [0, T ] : |x̄(t) − ȳ| > ε} ≤ δ−12c0(|y|, |z|).

Therefore the optimal solution x̄ spends most of the time in an ε-
neighbor- hood of the point ȳ. The Lebesgue measure of the set of all
points t, for which x̄(t) does not belong to this ε-neighborhood, does not
exceed the constant 2δ−1c0(|y|, |z|) which depends only on |y|, |z| and ε
and does not depend on T . Following the tradition, the point ȳ is called
the turnpike. Moreover we can show that the set

{t ∈ [0, T ] : |x̄(t) − ȳ| > ε}
is contained in the union of two intervals [0, τ1] ∪ [T − τ2, T ], where
0 < τ1, τ2 ≤ 2δ−1c0(|y|, |z|).

Under the assumptions posed on f , the structure of optimal solutions
of the problem (P0) is rather simple and the turnpike ȳ is calculated
easily. On the other hand the proof is strongly based on the convexity of
f and its time independence. The approach used in the proof cannot be
employed to extend the turnpike result for essentially larger classes of
variational problems. For such extensions we need other approaches and
ideas. The question of what happens if the integrand f is nonconvex and
nonautonomous seems very interesting. What kind of turnpike and what
kind of convergence to the turnpike do we have for general nonconvex
nonautonomous integrands? The following example helps to understand
the problem.

Let

f(t, x, u) = (x − cos(t))2 + (u + sin(t))2, (t, x, u) ∈ R1 × R1 × R1

and consider the family of the variational problems∫ T2

T1

[(v(t) − cos(t))2 + (v′(t) + sin(t))2]dt → min, (P3)

v : [T1, T2] → R1 is an absolutely continuous function

such that v(T1) = y, v(T2) = z,

where y, z, T1, T2 ∈ R1 and T2 > T1. The integrand f depends on t,
for each t ∈ R1 the function f(t, ·, ·) : R2 → R1 is convex, and for each
x, u ∈ R1 \ {0} the functon f(·, x, u) : R1 → R1 is nonconvex. Thus the
function f : R1 × R1 × R1 → R1 is also nonconvex and depends on t.
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Assume that y, z, T1, T2 ∈ R1, T2 > T1 + 2 and v̂ : [T1, T2] → R1 is an
optimal solution of the problem (P3). Note that the problem (P3) has
a solution since f is continuous and f(t, x, ·) : R1 → R1 is convex and
grows superlinearly at infinity for each (t, x) ∈ [0,∞) × R1.

Define v : [T1, T2] → R1 by

v(t) = y + (cos(1) − y)(t − T1), t ∈ [T1, T1 + 1],

v(t) = cos(t), t ∈ [T1 + 1, T2 − 1],

v(t) = cos(T2 − 1) + (t − T2 + 1)(z − cos(T2)), t ∈ [T2 − 1, T2].

It is easy to see that ∫ T2−1

T1+1
f(t, v(t), v′(t))dt = 0

and ∫ T2

T1

f(t, v̂(t), v̂′(t))dt ≤
∫ T2

T1

f(t, v(t), v′(t))dt

=
∫ T1+1

T1

f(t, v(t), v′(t))dt +
∫ T2

T2−1
f(t, v(t), v′(t))dt

≤ 2 sup{|f(t, x, u)| : t, x, u ∈ R1, |x|, |u| ≤ |y| + |z| + 1}.
Thus ∫ T2

T1

f(t, v̂(t), v̂′(t))dt ≤ c1(|y|, |z|),

where

c1(|y|, |z|) = 2 sup{|f(t, x, u)| : t, x, u ∈ R1, |x|, |u| ≤ |y| + |z| + 1}.
For any ε ∈ (0, 1) we have

mes{t ∈ [T1, T2] : |v̂(t) − cos(t)| > ε}

≤ ε−2
∫ T2

T1

f(t, v̂(t), v̂′(t))dt ≤ ε−2c1(|y|, |z|).

Since the constant c1(|y|, |z|) does not depend on T2 and T1 we conclude
that if T2−T1 is sufficiently large, then the optimal solution v̂(t) is equal
to cos(t) up to ε for most t ∈ [T1, T2]. Again, as in the case of convex
time independent problems we can show that

{t ∈ [T1, T2] : |x(t) − cos(t)| > ε} ⊂ [T1, T1 + τ ] ∪ [T2 − τ, T2]

where τ > 0 is a constant which depends only on ε, |y| and |z|.



xviii TURNPIKE PROPERTIES

This example shows that there exist nonconvex time dependent inte-
grands which have the turnpike property with the same type of conver-
gence as in the case of convex autonomous variational problems. The
difference is that the turnpike is not a singleton but an absolutely con-
tinuous time dependent function defined on the infinite interval [0,∞).
This leads us to the following definition of the turnpike property for
general integrands.

Let us consider the following variational problem:∫ T2

T1

f(t, v(t), v′(t))dt → min, (P )

v : [T1, T2] → Rn is an absolutely continuous function

such that v(T1) = y, v(T2) = z.

Here T1 < T2 are real numbers, y and z are elements of the n-dimensional
Euclidean space Rn and an integrand f : [0,∞) × Rn × Rn → R1 is a
continuous function.

We say that the integrand f has the turnpike property if there exists
a locally absolutely continuous function Xf : [0,∞) → Rn (called the
“turnpike”) which depends only on f and satisfies the following condi-
tion:

For each bounded set K ⊂ Rn and each ε > 0 there exists a constant
T (K, ε) > 0 such that for each T1 ≥ 0, each T2 ≥ T1 + 2T (K, ε), each
y, z ∈ K and each optimal solution v : [T1, T2] → Rn of variational
problem (P), the inequality |v(t) − Xf (t)| ≤ ε holds for all t ∈ [T1 +
T (K, ε), T2 − T (K, ε)].

The turnpike property is very important for applications. Suppose
that the integrand f has the turnpike property, K and ε are given, and
we know a finite number of “approximate” solutions of the problem
(P). Then we know the turnpike Xf , or at least its approximation, and
the constant T (K, ε) which is an estimate for the time period required
to reach the turnpike. This information can be useful if we need to
find an “approximate” solution of the problem (P) with a new time
interval [T1, T2] and the new values y, z ∈ K at the end points T1 and
T2. Namely instead of solving this new problem on the “large” interval
[T1, T2] we can find an “approximate” solution of problem (P) on the
“small” interval [T1, T1 + T (K, ε)] with the values y, Xf (T1 + T (K, ε))
at the end points and an “approximate” solution of problem (P) on the
“small” interval [T2 − T (K, ε), T2] with the values Xf (T2 − T (K, ε)), z
at the end points. Then the concatenation of the first solution, the
function Xf : [T1 + T (K, ε), T2 − T (K, ε)] and the second solution is an
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“approximate” solution of problem (P) on the interval [T1, T2] with the
values y, z at the end points.

We begin our monograph with a discussion of the problem (P). In
Chapter 1 we introduce a space M of continuous integrands f : [0,∞)×
Rn ×Rn → R1. This space is equipped with a natural complete metric.
We show that for any initial condition x0 ∈ Rn there exists a locally
absolutely continuous function x : [0,∞) → Rn with x(0) = x0 such that
for each T1 ≥ 0 and T2 > T1 the function x : [T1, T2] → Rn is a solution
of problem (P) with y = x(T1) and z = x(T1). We also establish that
for every bounded set E ⊂ Rn the C([T1, T2]) norms of approximate
solutions x : [T1, T2] → Rn for the problem (P) with y, z ∈ E are
bounded by some constant which does not depend on T1 and T2.

In Chapter 2 we establish the turnpike property stated above for a
generic integrand f ∈ M. We establish the existence of a set F ⊂ M
which is a countable intersection of open everywhere dense sets in M
such that for each f ∈ F the turnpike property holds. Moreover we show
that the turnpike property holds for approximate solutions of variational
problems with a generic integrand f and that the turnpike phenomenon
is stable under small pertubations of a generic integrand f .

In Chapters 3-5 we study turnpike properties for autonomous prob-
lems (P) with integrands f : Rn × Rn → R1 which do not depend on
t. Since the turnpike theorems of Chapter 2 are of generic nature and
the subset of M which consists of all time independent integrands are
nowhere dense, the results of Chapter 2 can not be applied for this sub-
set. Moreover, we cannot expect to obtain the turnpike property stated
above for the general autonomous case. Indeed, if an integrand f does
not depend on t and has a turnpike, then this turnpike should also be
time independent. It means that the turnpike is a stationary trajectory
(a singleton). But it is not true when a time independent integrand f is
not a convex function.

Consider the following example. Let

f(x1, x2, u1, u2) = (x2
1 + x2

2 − 1)2 + (u1 + x2)2 + (u2 − x1)2,

(x1, x2, u1, u2) ∈ R2 × R2

and consider the family of the variational problems∫ T

0
f(v1(t), v2(t), v′1(t), v

′
2(t))dt → min, (P4)

(v1, v2) : [0, T ] → R2 is an absolutely continuous function

such that (v1, v2)(0) = y, (v1, v2)(T ) = z,
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where y = (y1, y2), z = (z1, z2) ∈ R2 and T > 0. The integrand f does
not depend on t. Since f is continuous and for each x = (x1, x2) ∈ R2 the
function f(x, ·) : R2 → R1 is convex and grows superlinearly at infinity,
the problem (P4) has a solution for each T > 0 and each y, z ∈ R2.
Clearly, if T > 0, y = (cos(0), sin(0)) and z = (cos(T ), sin(T )), then the
function

x̂1(t) = cos(t), x̂2(t) = sin(t), t ∈ [0, T ]

is a solution of the problem (P4). Thus, if the integrand f has a turnpike
property, then the turnpike is not a singleton.

Let T > 2, y, z ∈ R2 and let v̄ = (v̄1, v̄2) : [0, T ] → R2 be a solution
of the problem (P4). Define a function v = (v1, v2) : [0, T ] → Rn by

v(t) = y + t((cos(1), sin(1)) − y), t ∈ [0, 1],

v(t) = (cos(t), sin(t)), t ∈ [1, T − 1],

v(t) = (cos(T − 1), sin(T − 1)) + (t− T + 1)(z − (cos(T − 1), sin(T − 1)),

t ∈ [T − 1, T ].

Then ∫ T−1

1
f(v(t), v′(t))dt = 0

and ∫ T

0
(v̄1(t)2 + v̄2(t)2 − 1)2dt ≤

∫ T

0
f(v̄(t), v̄′(t))dt

≤
∫ T

0
f(v(t), v′(t))dt

=
∫ 1

0
f(v(t), v′(t))dt +

∫ T

T−1
f(v(t), v′(t))dt

≤ sup{f(x1, x2, u1, u2) : x1, x2, u1, u2 ∈ R1

and |xi|, |ui| ≤ 2|y| + 2|z| + 2, i = 1, 2}.
Thus ∫ T

0
(v̄1(t)2 + v̄2(t)2 − 1)2dt ≤ c2(|y|, |z|)

with
c2(|y|, |z|) = sup{f(x1, x2, u1, u2) : x1, x2, u1, u2 ∈ R1

and |xi|, |ui| ≤ 2|y| + 2|z| + 2}.
Here c2(|y|, |z|) depends only on |y|, |z| and does not depend on T . For
any ε ∈ (0, 1) we have

mes{t ∈ [0, T ] : ||(v̄1(t), v̄2(t))| − 1| > ε}
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≤ mes{t ∈ [0, T ] : |v̄1(t)2 + v̄2(t)2 − 1| > ε2}

≤ ε−4
∫ T

0
(v̄1(t)2 + v̄2

2 − 1)2dt

≤ ε−4c2(|y|, |z|).
It means that for most t ∈ [0, T ], v̄(t) belongs to the ε-neighborhood of
the set {x ∈ R2 : |x| = 1}. Thus we can say that the integrand f has a
weakened version of the turnpike property and the set {|x| = 1} can be
considered as the turnpike for f .

For a general autonomous nonconvex problem (P) we also have a
version of the turnpike property in which a turnpike is a compact subset
of Rn. This subset depends only on the integrand f .

Consider the following autonomous variational problem:∫ T

0
f(z(t), z′(t))dt → min, z(0 = x, z(T ) = y, (Pa)

z : [0, T ] → Rn is an absolutely continuous function

where T > 0, x, y ∈ Rn and f : R2n → R1 is an integrand.
We say that a time independent integrand f = f(x, u) ∈ C(R2n)

has the turnpike property if there exists a compact set H(f) ⊂ Rn such
that for each bounded set K ⊂ Rn and each ε > 0 there exist numbers
L1 > L2 > 0 such that for each T ≥ 2L1, each x, y ∈ K and an optimal
solution v : [0, T ] → Rn for the variational problem (Pa), the relation

dist(H(f), {v(t) : t ∈ [τ, τ + L2]}) ≤ ε

holds for each τ ∈ [L1, T − L1]. (Here dist(·, ·) is the Hausdorff metric).
We also consider a weak version of this turnpike property for a time

independent integrand f(x, u). In this weak version, for an optimal
solution of the problem (Pa) with x, y ∈ Rn and large enough T , the
relation

dist(H(f), {v(t) : t ∈ [τ, τ + L2]}) ≤ ε

with L2, which depends on ε and |x|, |y| and a compact set H(f) ⊂ Rn

depending only on the integrand f , holds for each τ ∈ [0, T ] \ E where
E ⊂ [0, T ] is a measurable subset such that the Lebesgue measure of E
does not exceed a constant which depends on ε and on |x|, |y|.

These two turnpike properties for autonomous problems (Pa) are con-
sidered in Chapters 3-5.

In Chapter 3 we consider the space A of all time independent inte-
grands f ∈ M. We establish the existence of a set F ⊂ A which is a
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countable intersection of open everywhere dense sets in A such that for
each f ∈ F the weakened version of the turnpike property holds.

The turnpike property for time independent integrands is established
in Chapter 5 for a generic element of a subset N of the space A. The
space N is a subset of all integrands f ∈ A which satisfy some differen-
tiability assumptions.

In the other chapters of the monograph we establish a number of
turnpike results (generic and individual) for various classes of optimal
control problems. We study optimal control of linear periodic systems
with convex integrands (Chapter 6) and optimal solutions of linear sys-
tems with convex nonperiodic integrands (Chapter 7). In Chapter 8 we
establish turnpike theorems for discrete-time control systems in Banach
spaces and in complete metric spaces. Infinite-dimensional continuous-
time optimal control problems in a Hilbert space are studied in Chapter
9. A turnpike theorem for a class of differential inclusions arising in
economic dynamics is proved in Chapter 10 and structure of optimal
trajectories of convex processes is studied in Chapter 11. In Chapter 12
we establish a turnpike property for a dynamic discrete-time zero-sum
game.



Chapter 1

INFINITE HORIZON

VARIATIONAL PROBLEMS

In this chapter we study existence and uniform boundedness of ex-
tremals of variational problems with integrands which belong to a com-
plete metric space of functions. We establish that for every bounded set
E ⊂ Rn the C([0, T ]) norms of approximate solutions x : [0, T ] → Rn

for the minimization problem on an interval [0, T ] with x(0), x(T ) ∈ E
are bounded by some constant which does not depend on T . Given an
x0 ∈ Rn we study the infinite horizon problem of minimizing the expres-
sion

∫ T
0 f(t, x(t), x′(t))dt as T grows to infinity, where x : [0,∞) → Rn

satisfies the initial condition x(0) = x0. We analyse the existence and
the properties of approximate solutions for every prescribed initial value
x0.

1.1. Preliminaries

Variational and optimal control problems defined on infinite intervals
are of interest in many areas of mathematics and its applications [10,
11, 16, 32, 62, 63, 88, 89, 95]. These problems arise in engineering [1,
3], in models of economic growth [14, 26, 27, 28, 29, 45, 46, 49-52, 60,
61, 67, 68, 72, 74, 80, 86, 94], in dynamic games theory [15, 17], in
infinite discrete models of solid-state physics related to dislocations in
one-dimensional crystals [6, 85] and in the theory of thermodynamical
equilibrium of materials [20, 44, 53-55, 90-92, 95].

We consider the infinite horizon problem of minimizing the expression∫ T

0
f(t, x(t), x′(t))dt
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as T grows to infinity where a function x : [0,∞) → K is locally
absolutely continuous (a.c.) and satisfies the initial condition x(0) = x0,
K ⊂ Rn is a closed convex set and f belongs to a complete metric space
of functions to be described below.

We say that an a.c. function x : [0,∞) → K is (f)-overtaking optimal
if

lim sup
T→∞

∫ T

0
[f(t, x(t), x′(t)) − f(t, y(t), y′(t))]dt ≤ 0

for any a.c. function y : [0,∞) → K satisfying y(0) = x(0).
This notion, known as the overtaking optimality criterion, was in-

troduced in the economics literature by Atsumi [4], Gale [33] and von
Weizsacker [81] and has been used in control theory [3, 13, 14, 16, 39, 40].
In general, overtaking optimal solutions may fail to exist. Most studies
that are concerned with their existence assume convex integrands [13,
40, 72].

Another type of optimality criterion for infinite horizon problems was
introduced by Aubry and Le Daeron [6] in their study of the discrete
Frenkel–Kontorova model related to dislocations in one-dimensional crys-
tals. More recently this optimality criterion was used in [44, 65, 66, 85].
A similar notion was introduced in Halkin [34] for his proof of the max-
imum principle.

Let I be either [0,∞) or (−∞,∞). We say that an a.c. function
x : I → K is an (f)-minimal solution if

∫ T2

T1

f(t, x(t), x′(t))dt ≤
∫ T2

T1

f(t, y(t), y′(t))dt ≤ 0

for each T1 ∈ I, T2 > T1 and each a.c. function y : [T1, T2] → K which
satisfies y(Ti) = x(Ti), i = 1, 2.

It is easy to see that every (f)-overtaking optimal function is an (f)-
minimal solution.

In this chapter we consider a functional space of integrands M de-
scribed in Section 1.1. We show that for each f ∈ M and each z ∈ Rn

there exists a bounded (f)-minimal solution Z : [0,∞) → Rn satisfying
Z(0) = z such that any other a.c. function Y : [0,∞) → Rn is not
“better” than Z. We also establish that given f ∈ M and a bounded set
E ⊂ Rn the C([0, T ]) norms of approximate solutions x : [0, T ] → Rn

for the minimization problem on an interval [0, T ] with x(0), x(T ) ∈ E
are bounded by some constant which depends only on f and E.
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1.2. Main results

Let a > 0 be a constant and ψ : [0,∞) → [0,∞) be an increasing
function such that ψ(t) → ∞ as t → ∞.

Let K ⊂ Rn be a closed convex set. Denote by | · | the Euclidean norm
in Rn and denote by M the set of continuous functions f : [0,∞)×K×
Rn → R1 which satisfy the following assumptions:

A(i) for each (t, x) ∈ [0,∞) × K the function f(t, x, ·) : Rn → R1 is
convex;

A(ii) the function f is bounded on [0,∞) × E for any bounded set
E ⊂ K × Rn;

A(iii) for each (t, x, u) ∈ [0,∞) × K × Rn,

f(t, x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a;

A(iv) for each M, ε > 0 there exist Γ, δ > 0 such that

|f(t, x1, u1) − f(t, x2, u2)| ≤ ε max{f(t, x1, u1), f(t, x2, u2)}
for each t ∈ [0,∞), each u1, u2 ∈ Rn and each x1, x2 ∈ K which satisfy

|xi| ≤ M, |ui| ≥ Γ, i = 1, 2, max{|x1 − x2|, |u1 − u2|} ≤ δ;

A(v) for each M, ε > 0 there exist δ > 0 such that

|f(t, x1, u1) − f(t, x2, u2)| ≤ ε

for each t ∈ [0,∞), each u1, u2 ∈ Rn and each x1, x2 ∈ K which satisfy

|xi|, |ui| ≤ M, i = 1, 2, max{|x1 − x2|, |u1 − u2|} ≤ δ.

When K = Rn it is an elementary exercise to show that an inte-
grand f = f(t, x, u) ∈ C1([0,∞) × Rn × Rn) belongs to M if f satisfies
Assumptions A(i), A(iii),

sup{|f(t, 0, 0)| : t ∈ [0,∞)} < ∞
and there exists an increasing function ψ0 : [0,∞) → [0,∞) such that

sup{|∂f/∂x(t, x, u)|, |∂f/∂u(t, x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|)
for each t ∈ [0,∞), x, u ∈ Rn.

Therefore the space M contains many functions.
Example 1. It is not difficult to see that if ψ(t) = t for all t ≥ 0,

n = 1, K = R1, if functions h1, h2, h3 ∈ C1(R1) satisfy

h1(t) ≥ 0, t ∈ [0,∞), sup{h1(t) : t ∈ [0,∞)} < ∞,
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h2(x) ≥ |x| + 1, x ∈ R1

and if the function h3 : R1 → R1 is convex and

u2 + 1 ≤ h3(u) ≤ c0(u2 + 1), |h′
3(u)| ≤ c0(u2 + 1)

for all u ∈ R1, where c0 is a positive constant, then the function

f(t, x, u) = h1(t) + h2(x)h3(u), (t, x, u) ∈ [0,∞) × R1 × R1

belongs to M.
In Chapters 1-5 we consider variational problems with integrands be-

longing to the space M or to its subspaces. The Assumption A(i) and
the inequality f(t, x, u) ≥ ψ(|u|)|u| − a in the Assumption A(iii) guar-
antee the existence of minimizers of the variational problems. These
assumptions are common in the literature. We need the inequality
f(t, x, u) ≥ ψ(|x|) − a in A(iii) in order to show that for every bounded
set E ⊂ Rn the C([0, T ]) norms of approximate solutions x : [0, T ] → Rn

for the variational problems on intervals [0, T ] with x(0), x(T ) ∈ E are
bounded by some constant which does not depend on T . We need the
Assumptions A(ii) and A(v) in order to obtain certain properties of ap-
proximate solutions for variational problems on intervals [T1, T2] which
depend on T2 −T1 and do not depend of T1 and T2. Note that if a func-
tion f is Frechet differentiable, then the Assumption A(v) means that
the growth of the partial derivatives of f does not exceed the growth
of f . We use it in order to establish the continuity of the function Uf

which is defined below.
We equip the set M with the uniformity which is determined by the

following base:

E(N, ε, λ) = {(f, g) ∈ M×M : |f(t, x, u) − g(t, x, u)| ≤ ε (2.1)

for each t ∈ [0,∞), each u ∈ Rn each x ∈ K satisfying |x|, |u| ≤ N}
∩{(f, g) ∈ M×M : (|f(t, x, u)| + 1)(|g(t, x, u)| + 1)−1 ∈ [λ−1, λ]

for each t ∈ [0,∞), each u ∈ Rn and each x ∈ K satisfying |x| ≤ N}
where N > 0, ε > 0, λ > 1 [37].

Clearly, the uniform space M is Hausdorff and has a countable base.
Therefore M is metrizable. We will prove in Secton 1.3 that the uniform
space M is complete.

Put

If (T1, T2, x) =
∫ T2

T1

f(t, x(t), x′(t))dt (2.2)
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where f ∈ M, 0 ≤ T1 < T2 < ∞ and x : [T1, T2] → K is an a.c.
function.

For f ∈ M, a, b ∈ K and numbers T1, T2 satisfying 0 ≤ T1 < T2, put

Uf (T1, T2, a, b) = inf{If (T1, T2, x) : x : [T1, T2] → K (2.3)

is an a.c. function satisfying x(T1) = a, x(T2) = b},
σf (T1, T2, a) = inf{Uf (T1, T2, a, b) : b ∈ K}. (2.4)

It is easy to see that −∞ < Uf (T1, T2, a, b) < ∞ for each f ∈ M, each
a, b ∈ K and each pair of numbers T1, T2 satisfying 0 ≤ T1 < T2.

Let f ∈ M. We say that an a.c. function x : [0,∞) → K is an
(f)-good function if for any a.c. function y : [0,∞) → K,

inf{If (0, T, y) − If (0, T, x) : T ∈ (0,∞)} > −∞. (2.5)

In this chapter we study the set of (f)-good functions and prove the
following results.

Theorem 1.2.1 For each h ∈ M and each z ∈ K there exists an (h)-
good function Zh : [0,∞) → K satisfying Zh(0) = z such that:

1. For each f ∈ M, each z ∈ K and each a.c. function y : [0,∞) →
K one of the following properties holds:

(i) If (0, T, y) − If (0, T, Zf ) → ∞ as T → ∞;
(ii) sup{|If (0, T, y) − If (0, T, Zf )| : T ∈ (0,∞)} < ∞,

sup{|y(t)| : t ∈ [0,∞)} < ∞.

2. For each f ∈ M and each number M > inf{|u| : u ∈ K} there
exist a neighborhood U of f in M and a number Q > 0 such that

sup{|Zg(t)| : t ∈ [0,∞)} ≤ Q

for each g ∈ U and each z ∈ K satisfying |z| ≤ M .
3. For each f ∈ M and each number M > inf{|u| : u ∈ K} there

exist a neighborhood U of f in M and a number Q > 0 such that for
each g ∈ U , each z ∈ K satisfying |z| ≤ M , each T1 ≥ 0, T2 > T1 and
each a.c. function y : [T1, T2] → K satisfying |y(T1)| ≤ M the following
relation holds:

Ig(T1, T2, Z
g) ≤ Ig(T1, T2, y) + Q.

4. If K = Rn, then for each f ∈ M and each z ∈ Rn the function
Zf : [0,∞) → Rn is an (f)-minimal solution.

Corollary 1.2.1 Let f ∈ M, z ∈ K and let y : [0,∞) → K be an a.c.
function. Then y is an (f)-good function if and only if condition (ii) of
Assertion 1 of Theorem 1.2.1 holds.
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Theorem 1.2.2 For each f ∈ M there exist a neighborhood U of f in
M and a number M > 0 such that for each g ∈ U and each (g)-good
function x : [0,∞) → K,

lim sup
t→∞

|x(t)| < M.

Our next result shows that for every bounded set E ⊂ K the C([0, T ])
norms of approximate solutions x : [0, T ] → K for the minimization
problem on an interval [0, T ] with x(0), x(T ) ∈ E are bounded by some
constant which does not depend on T .

Theorem 1.2.3 Let f ∈ M and M1, M2, c be positive numbers. Then
there exist a neighborhood U of f in M and a number S > 0 such that
for each g ∈ U , each T1 ∈ [0,∞) and each T2 ∈ [T1 + c,∞) the following
properties hold:

(i) if x, y ∈ K satisfy |x|, |y| ≤ M1 and if an a.c. function v :
[T1, T2] → K satisfies

v(T1) = x, v(T2) = y, Ig(T1, T2, v) ≤ Ug(T1, T2, x, y) + M2,

then
|v(t)| ≤ S, t ∈ [T1, T2]; (2.6)

(ii) if x ∈ K satisfies |x| ≤ M1 and if an a.c. function v : [T1, T2] → K
satisfies

v(T1) = x, Ig(T1, T2, v) ≤ σg(T1, T2, x) + M2,

then the inequality (2.6) is valid.

Theorems 1.2.1-1.2.3 have been proved in [98].
In the sequel we use the following notation:

B(x, r) = {y ∈ Rn : |y − x| ≤ r}, x ∈ Rn, r > 0, (2.7)

B(r) = B(0, r), r > 0.

Chapter 1 is organized as follows. In Section 1.3 we study the space
M and the dependence of the functionals Uf and If of f . In Section
1.4 we associate with any f ∈ M a related discrete-time control system
and study its approximate solutions. Theorems 1.2.1-1.2.3 are proved in
Section 1.5.
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1.3. Auxiliary results

In this section we study the space M and continuity properties of the
functionals If and Uf . The next proposition follows from Assumption
A(iv).

Proposition 1.3.1 Let f ∈ M. Then for each pair of positive numbers
M and ε there exist Γ, δ > 0 such that the following property holds:

If t ∈ [0,∞) and if u1, u2 ∈ Rn and x1, x2 ∈ K satisfy

|xi| ≤ M, |ui| ≥ Γ, i = 1, 2, |u1 − u2|, |x1 − x2| ≤ δ, (3.1)

then

|f(t, x1, u1) − f(t, x2, u2)| ≤ εmin{f(t, x1, u1), f(t, x2, u2)}.
Proof. Let M, ε > 0. Choose

ε0 ∈ (0, 8−1 inf{1, ε}). (3.2)

It follows from Assumption A(iv) that there exist Γ, δ > 0 such that the
following property holds:

If t ∈ [0,∞) and if u1, u2 ∈ Rn and x1, x2 ∈ K satisfy (3.1), then

|f(t, x1, u1) − f(t, x2, u2)| ≤ ε0 sup{f(t, x1, u1), f(t, x2, u2)}. (3.3)

Assume that t ∈ [0,∞), u1, u2 ∈ Rn and x1, x2 ∈ K satisfy (3.1). By
the definition of Γ, δ, (3.2) and (3.3),

min{f(t, x1, u1), f(t, x2, u2)} ≥ (1 − ε0) max{f(t, x1, u1), f(t, x2, u2)}
≥ (1 − ε0)ε−1

0 |f(t, x1, u1) − f(t, x2, u2)| ≥ ε−1|f(t, x1, u1) − f(t, x2, u2)|.
Proposition 1.3.1 is proved.

Proposition 1.3.2 The uniform space M is complete.

Proof. Assume that {fi}∞i=1 ⊂ M is a Cauchy sequence. Clearly, for
each (t, x, u) ∈ [0,∞)×K ×Rn the sequence {fi(t, x, u)}∞i=1 is a Cauchy
sequence. Then there exists a function f : [0,∞) × K × Rn → R1 such
that

f(t, x, u) = lim
i→∞

fi(t, x, u) (3.4)

for each (t, x, u) ∈ [0,∞) × K × Rn.
In order to prove the proposition it is sufficient to show that f satisfies

Assumption A(iv).
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Let M, ε be positive numbers. Choose a number λ > 1 for which

λ2 − 1 < 8−1ε. (3.5)

Since {fi}∞i=1 is a Cauchy sequence there exists an integer j ≥ 1 such
that

(fi, fj) ∈ E(M, ε, λ) for any integer i ≥ j. (3.6)

By (3.5) and the properties of ψ there exists a number Γ0 such that

Γ0 > 1, ψ(Γ0) ≥ 2a, λ2(1 + 2ψ(Γ0)−1)2 − 1 < 8−1ε. (3.7)

Choose ε1 > 0 such that

8ε1[λ(1 + 2ψ(Γ0)−1)]2 < ε. (3.8)

By Proposition 1.3.1 there exist numbers Γ, δ > 0 such that

Γ > Γ0

and that for each t ∈ [0,∞), each u1, u2 ∈ Rn and each x1, x2 ∈ K which
satisfy (3.1) the inequality

|fj(t, x1, u1) − fj(t, x2, u2)| ≤ ε1 min{fj(t, x1, u1), fj(t, x2, u2)} (3.9)

is true.
Assume that t ∈ [0,∞), u1, u2 ∈ Rn, x1, x2 ∈ K satisfy (3.1). Then

the inequality (3.9) follows from the definition of Γ, δ. (2.1), (3.4), (3.6)
and (3.1) imply that

(|f(t, xi, ui)| + 1)(|fj(t, xi, ui)| + 1)−1 ∈ [λ−1, λ], i = 1, 2. (3.10)

It follows from Assumption A(iii), (3.1), (3.7) and (3.9) that

min{f(t, xi, ui), fj(t, xi, ui)} ≥ 2−1ψ(Γ0), i = 1, 2. (3.11)

By (3.11) and (3.10),

f(t, xi, ui)fj(t, xi, ui)−1

∈ [(λ(1 + 2ψ(Γ0)−1))−1, λ(1 + 2ψ(Γ0)−1)], i = 1, 2. (3.12)

We may assume without loss of generality that

f(t, x1, u1) ≥ f(t, x2, u2). (3.13)

It follows from (3.12), (3.9), (3.8) and (3.7) that

f(t, x1, u1) − f(t, x2, u2) ≤ λ(1 + 2ψ(Γ0)−1)fj(t, x1, u1)
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−(λ(1 + 2ψ(Γ0)−1))−1fj(t, x2, u2)

= λ(1 + 2ψ(Γ0)−1)[fj(t, x1, u1) − fj(t, x2, u2)]

+fj(t, x2, u2)[λ(1 + 2ψ(Γ0)−1) − (λ(1 + 2ψ(Γ0)−1))−1]

≤ λ(1 + 2ψ(Γ0)−1)ε1fj(t, x2, u2) + fj(t, x2, u2)[λ(1 + 2ψ(Γ0)−1)

−(λ(1 + 2ψ(Γ0)−1))−1] ≤ ε1[λ(1 + 2ψ(Γ0)−1)]2f(t, x2, u2)

+f(t, x2, u2)[λ2(1 + 2ψ(Γ0)−1)2 − 1] ≤ εf(t, x2, u2).

Therefore the function f satisfies Assumption A(iv). This completes the
proof of the proposition.

The next auxiliary result will be used in order to establish the contin-
uous dependence of the functional Uf (T1, T2, y, z) of T1, T2, y, z and the
continuous dependence of the functional If (T1, T2, x) of f .

Proposition 1.3.3 Let M1 > 0 and let 0 < τ0 < τ1. Then there exists
a number M2 > 0 such that the following property holds:

If f ∈ M, numbers T1, T2 satisfy

0 ≤ T1, T2 ∈ [T1 + τ0, T1 + τ1] (3.14)

and if an a.c. function x : [T1, T2] → K satisfies

If (T1, T2, x) ≤ M1, (3.15)

then
|x(t)| ≤ M2, t ∈ [T1, T2]. (3.16)

Proof. By Assumption A(iii) and the properties of the function ψ
there exists a number c0 > 0 such that

f(t, x, u) ≥ |u| (3.17)

for each f ∈ M and each (t, x, u) ∈ [0,∞)×K ×Rn satisfying |u| ≥ c0,
and

f(t, x, u) ≥ 2M1(min{1, τ0})−1 (3.18)

for each f ∈ M and each (t, x, u) ∈ [0,∞)×K ×Rn satisfying |x| ≥ c0.
Fix a number

M2 > 1 + M1 + aτ1 + c0(1 + τ1) (3.19)

(recall a in Assumption A(iii)).
Let f ∈ M, T1, T2 be numbers satisfying (3.14) and let x : [T1, T2] →

K be an a.c. function satisfying (3.15). We will show that (3.16) holds.


