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Preface

All men are like grass,
and all their glory is like the flowers of the field;
the grass withers and the flowers fall,
and its place remembers it no more.

–Moses, Psalm 90: 5–6; David, Psalm 103: 15–16;
Isaiah 40: 6–8; 1 Peter 1: 24–25; J. Brahms, Requiem

Irreversibility is one of the largest mysteries of science at the present time. Birth and
death, creation, evolution, and destruction are fundamental human experiences. We
feel the arrow of time that determines past, present, and future. We measure time
with nearly reversible, periodic processes, but there is also another aspect of time
that is related to irreversible changes. It is a challenge to give a consistent approach
to general nonequilibrium phenomena. Do we need new concepts and new
mathematics in this context?
Nonequilibrium physics concerns different phenomena such as evolution, relax-

ation to equilibrium, friction, and other transport phenomena. In addition, we wish
to consider the reaction of a system to external influences, the role of fluctuations,
metastability and instability, pattern formation and self-organization, the role of
probability and chance in contrast to a deterministic description, and the treatment
of open systems. Statistical physics of nonequilibrium has created some concepts
and models that are of relevance not only to physics but also to other fields such as
informatics, technology, biology, medical, and social sciences. It also has an impact
on fundamental philosophical questions. The treatment of nonequilibrium phe-
nomena is an emerging field in physics and is of relevance to other fields such as
quantum physics and field theories, phase transitions, bio- and nanophysics, and
evolution of complex systems.
A central point is thermodynamics that introduced a new quantity, the entropy,

not known in the other disciplines of theoretical physics. The second law of
thermodynamics states that the entropy in an isolated system can increase but
never decrease with time. Up to now, a consistent “first principle” theory of
irreversible processes based on the fundamental, but reversible, equations
of motion of microscopic dynamics is missing. To move toward an explanation
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of irreversible phenomena, we have to inquire into some paradigms used in the
present-day physics, for example, the complete separation of a system from its
surroundings.
In contrast to equilibrium statistical physics, nonequilibrium statistical physics

is only rarely part of current courses in theoretical physics. We are at present not
able to formulate axioms or principles that allow a general approach to describe
nonequilibrium physics. Only for special situations, we know different approaches
that can be used to describe properties of a nonequilibrium process. In all cases, we
have to add some assumptions or approximations that seem at first glance to be an
inaccuracy within the strict microscopic treatment, but, on the other hand, bring a
new element into the theory that seems to be indispensable to describe irreversible
behavior.
A first microscopic approach to irreversible processes was given by Ludwig

Boltzmann in 1873 investigating the kinetic theory of gases. The Boltzmann
equation [1] that remains as a basic equation until now is based on the equations
of motions for atomic collisions, but needs an additional element, the “Stoßzahl-
ansatz” or themolecular chaos. This way, the famousH theorem explicitly shows the
selection of the direction of time and the possibility to describe irreversible
evolutions, starting from reversible equations of motion that describe the micro-
scopic dynamics of the molecules.
A more systematic derivation of the Boltzmann equation was given in 1946 by

Bogoliubov [2] using the principle of weakening of initial correlations. To begin with
many-particle systems at low density described by the single-particle distribution
function, quantum statistical methods such as the time-dependent Green’s function
technique [3] have been worked out to treat also systems at higher densities.
Theories for transport processes in dense systems are formulated such as the linear
response theory by Kubo [4], which relates the dissipation of a nonequilibrium initial
state to the evolution of fluctuations in the equilibrium system, for instance, the
conductivity to current–current correlation functions.
Another approach was the projection operator technique by Nakajima and

Zwanzig [5] that allowed deriving an irreversible equation, the Pauli equation,
from the microscopic von Neumann equation of motion for the statistical operator.
The additional assumption was that the nondiagonal elements of the density matrix
are fading. This approach has been developed further to describe relaxation
processes. It is presently considered in relation to decoherence and the physics
of open systems.
Different nonequilibrium phenomena are described by the respective theories.

The assumptions made in addition to solving the microscopic equations of motions
are reasonable for the case under consideration. We have detailed monographs for
different fields. As examples, the thermodynamics of irreversible processes [6], the
kinetic theory [7], the linear response theory [8], different approaches in the series of
Landau and Lifshits [9,10], and the theory of open systems [11,12] should be
mentioned. All these approaches use some additional assumption that introduces
a reduced set of relevant observables. Aunified approach was given with the Zubarev
method of the nonequilibrium statistical operator [13].
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This book intends to give a coherent, concise, general, and systematic approach to
different nonequilibrium processes. The main point of Chapter 1 is to state the
problem. After discussing some basics of other cognate disciplines in theoretical
physics, empirical approaches are explained. Stochastic processes like the Langevin
process or random walk that are characteristic of nonequilibrium behavior are
introduced in Chapter 2. Three typical domains – quantum master equations
(Chapter 3), kinetic theory (Chapter 4), and linear response theory (Chapter 5) –
are presented in detail. Examples are given, in particular, the radioactive decay
described by a Pauli equation and the electrical conductivity in charged particle
systems. Quantum statistical methods to treat many-particle systems are given in
Chapter 6, concluding with an outlook in Chapter 7.
The book should make nonequilibrium statistical physics accessible to students

and scientists interested or working in that field. For an extended presentation and
advanced examples, refer to Refs. [14,15]. We will not divide between classical and
quantum physics, but consider classical physics as a limiting case of quantum
physics.1 We focus on applications in solid-state physics, plasma physics, subatomic
physics, and other fields where correlations are of relevance to many-particle
systems. Other interesting fields, like nonequilibrium QED, phase transitions,
measuring process, cosmology, turbulence, relativistic systems, and decoherence,
are only briefly mentioned or even dropped.
Based on lectures given at Dresden, Rostock, Greifswald, and other places, a

previous textbook was published in German [17], thanks for help in preparation to
Heidi Wegener, David Blaschke, Fred Reinholz, and Frank Schweitzer. In Ref. [17],
solutions are found for some problems given in the present book. A translation to
Russian [18] was performed by Sergey Tischtshenko. The Green’s function method
was worked out as a script material by Holger Stein and improved by Mathias
Winkel that served as prototype of Chapter 6. Also, the nonequilibrium statistical
physics script was worked out further with the help of J€urn Schmelzer (Jr.), Robert
Thiele, ThomasMillat, Carsten Fortmann, and Philipp Sperling. A lot of discussions
have been performed on this subject in Rostock, Moscow, and other places. We are
grateful to Dmitri Zubarev, who made me familiar with nonequilibrium thermo-
dynamics during my postdoc stay at the Steklov Mathematical Institute of the Soviet
Academy of Science, Moscow, in 1969. We also acknowledge Vladimir Morozov,
Ronald Redmer, Heidi Reinholz, Werner Ebeling, Wolf-Dieter Kraeft, Dietrich
Kremp, Klaus Kilimann, David Blaschke, Michael Bonitz, Thomas Bornath, Sibylle
G€unter, Claudia-Veronika Meister, Klaus Morawetz, Manfred Schlanges, Sebastian
Schmidt, August Wierling, and others who developed quantum statistics and
nonequilibrium processes during the last decades at Rostock.

Rostock, October 2012 Gerd R€opke

1) Note that the appearance of the classical world from quantum theory is not trivial and has to
be analyzed within nonequilibrium physics [16].
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1
Introduction

Physics is concerned with phenomena in nature. It describes properties of systems
and their time evolution. Very efficient concepts have been worked out, and detailed
knowledge about nature has been accumulated. A lot of phenomena can be explained
using very few basic relations. However, there also exist unsolved problems. Such a
fieldwith open questions is the physics of nonequilibriumprocesses, where until now
no fundamental and coherent approach has been possible.
Nonequilibrium is the general situation in the real world. Change in time is one of

our direct experiences; panta rei, everything flows, one does not step into the same
river twice, as was pointed out by the ancient philosophers [19].
We experience dissolution, destruction, formation of new structures, higher

complexity, and higher organization; possibly we believe in progress, everything
is going to be alright. Evolution in biological (and social) systems is a great miracle.
Canweunderstand the evolution of a system and even predict the future?Why arewe

interested in the future? To avert danger, to optimize our situation, to realize our goals,
and to see what remains. We have to make decisions and anticipate the consequences.
Physics contributes a lot by analyzing the dynamical behavior of matter. A deter-

ministic description based on the solution of the fundamental equations of motion was
promoted by its success in celestial dynamics. This formed our present approach to
describe phenomena by equations of motions that have the form of differential equa-
tions. We present some fundamental equations and show that they describe reversible
dynamics.Consequently, an“arrowof time”doesnotexisthere,asdetailed inSection1.1.
The paradigm of the deterministic description is well characterized by the so-called

“Laplace intelligence”: “Given for one instant an intelligencewhichcould comprehend
all the forces by which nature is animated and the respective positions of the beings
which compose it, if moreover this intelligence were vast enough to submit these data
to analysis, it would embrace in the same formula both the movements of the largest
bodies in the universe and those of the lightest atom; to it nothingwould be uncertain,
and the future as the past would be present to its eyes” [20].
The great success in using our fundamental equations of motions to describe all

observed phenomena convinced people to believe in a deterministic approach.
The exact predictability of the future, however, seems to be an illusion because of
different reasons as discussed later on. In contrast to exact predictability, we
introduce in Chapter 2 a probabilistic description.

Nonequilibrium Statistical Physics, First Edition. Gerd Röpke.
# 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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We present in Section 1.2 some ideas that may contribute to the solution of the
problems associated with the contradiction between irreversible evolution and
reversible dynamics. We point out that the assumptions made in formulating
the dynamics on the basis of the equations of motion have to be critically analyzed.
One of the basic ideas is the assumption that a system can be separated from the

remaining part of the universe. Its time evolution can be described taking into
account the influence of the surroundings via simple approximations.
As an example, the equations describing the motion of planets can be given

neglecting the influence of astronomical objects outside the solar system. Further-
more, all the complex processes that take place on each planet are neglected. Only
the center of mass motion is considered.
With respect to themotion of the planets, it is sufficient to consider only a restricted

number of relevant observables characterizing the state of the system. Other observ-
ables, for example, those related to the internal state of the object, are irrelevant.
The number of relevant observables describing the state of the system is given by

the degrees of freedom. One has to distinguish between the dynamical degrees of
freedom, which are available by themotion of the system, and the constraints, which
reduce the number of dynamical degrees of freedom.
A perfect isolation of a system from the remaining part of the universe is not

possible. For example, Mach’s principle relates the motion of the distant stars to the
local inertial frame. It is currently not possible to disconnect gravity. As a conse-
quence, each system also “feels” the expansion of the universe.
Tomake statements precise, we will give relevant results obtained in other fields of

physics, known from standard courses, without extended derivations. A detailed
discussion of some of the relations presented here is given later on. The corre-
sponding references are given in the text.

1.1
Irreversibility: The Arrow of Time

We are concerned here only with “dead”matter, particles, and their interactions. The
behavior of such systems is described by “microscopic,” dynamical equations of
motion. Examples are the Newton equation, the Schr€odinger equation, the Maxwell
equations, and quantum electrodynamics.
We give some standard results and briefly show some general results from other

fields of theoretical physics. Then, we discuss the irreversible “macroscopic”
evolution of real systems. A detailed discussion of the equations of motion in
different fields of physics is given later on. We focus only on properties with respect
to time reflection, showing that there is no difference between past and future, no
“arrow of time”; a reverse motion picture would also show a possible solution of the
equations of motion, a possible microscopic process.
Thermodynamics [21] is a phenomenological theory, directly related to quantities

that can be measured. A well-known fact is that the second law singles out an “arrow
of time.” In an isolated system, the entropy will increase with time for the evolution
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of any nonequilibrium state. If we make a motion picture for a real phenomenon
(not only friction and diffusion but also living creatures), a reverse motion picture
would not show a possible real phenomenon.
As a typical example, we consider a many-particle system. The microscopic

equations of motion follow from a Hamiltonian, for example, Newton’s equation
of motion in classical physics. For quantum systems, second quantization is very
convenient to calculate properties. We also consider the statistical operator that gives
a link between phenomenological properties and the microscopic dynamics. We
focus here on properties with respect to time reflection and show that the equation of
motion for the statistical operator, obtained from the Schr€odinger equation, cannot
describe irreversible processes. The appearance of the “arrow of time” in real
phenomena [22] is a mystery in our present fundamental understanding of time
evolution of a system using a microscopic approach.

1.1.1
Dynamical Systems

The state of a system at fixed time t is characterized by a number f of variables, the
values of which can change with time. This number f , the degrees of freedom, may be
finite. For example, f ¼ 3 in thermodynamics of compression processes and
chemical reactions, and the variables are the volume V, the particle number N,
and the temperature T .1) We are concerned in the following with a system ofN point
masses in classical mechanics where f ¼ 6N for the Cartesian components of the
position and momentum vectors. It may also be infinite, for example, for fields
wðr; tÞ (electrical field, state vector in quantummechanics, etc.) where for each of an
infinite number of positions r in space, the corresponding value of the field must be
known. Alternatively, we can characterize a field by components with respect to a
(infinite) basis system of orthonormal functions.

Classical Mechanics
Can we predict the future of the state of the system if we know its initial state, that is,
can we predict the change in the values of the state variables with time? As an
example, we can consider the system of N point-like interacting particles as an
idealization used in celestial mechanics2) or in molecular dynamics. The state in

1) To avoid confusion with the interaction
potential, we will use V instead of V for the
volume.

2) Celestial mechanics gave the impression
that we are able to predict the future. The
problem is reduced to six degrees of
freedom, position and momentum, for each
body moving in a given force like the
gravitational force. All further details that
happen inside the bodies, for example, the
processes occurring on the earth, are
irrelevant for the motion of the planetary
system, and the interaction with other

exoplanetary objects is small and can be
neglected. This concept is very successful
but cannot be taken for the ultimate truth.
We have to accept that we will never have a
full knowledge of all influences. In
principle, we always have open systems. In
addition to the relevant observables that
characterize the state of the system, there is
always a contact with further degrees of
freedom (denoted as surroundings,
reservoirs, and bath). The complete isolation
of a system is an idealization.

1.1 Irreversibility: The Arrow of Time j3



configuration space has 3N degrees of freedom. The forces are assumed to be
conservative. To solve the equations of motion that define a special trajectory
fr1ðtÞ; . . . ; rNðtÞg, for example, to solve the Newton equations or the Hamilton
equations, we need initial conditions. The actual state in configuration space is not
sufficient, we also need to have the information about the actual values of the
velocities or the canonical conjugate momenta. To determine the dynamical state of
the system, we have to extend the set of state variables (degrees of freedom), that is,
the configuration space to the 6N dimensional C space that also includes, besides the
positions, the particles’ momenta.
For a classical system of N particles, the dynamics is determined by the Hamilton

function Hðr j; pjÞ, which is the sum of kinetic and potential energy:

Hðr1; p1; . . . ; rN ; pNÞ ¼
XN
i¼1

1
2mi

p2i þ
XN
i¼1

Vextðr iÞ þ 1
2

XN
i 6¼j

Vðr i; r jÞ; ð1:1Þ

where i ¼ 1; . . . ;N denotes the particle number. In general, the external potential
VextðrÞ can be time dependent, Vextðr; tÞ, for example, charged particles in a time-
dependent electrical field. The interaction potential Vðr; r 0 Þ is given by the (conserv-
ative) forces between the particles.
The Hamilton equations

d
dt
r iðtÞ ¼

@Hðr j; pjÞ
@pi

;
d
dt
piðtÞ ¼ � @Hðr j; pjÞ

@r i
ð1:2Þ

are first-order differential equations in time. The trajectory fr1ðtÞ; . . . ; rNðtÞg of the
N body system is determined by an initial state that is a given point in the C space.
The corresponding dynamics is reversible, that is, with time inversion at tinv, we
construct a new trajectory fr1ð2tinv � tÞ; . . . ; rNð2tinv � tÞg. This “new” trajectory is
also a solution of the Hamilton equations (1.2) and therefore describes a possible
motion.

In detail, for the proof, we rename the variables of the new trajectory as indicated by a bar over the
variables, f�r1ð�tÞ; . . . ;�rNð�tÞg. The positions remain unchanged,�ri ¼ ri. The time inversion�t� tinv ¼
�ðt� tinvÞ with respect to the time tinv also means reversal of velocities or momenta, �pi ¼ �pi.

The Hamiltonian (1.1) remains unchanged because it is quadratic in pi. With d=d�t ¼ �d=dt as
well as �pið�tÞ ¼ �pið�tÞ compensating the negative signs, the new trajectory is a solution of the
equations:

d
d�t
�rið�tÞ ¼

@Hð�rj; �pjÞ
@�pi

;
d
d�t

�pið�tÞ ¼ � @Hð�r j; �pjÞ
@�ri

: ð1:3Þ

The differential equations (1.3) are identical with theHamilton equations (1.2).We conclude that
the reversed trajectory fr1ð�tþ 2tinvÞ; . . . ; rNð�tþ 2tinvÞg is also a solution of the Hamilton
equations (1.2), that is, a possible motion of the system.

Quantum Mechanics
A similar situation arises in quantummechanics. The state of a single particle is given
by a complete set of simultaneously measurable quantities. For instance, in the case
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of electron,3) we need four items of data, for example, three for the position in
coordinate space (r) and one for the spin orientation (sz). In general, the state of a
particle is given by the state vector jwðtÞi. It can be represented by components in
different basis systems, for example, the state function wðr; sz; tÞ ¼ hr; szjwðtÞi for
the electron.4) Unitary transformations relate different representations, in particular
the Fourier transform for the momentum representation.
The time dependence of a quantum state is determined by the Schr€odinger

equation

i�h
@

@t
jwðtÞi ¼ HjwðtÞi ð1:4Þ

and an initial state jwðt0Þi. The corresponding dynamics is reversible, that is, the
dynamics with time inversion also describes a possible motion, if theHamiltonian is
Hermitian. We mention that time inversion also means the adjoint complex in
addition to inversion of the spin and the magnetic field.

For the proof, we use the coordinate space representation where the Schr€odinger equation reads

i�h
@

@t
wðr; sz; tÞ ¼ Hwnðr; sz; tÞ; H ¼ � �h2

2m
@2

@r2
þ VextðrÞ; ð1:5Þ

following from the matrix element:

hr; szj p2

2m
þ VextðrÞ

� �
jr 0 ; s0 zi ¼ � �h2

2m
@2

@r2
þ VextðrÞd3ðr � r

0 Þdsz ;s
0 z : ð1:6Þ

The adjoint complex of the Schr€odinger equation (1.4) is

�i�h
@

@t
hwðtÞj ¼ hwðtÞjHy; � i�h

@

@t
w�ðr; sz; tÞ ¼ Hyw�ðr; sz; tÞ: ð1:7Þ

Time inversion at tinv gives the time-dependent state function w�ðr;�sz; 2tinv � tÞ. We rename
�r ¼ r; �sz ¼ �sz. The time inversion �t� tinv ¼ �ðt� tinvÞ with respect to the time tinv also means
the conjugate complex of the state function, �wð�r; �sz;�tÞ ¼ w�ðr;�sz;�tþ 2tinvÞ, which corresponds
to reversal of velocities or momenta.

We rewrite Eq. (1.7). The Hamiltonian H remains unchanged because it is Hermitian, Hy ¼ H.
With @=@�t ¼ �@=@t, compensating the negative signs, the new time-dependent state function

3)Howmany pieces of information are
needed to determine the state of an
electron? The question about the complete
number of observables that determine the
state of a particle is unsolved (Heisenberg).
The three pieces of data r that give the
position in configuration space are not
sufficient to determine its state, we have an
additional internal degree of freedom, the
spin orientation. The latter is discrete with
the two values "; # with respect to a given
direction. There are also other choices,
momentum and spin, and hydrogen states,

that also need four pieces of data. More
generally, additional internal (discrete)
degrees of freedom can be added such as
particle/antiparticle, as well as flavor for
hadrons. This is also the subject of a future
theory of elementary particles, which will
not be discussed here.

4) The state function is complex valued to
describe interference phenomena. In
contrast to the phase of a single-particle
state, the modulus is related to the
probability that can be measured.
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�wð�r; �sz;�tÞ is a solution of the equation

i�h
@

@�t
�wð�r; �sz;�tÞ ¼ H�wð�r; �sz;�tÞ; ð1:8Þ

which coincides with the Schr€odinger equation (1.5), that is, a possible time motion of the
system.5)

Quantum Many-Particle Systems
The state of a quantummany-particle system is characterized by a corresponding high
number of degrees of freedom. In general, the particle numbers Nc of species c are
not fixed (emission and absorption of photons, open systems that are defined by a
given volume V in space allowing particle exchange with a reservoir, chemical
reactions, phase transitions, etc.), so we can use in quantum physics the Fock space,
that is, the direct sum of Hilbert spaces with arbitrary particle numbers. A
convenient possibility to characterize the state of a system with arbitrary particle
numbers is the occupation number representation (second quantization) where the
number np of particles in each single-particle state p is used. The basis of the Fock
space is given by the occupation numbers of the different single-particle states.
Creation (ayp) and annihilation operators (ap) are introduced that can be used to
construct the basis of the Fock space and the matrix elements of any dynamical
observable. The commutation or anticommutation relations are

½ap; ayp0 �� ¼ apa
y
p0
� ay

p0
ap ¼ dpp0 ; ½ap; ap0 �� ¼ ½ayp; ayp0 �� ¼ 0 ð1:9Þ

for bosons, and

fap; ayp0 gþ ¼ apa
y
p0
þ ay

p0
ap ¼ dpp0 ; fap; ap0 gþ ¼ fayp; ayp0 gþ ¼ 0 ð1:10Þ

for fermions, respectively.
The Hamiltonian of a many-particle system with interaction Vc;dðp1; p2; p

0
1; p

0
2Þ

(matrix element with respect to the single-particle states j pi) is

H ¼
X
c;p

EcðpÞayc;pac;p þ
1
2

X
c;d

X
p1p2p

0
1p

0
2

Vc;dðp1; p2; p
0
1; p

0
2Þayc;p1a

y
d;p2

ad;p0 2ac;p0 1 ð1:11Þ

(the variable “species” c also contains the spin orientation. It can be included in the
single-particle quantum number p). The many-particle Hamiltonian describes the
dynamical evolution of the system.
The time dependence can be transformed to theHeisenberg picture. The quantum

state remains unchanged, but the dynamical operator A changes with time as

AðtÞ ¼ eiHðt�t0Þ=�hAe�iHðt�t0Þ=�h: ð1:12Þ

5) In the case of a magnetic field that changes its direction with time reversal, the Hamiltonian
remains invariant because of the reversal of the spin direction.
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t0 denotes the instant of time where the Heisenberg picture and the Schr€odinger
picture coincide. The corresponding equation of motion is

@

@t
AðtÞ ¼ i

�h
H;AðtÞ½ �: ð1:13Þ

Similar to the Schr€odinger picture, this time dependence is reversible, the
equations of motion for quantum many-particle systems are invariant with respect
to time inversion and complex conjugation.

Electrodynamics
The dynamics is also reversible in other fields of “microscopic” physics. In electro-
dynamics, the state is described by both the electrical and magnetic fields. In a
relativistic description, we can introduce the four-vector field AmðxÞ at x � fct; rg,
and the four-tensor of field strengths is derived from the four-potential. The
equations of motion in electrodynamics, the Maxwell equations, also describe
reversible motion. After time inversion and reversal of the magnetic field, the
new process is also a solution of Maxwell’s equations (Problem 1.1). The quantiza-
tion of the electromagnetic fields can be performed using the formalism of second
quantization mentioned above.
On a very sophisticated level, we can use quantum electrodynamics to describe

particles interacting with the electromagnetic field. We can consider the action
I½yðxÞ; �yðxÞ;AmðxÞ� or the Lagrangian of LðxÞ ¼ L½ys; @mys; �ys; @m �ys;A

n; @mA
n�,

where the state of the system is given by the real Maxwell four-vector field AmðxÞ
and the complex Dirac spinor field ysðxÞ; x ¼ ðct; rÞ, where s denotes the spinor
components (Problem 1.2). As we know, many phenomena in atomic physics,
molecular physics, solid-state physics, plasma physics, quantum optics, liquid-state
physics, ferromagnetism, superconductivity, and so on are correctly described with
this Lagrangian. In particular, we obtain the Dirac equation and the Maxwell
equations within the canonical formalism.
A basic property of such microscopic equations of motion is reversibility in time.

Performing a time inversion, the resulting motion also seems to be a physically
possible process. There is no principal difference between past and future. Periodic
processes can be used to measure the time: earth around sun, rotation of earth,
pendulum, vibration of quartz, and atomic clocks (Problem 1.3).

1.1.2
Thermodynamics

The microscopic description is based on different approximations and idealizations.
In particular, part of the interaction that is not of relevance is dropped. Real
macroscopic systems are described phenomenologically, introducing state variables.
Some of them have a simple interpretation such as the volume V and the particle
number Nc of species c. Also, the energy is known from mechanics as the sum of
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kinetic and potential energy. More generally, we can take the Hamiltonian to
calculate the energy E of a system.
Other state variables are introduced via the laws of thermodynamics that are based

on experience. These laws define the temperature T, the internal energy U, and the
entropy S. As a consequence, the relation

dU ¼ dQ þ dA ¼ TdS� pdVþ
X
c

mcdNc ð1:14Þ

for reversible processes is obtained. Here, only two forms of work are considered,
the volume compression work (pressure p) and the chemical work (chemical
potential mc).

6) Reversible processes mean quasistatic, slow changes so that at each
instant of time, the system is in thermal equilibrium. The first law of thermo-
dynamics gives the increase of internal energyU.7) We identify the internal energy
U with the energy E of a system.
According to the second law, the relation dS ¼ dQ=T for reversible processes

defines the entropy S that is an extensive quantity. At the same time, the temperature
T is defined as integrating denominator. The absolute value of the entropy is fixed by
the third law of thermodynamics. For any particular system under consideration, the
entropy can be determined measuring the heat capacity:

SðTÞ ¼
ðT
0
dT

0 CVðT 0 Þ
T

0 ; ð1:15Þ

if other variables like V are fixed. For engineers, tables are available containing,
besides other thermodynamic functions, also the entropy for different materials.
Allowing also for irreversible processes,

dS � dQ
T

ð1:16Þ

6)How many variables are necessary to
describe the thermodynamic state of the
system? The answer is related to the work
we can perform on the system. Elementary
approaches discuss only the volume
compression work �pdV. Advanced
approaches also consider chemical workP

cmcdNc . Further contributions to work
(e.g., electrical EdP (polarization), magnetic
HdM (magnetization), deformation sdu)
will extend the set of state variables of the
system, so there is no basic answer to the
number of thermodynamic state variables.
We will discuss these questions further in
the next chapter.

Another issue refers to extensive (system:
V;Nc;P;M) versus intensive (bath:

p;mc ;E;H) variables. Infinite homogeneous
systems are idealizations. External forces,
surface effects, phase separation, droplet
formation, and so on, demand the
treatment of inhomogeneities.

7) The absolute value depends on the gauge,
that is, the choice of the zero of U. In
particular, the potential energy has to be
fixed, or the binding energy of molecules
can be taken into account. Physical
processes are connected only with the
increase of internal energy so that an
additive constant becomes irrelevant.
However, the absolute value of energy
determines the time dependence of the
phase of a quantum state.
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according to the second law. In particular,

d
dt
SðtÞ � 0 ð1:17Þ

holds for the time evolution of the entropy of closed systems. For isolated systems,
no exchange of heat with a bath is possible so that dQ ¼ 0. Irreversible processes
define a direction (arrow) of time because time inversion means that entropy would
decrease in closed systems. More generally, for �Sð�tÞ ¼ SðtÞ with �t ¼ 2tinv � t,

d�S � dQ
T

ð1:18Þ

for any process. This is forbidden according to the second law of thermodynamics.
The basis for introducing the entropy is the existence of reversible and irreversible

processes [21]. Three examples are discussed that establish irreversible processes:
friction that transforms mechanical work into heat (e.g., pendulum with friction),
diffusion of a substance to free space (e.g., dissolution of a concentration profile in a
liquid), and heat transfer from warm to cold systems. It is impossible to construct a
perpetuum mobile of the second kind. There is an arrow of time, and it becomes
evident that the arrow of time points from the past into the future considering
processes such as friction, heat conduction, and diffusion processes. Thus, the
evolution of a real, macroscopic system is in general irreversible. We can distinguish
between amovie of a possible process and the time inversemovie that is not possible
(Problems 1.4 and 1.5).

1.1.3
Ensembles and Probability Distribution

In thermodynamic equilibrium, a connection between macroscopic and microscopic
approaches can be given in the frame of statistical physics. For this, the entropy has
to be introduced into the microscopic dynamical approach, which is done via
probability. Once the entropy is introduced, other quantities like temperature or
chemical potentials can be deduced.
Ensembles are considered instead of a particular real system. The ensembles are

determined by all realizations that are compatible with the boundary conditions,
given by the values of the relevant thermodynamic variables. More precisely, a
probability distribution for the microstates of the dynamical system is introduced.
This probability distribution is formed in such a way that the values of the relevant
variables of the thermodynamic macrostate are correctly described (consistency
conditions). As in quantum mechanics, we investigate only averaged properties of
the ensemble, not the individual properties of the particular real system under
consideration.
For quantum systems, the microstates of the dynamical system at time t are given

by the state vector jwnðtÞi. We suppose a complete set of commuting observables that
uniquely define the microscopic state of the system, for example, the position and
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z-component of spin of all electrons in a system of electrons. The distribution
function or statistical operator8)

rðtÞ ¼Pn jwnðtÞiwnhwnðtÞj ð1:19Þ

contains the probability wn that the macroscopic system under consideration is
found in the microscopic state jwnðtÞi. The probabilities are real numbers, so rðtÞ
is Hermitian. If we have a complete set of alternative states jwnðtÞi, the probability is
normalized according to

1 ¼
X
n

wn ¼ TrfrðtÞg: ð1:20Þ

For any dynamical observable A, the average is given by9)

hAit ¼Pn wnhwnðtÞjAjwnðtÞi ¼ TrfrðtÞAg: ð1:21Þ

How does the statistical operator depend on time? We start with the Schr€odinger
equation that describes the time dependence of the states jwnðtÞi and its conjugate
complex (Hy¼H):

i�h
@

@t
jwnðtÞiÞ ¼ HjwnðtÞi; � i�h

@

@t
hwnðtÞj ¼ hwnðtÞjH: ð1:22Þ

With

@

@t
rðtÞ ¼

X
n

@

@t
jwnðtÞi

� �
wnhwnðtÞj þ

X
n

jwnðtÞiwn
@

@t
hwnðtÞj

� �
; ð1:23Þ

we obtain the von Neumann equation as the equation of motion for the statistical
operator:

@

@t
rðtÞ þ i

�h
H; rðtÞ½ � ¼ 0: ð1:24Þ

The VonNeumann equation describes reversible dynamics. The equation ofmotion
is based on the Schr€odinger equation. Time inversion and conjugate complex means
that both terms change the sign, since i ! �i and both the Hamiltonian and the
statistical operator are Hermitian (Problem 1.6).

8) In general, the density matrix rmm0 ðtÞ ¼
hym0 jrðtÞjymi with respect to an
arbitrary complete orthonormal basis
jymi may also contain nondiagonal
elements. Whereas the diagonal
elements rmmðtÞ have the meaning of
probabilities, the nondiagonal elements
(m 6¼ m

0
) express quantum

interferences. It is a basic problem how
to introduce a basis in which we can
assume that the density matrix is

diagonal. We will discuss the related
problem of entanglement and
decoherence in Chapter 3.

9) The introduction of the trace allows us to
formulate averages independent of the
choice of the basis in the Hilbert (fixed
particle number Nc) or Fock space
(arbitrary particle numbers). Averages that
are introduced in the eigenrepresentation
of rðtÞ are given in a form independent of
the representation.
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1.1.4
Entropy in Equilibrium Systems

In thermodynamic equilibrium, the state of the system is not changing with time,
ð@=@tÞreqðtÞ ¼ 0. There is no dependence on t. The solution of the von Neumann
equation becomes trivial,

i
�h

H; req

h i
¼ 0 ð1:25Þ

in thermodynamic equilibrium, and the time-independent statistical operator
req commutes with the Hamiltonian. We conclude that req depends only on
constants of motion C that commute with H. However, the von Neumann
equation is not sufficient to determine how req depends on constants of
motion C.10)

We consider a system containing particles of species c with numbers Nc .
The dynamics is described by the Hamiltonian H. The thermodynamic state
variables are given by the contact with the “environment” (bath or reservoir). Due
to these contacts, the constants of motion Cn can fluctuate, but equilibriummeans
that the average values hCnit are not changing with time. Equilibrium statistical
mechanics is based on the following principle to determine the statistical operator
r:
Consider the functional (information entropy)11)

Sinf ½r� ¼ �Tr fr ln rg ð1:26Þ

for arbitrary r that are consistent with the fixed conditions:

Tr frg ¼ 1 ð1:27Þ

(normalization) and

Tr frCng ¼ hCni ð1:28Þ

(self-consistency conditions). With these conditions, we vary r and determine
the maximum of the information entropy for the optimal distribution req.

10) This is a genuine problem in the
dynamical description. We can calculate
the trajectory as a solution of a differential
equation, but we must have in addition
information about the initial values to
select a special solution. For example,
Newton’s law allows to predict the
positions of the planets, but does not
answer the question why we have these
planets with their particular parameters.
For this, we have to investigate the
evolution of the planetary system.

11) This definition of the equilibrium entropy,
introduced by Boltzmann, Gibbs,
Shannon, and Jaynes, satisfies important
properties such as extensivity and validity
of the thermodynamic relations. It
measures the information contained in a
probability distribution and can be applied
to more general situations. Other entropy
concepts have been introduced by Renyi
[23] and Tsallis [24] that are not extensive.
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The corresponding result

Seq½req� ¼ �kB Tr freq ln reqg; ð1:29Þ

is the equilibrium entropy of the system for given constraints hCni, kB ¼ 1:38065�
10�23 m2 kg s�2 K�1 is the Boltzmann constant. The solution of this variational
principle leads to the Gibbs ensembles for thermodynamic equilibrium12) (see
Sections 1.1.6 and 1.2.2).
As an example, we consider an open system that is in thermal contact and particle

exchange with reservoirs. The sought-after equilibrium statistical operator has to obey
the given constraints normalization, Tr frg ¼ 1, thermal contact with the bath so that

Tr frHg ¼ U ¼ uV; ð1:29aÞ
and particle exchange with a reservoir so that

Tr frNcg ¼ ncV: ð1:29bÞ
Looking for the maximum of the information entropy functional,
Sðb;V; mÞ ¼ max kBSinf ½r�f g, with these constraints, one obtains the grand canoni-
cal distribution (see also Section 1.2.2 for derivation):

rgr can ¼ e�bðH�
P

c
mcNcÞ

Tr e�bðH�
P

c
mcNcÞ

ð1:30Þ

or

wgr can;n ¼ e�bðEn�
P

c
mcNcÞP

n
0 e�bðE

n
0 �
P

c
mcNc

0 Þ ; ð1:31Þ

where we introduced explicitly the eigenvalue Nc of the particle number operator,
n ¼ {Nc,n} contains the particle numbers N of all species and the internal quantum
number n of the excitation, ENc ;n are the energy eigenvalues of the eigenstates jwNc ;ni of
thesystemHamiltonianH confined to thevolumeV (wedonotuseV to avoidconfusion
with the potential). The normalization is explicitly accounted for by the denominator
(partition function). The second condition (1.29a) means that the energy of a system,
which is inheat contactwitha thermostat,fluctuatesaroundanaveragedvalue hHi¼uV
with the given density of internal energy u. This condition is taken into account by the

12) Various ensembles are defined by the
corresponding contact of the system
with its surroundings. Through this,
different (extensive) thermodynamic
variables Cn are introduced that
characterize properties of the system.
The corresponding (intensive) Lagrange
parameters express the properties of
the “bath.” The meaning of different
ensembles and “natural” variables
becomes obvious. Thermodynamic
potentials are generated in a systematic
way. The equations of state relate the
averaged values of Cn with the given

constraints prescribed by the
“bath.”
We have fluctuations of the properties

of the system due to the interaction with
the “bath.”We can relate this to the
second derivatives of the partition
function that have the meaning of
material properties (e.g. specific heat,
compressibility, and susceptibilities). The
maximum condition of the entropy
introduces stability relations for small
fluctuations. In the case of
thermodynamic instability, phase
transitions will occur.
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Lagrangemultiplierb thatmustberelated to the temperature, amoredetaileddiscussion
leads to b ¼ 1=ðkBTÞ. Similarly, the contact with the particle reservoir fixes the particle
densitync,introducedbytheLagrangemultipliermc thatrepresentsthechemicalpotentials.
Within the variational approach, the Lagrange parameters have to be eliminated.

This leads to the equations of state hHi ¼ UðT ;V; mcÞ, hNci ¼ VncðT ; mcÞ (Prob-
lem 1.7). The dependence of extensive quantities on the volume V is trivial. The
method to construct statistical ensembles from the maximum of entropy under
given conditions, which take into account the different contacts with the surround-
ing bath, is well accepted in equilibrium statistical mechanics and is applied to
different phenomena, including phase transitions (see Refs [9,13]).
In conclusion, in thermodynamic equilibrium, a connection between the micro-

scopic dynamical approach and the thermodynamical approach can be given. For
this, the entropy has to be introduced into themicroscopic dynamical approach. This
is done with the help of probability.13)

Can we use this definition of equilibrium entropy for evolution in nonequilibrium
processes? Time evolution of r, Eq. (1.24), is given by a unitary transformation that
leaves the trace invariant. Thus, the entropy defined above is constant.

More directly, from the Liouville–von Neumann equation as the equation of motion for the statistical
operator (Eq. (1.24)),

@

@t
rðtÞ þ i

�h
H; rðtÞ½ � ¼ 0: ð1:32Þ

Considering the time variation on the right-hand side of Eq. (1.29), we find

d
dt

�kBTr frðtÞ lnrðtÞg½ � ¼ 0: ð1:33Þ
(For the proof we can use the series expansion ln ½1þ ðx � 1Þ� ¼ ðx � 1Þ � ðx � 1Þ2=2	 
 
 
 and

for each power of rðtÞ apply the relation (1.32) and invariance of the trace with respect to cyclic
changes of operators.)

The equations of motion, including the Schr€odinger equation and the Liouville–
von Neumann equation, describe reversible processes and are not appropriate for
describing irreversible processes. Therefore, the entropy concept (1.29) worked out
in equilibrium statistical physics cannot be used as a fundamental approach to
nonequilibrium statistical physics.
Up to now, there is no basic approach for how to extend the concept of entropy

to nonequilibrium processes. There are different situations where equations of
evolution can be given, which contain, in addition to the dynamical description,
phenomenological concepts (e.g., the Boltzmann equation and the “Sto�zahlansatz”).
In this book, we attempt the formulation of a coherent description applicable to
different nonequilibrium processes. We indicate clearly where additional arguments
are introduced to obtain irreversible equations of evolution that do not conflict with
equilibrium descriptions.

13) There are different individual systems that form the ensemble. This is a virtual ensemble of
systems, without any interaction between these virtual systems. The entropy is an observable
for a real system and can be measured. Can it depend on the other virtual members that form
the ensemble?
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1.1.5
Fundamental Time Arrows, Units

The problem of treating irreversible processes is connected with the arrow of time.
Past, present, and future are different. Is there a common, general phenomenon that
defines the arrow of time? Various processes are known where the time direction is
singled out [22].

1) The condition of radiation in electrodynamics (retarded solution) and the bound-
ary conditions for the scattering process in quantum physics describe an
irreversible process. Sommerfeld’s radiation condition, the condition of outward
radiation, selects the retarded solution of the wave equation (Problem 1.11).

2) The second law of thermodynamics defines the arrow of time. In thermodynamics
of irreversible processes, transport coefficients are introduced that are related to
fluctuations in equilibrium. In hydrodynamics, conductive transport, viscosity,
thermal conductivity, and so on produce dissipation to equilibrium. The theory of
turbulence describes nonequilibrium evolution. Relaxation to equilibrium
occurs for chemical reactions, spin systems, and so on. Master equations, kinetic
equations, and linear response theory describe irreversible processes and are the
subject of this book.

3) In quantum mechanics, two different time evolutions are known for a quantum
state, the Schr€odinger equation, which is a reversible equation of motion, and the
process of measuring, which describes the irreversible evolution of a quantum
state under the influence of an (classical) apparatus. During this process,
quantum coherence is lost.

4) In elementary particle physics, the CPT theorem is known that states that processes
are invariant with respect to the simultaneous transformation C (antiparticles), P
(inversion of space), and T (inversion of time). Processes are known such as the
decay of K0 mesons, which violate CP invariance and thus also T invariance, that
is, single out a time direction.

5) In astrophysics, the thermodynamics of black holes is not invariant with respect to
time inversion; matter falls into the black hole and disappears.

6) In cosmology, general relativity describes an expanding universe, characterized by
the Hubble constant.14) This gives the arrow of time.

An interesting question is whether there exists a “master arrow of time” that also
defines the other observed arrows of time.
The following issues are also of importance in connection with irreversibility:

� Chaotic motion. The equation ofmotion for dynamical systems can show dynamical
instabilities, so the trajectory becomes unpredictable over long time intervals.
This happens in particular for complex systems. The Lyapunov exponent indicates

14) The expansion of the Universe gives a relation between the distance r and the radial velocity
(“recession velocity”), vr ¼ t�1

Hubbler. The Hubble time is tHubble ¼ 4:35� 1017 s or 13.8 billion
years.
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