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Preface
 

 

 

 

Future advanced architectures, such as embedded

systems, having a greater complexity and new quality

requirements, will need a more precise specification and

better control of their design process. In order to acquire the

corresponding fundamental knowledge, it is essential to rely

upon approaches based on the use of adequate system

models. In particular, such approaches need to acquire a

deep understanding of the system, including its local

behaviors and its communications, based on a well-defined

representation of the designed architecture. This

representation should be used as early as possible to

analyze and validate the design. The goal of this volume is

to present a family of formal specification models, based on

Petri nets and extensions of Petri nets, because they are

defined by simple and clear semantics, allow easy modeling

of system key mechanisms, and are supported by strong

analysis methods and tools. Furthermore, this set of models

can be used for all design aspects, i.e. to specify functional

behaviors, and to include temporal or stochastic

requirements.

The main results related to this approach are given in this

volume, in two parts, one presenting the fundamental

models, and the other being dedicated to verification and

applications. We have tried to highlight the important

characteristics and the main properties of these models,

and to show how they lead to the emergence of a full design

methodology, which is both complete, in terms of all



possible functional and other analysis, and integrated,

because the same basic semantics are used for the full

design support. We think that this volume should greatly

help any designer to build the new forthcoming generation

of distributed systems.

Lastly, I would like to thank all the authors who

contributed to this book, for their expertise, their

seriousness, their technical inputs, and for the great job

they have done.

 

 

Michel DIAZ



Introduction
New technologies in processors and networks allow

system designers to conceive and build advanced and

sophisticated parallel and distributed architectures, which

need to integrate non-functional real time and stochastic

constraints with functional distributed processing and

communication.

The global behavior of such systems depends first on the

local activities and data, but also on the messages sent and

received by the various interconnected subsystems. As a

matter of fact, understanding, expressing, specifying and

validating such global behaviors proves to be a problem of

very high complexity, leading to many design and

implementation difficulties and bugs. For example, when

considering n connected processors, they can run, at a

given instant in time, using 2 x 2, 3 x 3 communications,

etc., or a full communication, in which all n processors

interact. The sum of the resulting combinations, of the order

of 2n, shows the complexity of the resulting conceptual

problems, and explains in particular the increasing difficulty

obtained when passing from an interconnection of a few

processors to an interconnection of a large number of

processors: when the number of processors varies from 2 to

10, the difficulty coefficient goes from 4 to about 1,000.

It should then be clearly understood that designing such

distributed architectures leads to a very complex conceptual

task, which has to be based on a well-defined methodology

to be able to manage all system requirements and

behaviors.

Design and specification

The design process starts by giving the different functions

and agents which are required, and the way they are



structured; second, the designers define the behaviors of

the various processes and entities, and the way they

communicate; then, if they want to analyze the correctness

of the design as soon as possible, an adequate approach is

needed to represent, in an explicit way, the (full) system

global behavior, in particular to be able to check potential

unanticipated sub-behaviors.

To check the design correctness, it is essential to use a

precise model of all critical mechanisms, functions, sub-

systems, etc., and then, whenever possible, to use a formal

model, to define a mathematical representation of the

system. Checking the correctness validation of the design at

this step is then conducted by checking the behavior of this

system model.

Note that, after a given adequate sequence of more or less

formal validation steps based on models, the system will be

defined as ‘fully designed’ and will be implemented using

adequate tools and languages.

Formal approaches have been used for many years for the

verification of communication protocols. Two principal

approaches have been used., i.e. basic formal models, such

as automata, Petri nets, process algebras, etc., and formal

description techniques for protocols, such as Estelle, LOTOS,

SDL, etc.

This volume proposes and develops a design and

validation methodology that relies on the use of a family of

basic formal models that are rather easy to understand, and

able to:

– describe the semantics of all basic building mechanisms;

– clearly specify the interconnection and communication

semantics;

– unambiguously describe the resulting behaviors;

– validate the system during the first phases of its design

by using support tools.



In general, basic non-language oriented graphical models,

that do not include language-specific operators and

statements, lead to the simplest solutions for representing

basic mechanisms in a very abstract and integrated way.

For this reason too, this volume selected a basic,

language-independent set of models to represent and

manipulate the fundamental concepts of communicating

architectures.

Selecting a model

Several models exist, and each model has particular

characteristics, more or less relevant for a specific design.

Consequently, the choice of the right model depends on the

designed system and on the properties to be analyzed, as

the model must be able to describe the design, and also to

allow the designer to check the validity of the required

properties.

In general, the designer must have a good understanding

of the fundamental semantics of the system, i.e. of its basic

building mechanisms. Thus, for simple architectures,

modeling will be able to represent in a faithful way all

details of the system. However, for complex systems, it will

generally be impossible, for economic reasons, to represent

the details of all existing functions, and it will become

necessary to select and validate certain building blocks, i.e

those most likely to lead to erroneous behaviors.

Of all existing models, Petri nets (PN) and their extensions

are of undeniable fundamental interest, because they:

– provided the first modeling approaches for the semantics

of concurrent systems, and were used to model the

behaviors of the first parallel and distributed basic

mechanisms;

– define easy graphic support for the representation and

the understanding of these basic mechanisms and

behaviors;



– prove to be, starting from state machines, an easy

extension of previous approaches and handle, at the same

time, the creation and the analysis of models;

– express very simply the main basic concepts in

communication, including waiting and synchronization, and

furthermore take into account their temporal and stochastic

parameters;

– ensure, being unrelated to a particular implementation

language, the independence of the specification with

respect to its implementation.

Furthermore, many validation methods have been

developed, using a great number of theoretical results and

support tools, able to manipulate functional, temporal, and

stochastic behaviors. Finally, models based on PNs will help

us to understand, define and analyze the behavior of these

systems, in the preliminary and first steps of their design.

For all these reasons, a set of Petri net models was

selected in this book to represent and manipulate the

fundamental concepts of communicating architectures.

Petri nets

PNs were introduced by A.C. Petri in 1962 to synchronize

communicating automata, and were then extended to

define a large set of models, with increasing complexity and

capabilities.

As will be seen, this family of PNs, starting from the simple

traditional state machines, now allows system designers to

handle in an integrated way the functional (qualitative) and

the non-functional (e.g. quantitative) temporal and

stochastic capabilities of systems.

Extensions of PNs were proposed according to two

important axes:

a)  for qualitative properties and behaviors, to use simpler

and more compact models, by high level PNs, for handling

generic behaviors (e.g. individual) and data, predicates and

functions;



b)   complementing this first axis, for quantitative

properties and behaviors, to extend the previous models by

integrating quantitative constructs and parameters related

to temporal and stochastic requirements.

It is significant to note that all first and conceptual studies

in these quantitative fields were carried out using PN-based

models.

Functional qualitative properties

The first PN model, called the Condition–Event PN, was

based on the use of Boolean values: true or false. It was

generalized by Place–Transition PNs, now simply called PNs,

which can use integers. This volume will begin with their

presentation and validation.

Non-functional quantitative properties

The fundamental contributions of the second axis

considers:

– time PNs, or TPNs, used for systems whose behaviors

depend explicitly on temporal values;

– stochastic PNs, or SPNs, for which distributions are

attached to the model, in particular for performance

evaluation and reliability.

Families of PNs

When applied to the modeling of systems, it rapidly

becomes apparent that these models do not have the same

application power, in terms of:

– definition and description of the concepts for parallelism,

distribution, and synchronization;

– understanding and using the temporal and stochastic

semantics;

– analyzing the possibly different mechanisms and

behaviors, in very different contexts and applications.

Figure 1 represents some of the principal models of this

family. In this figure, an arrow means that the model at the

end of the arrow was proposed after the model at the



beginning of the arrow, and so gives the steps followed by

the research to propose and develop these principal PN-

based models.

Figure 1. The main Petri net models

Figure 2 gives a more conceptual view of these models, by

clarifying their syntactic and semantic relationships. In this

figure, three fields are respectively defined by:

– a discrete state semantics, for non-temporal and non-

stochastic nets, behaviors being represented by a finite

graph of all model states;

– a semantics on continuous time, for extended behaviors

based on dense time models;

– and stochastic semantics, for behaviors including

distributions.

Let us emphasize that these models have three models of

reference, respectively PN, TPN, and SPN. Moreover, each

model is a pure extension of a previous one, as it can by

simplified to become a basic PN model.



As seen in the figure, the models derived from the

reference models:

– lead to more compact models, i.e. are abbreviations,

that do not increase the expressiveness of the model, but

simplify the model and the system specification;

– or are more powerful in terms of expressive power, i.e.

are able to describe mechanisms which could not be

described by the unextended models (e.g. introducing time

parameters, stochastic distributions, etc., for real-time or

dependable systems).

Figure 2. Semantics domains of the Petri net-based models

For example:

– PN led to PN with inhibitor arcs (to test the presence of

zero token in one

place), PN with reset arcs, etc.;

– TPN led to TPN with streams to compose and synchronize

independent behaviors with independent temporal

constraints, etc.;

– SPN led to SPN with immediate transitions in order to

manage the case where transition cannot be delayed, etc.



Consequently, many different models exist, of different

power and for different fields of application, but they follow

the same semantics basis, and will allow the designers to

carry out coherent complementary analyses to validate the

correct operation of the modeled (and designed) systems.

The semantics of these models and their properties were

used to select, define, and study the most important

members of the PN family in the two parts of this volume.

Table of contents of the volume

Part 1 is dedicated to fundamental models and contains 11

chapters. Part 2 addresses verification and applications, and

contains the last 7 chapters.

Part 1

Chapter 1 introduces Place–Transition PNs, more simply

called Petri Nets (PNs). It gives their fundamental

definitions, presents some basic models and clarifies their

interest.

Chapter 2 illustrates an application in a very important

area: communication protocols; simple PN examples show at

the same time the power of the model and the interest of

the formal analysis.

Chapter 3 first introduces the general properties that can

be checked using PNs (blocking, reachability or accessibility,

etc.) and the verification approach that uses the graph of

the reachable (or accessible) states. The set of reachable (or

accessible) states is the set of states that are reachable or

accessible from a given initial state. Two optimization

methods of analysis are then presented, one based on linear

algebra techniques, and the other one exploiting the

topological structure of the PNs.

Chapter 4 deals with the decidability and complexity

problems related to checking these general properties.

Chapters 5 and 6 consider models and behaviors based on

explicit values of time, and show how to model temporal

mechanisms.



Chapter 5 presents the general model, Time PN or TPN,

which associates a given interval (minimum, maximum) to

each transition; this gives the first semantics for handling

time and verifying temporal behaviors.

Chapter 6 presents a general model for composing

temporal behaviors and systems. It gives the semantics of

temporal composition by a new model, Time Stream PN, for

composing autonomous (temporal) flows. It emphasizes

their interests and applications for systems having

independent temporal constraints, which sometimes

interact.

Chapters 7 and 8 again consider PNs, i.e. non-temporal PN

models, but define an abbreviation of a PN by a general

model, which becomes able to represent, in a very compact

way, a given set of similar parallel behaviors. The problems

associated with this abbreviation are, on the one hand, to

define a compact formalism and, on the other hand, to

propose new validation techniques to handle this model, i.e.

to avoid the obvious solution that consists of unfolding it

into a very large PN.

Chapter 7 presents the main PN abbreviations, while

concentrating on Colored PNs, which is the most frequently

used model.

Chapter 8 gives one well-defined version of this formalism,

Well-formed Colored PNs, which allows the development of

efficient analysis techniques.

Chapters 9, 10 and 11 introduce distributions, which take

into account probabilistic properties of systems. They

introduce stochastic PNs, or SPNs, and define their

semantics in terms of stochastic processes, and, for some

classes of models, their relationships with Markov chains.

The principal methods of analyzing SPNs are then

presented. Chapter 9 introduces stochastic PNs.

Chapter 10 introduces well-formed SPNs by combining the

formalisms presented in Chapter 7 (Well-formed Colored



PNs) and Chapter 9. Modeling a multiprocessor architecture

illustrates the expressivity of this formalism and its interest

for performance evaluation. Chapter 11 develops a tensorial

composition of classical and well-formed SPNs, showing that

such a compositional approach reduces the complexity of

the corresponding validation.

Part 2

The second part of this volume presents important

advanced analysis techniques and finally gives some

significant and illustrative case studies.

Chapters 12 and 13 address checking and verifying non-

temporal behaviors. They present the main approaches that

are based on building and manipulating the (system)

accessibility or reachability graph, i.e. the graph

representing all possible behaviors of the model. Checking

these properties, by algorithms applied to the accessibility

graph, suffers from the problems of combinatorial explosion.

The general problems to be solved to control such an

increase in the number of states, as well as general

solutions, are then given. Three specific techniques, based

respectively on the unfolding of the colored PNs, on

symmetries, and on partial orders, are then presented.

Chapters 14 and 15 focus on the temporal validation of

behaviors. Chapter 14 analyzes the relationships existing

between symmetry and temporal logic for the verification of

properties that depend on the specificities of the system.

Chapter 15 introduces a parallel–serial hierarchy of temporal

behaviors. This hierarchy simplifies the description of

complex systems and is very well adapted for modeling

complex multimedia and hypermedia objects, documents,

and systems.

Chapter 16 presents how to use the main relationships

that exist between linear logic and Petri nets for

specification and validation. Logical reasoning is constructed

based on the behavior of PNs that does not need to produce



the reachability graph. The interest of linear logic is

illustrated by showing in particular how to handle symbolic

temporal intervals (minimum, maximum).

Chapters 17 and 18 present two important case studies

that are illustrative while being manageable and easily

understandable. Chapter 17 is devoted to the modeling and

design of a multilayered, multimedia architecture that is

able to guarantee temporal properties at the application

level. Chapter 18 presents the application of PN-based

models to performance evaluation in the field of computer-

integrated manufacturing systems.

Finally, a conclusion summarizes the contents of this

volume.
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Fundamental Models



Chapter 1

Basic Semantics1

1.1. Automata or state

machines

1.1.1. Automata and state

machine models

The first models for numerical systems led to the definition

of automata, or state machines. Automata or state

machines are based on three fundamental assumptions,

often implicitly given.

The first two assumptions are as follows:

– There exist, for the considered systems, a concept of

global state, a set of these global states, and an explicit

representation of these states (i.e. they can be precisely

defined).

– There exists a global initial state, and the behavior

(operational behavior) of the system starts from this global

initial state:

– the behavior moves from the initial state by a set of

transitions and goes to other global states, one per

transition, called “next states”,

– this behavior can be fully described by all the transitions

that go from each global state to the next, one per

transition, also called next states.



Such a transition between two states will take place when

a given enabling event occurs during the evolution of the

system.

The description of the transition (of the corresponding

system behavior) will be represented in the model by an arc

starting from a “before the event” state and going to a next

“following the arrival of this event” state.

As a consequence, the full behavior of the model will be

described by a global graph that represents the way the

system operates, and defines all possible global states

(represented by circles) and all possible transitions

(represented by arcs) that exist between these states.

Note that this (behavioral) model is built step by step,

starting from a state called “the initial state”, a well-defined

and specific state from which the behavior starts.

The two preceding assumptions are complemented by a

very important one needed to construct the graph, the

indivisibility of the transition between two states:

– when one event occurs in a given state and triggers a

transition between two states, the transition has to be

completed before another trigerring event can occur.

This means there is no state between the present state

and the next state, as the system leaves the present state

and reaches the next state indivisibly (the state reached

when this transition occurs).

In general, automata and sequential machines are related

to their environment by inputs and outputs: the evolution of

the model depends on the values of the inputs. In particular,

the transitions between two states depend on the values of

the inputs. In each state, a value of the inputs can trigger or

enable the execution of one transition (each input being

able to trigger or enable one transition). The outputs are

produced either in a state or during a transition (i.e. a pair

state/input or a pair arc/output).



As soon as one input in a given state enables a transition,

the transition is executed: its execution starts from the

present state and leads to the next state, and produces new

values for the outputs.

In this model, the assumption of indivisibility implies:

– first, that the transition is executed when the

significative input of the automata enables the transition;

and

– second, that the next state has to be reached before a

new input enables a transition in the next state (of the

automata or state machine).

Indivisibility with inputs and outputs means that a

transition and its outputs (the actions coming from this

transition) must be completed before reaching the next

state, i.e. before the arrival of an event that can enable one

of the transitions starting from the next state (the state

newly reached).

Thus, a global behavior of the model can be defined by

considering, one after the other, the set of the inputs,

transitions, and outputs that define the system execution.

Furthermore, note that the assumption of indivisibility

implies that when complex actions (e.g. related to many

outputs or to computations) are associated with a transition,

these actions must be completed before reaching, and thus

defining, the next state.

As a consequence, whatever the actions are, only two

global states exist:

– one before the transition, i.e. the starting global state —

having for values all values existing at the instant before the

transition is executed;

– one after the execution of the transition, the next global

state; it has for values the new values of the automata or

state machine, i.e. the values either left unchanged by the

transition, or modified by the complete execution of all

actions associated with the transition.



Of course, for these models to represent behaviors

correctly, the real behavior of the modeled system must

satisfy the assumption of indivisibility, i.e. the behavior of

the system must fulfill the indivisibility assumption, to be

coherent with the behavior of the model.

Thus, modeling must represent the real indivisibility that

exists in systems. Conversely, if some sub-behaviors are not

indivisible, they cannot be represented by only one

transition, and must be represented by a set of transitions,

each of which represents the various indivisible sub-

behaviors.

1.1.2. Tasks and processes

Of course, a program or a process can be represented by a

state machine:

– the initial state is given by the value of the program

counter and of the program variables immediately after

their initialization;

– the execution of a transition is defined by the set of

actions that is the execution of the program instruction or

intructions associated with this transition;

– the execution leads to a next state that includes the new

values of the program counter and of all program variables

that have been modified by this transition.

The assumption of indivisibility can make modeling

difficult, and the model must be built carefully: modeled

transitions must indeed be indivisible in the real system for

the model to represent the real behavior.

Again, any divisible behavior of the system must be

broken up into indivisible sub-behaviors, and each of these

indivisible sub-behaviors can be represented by a transition.

For example, some instructions can be suspended, and their

model may have to account for them, depending on the



level of modeling, by breaking them up into indivisible

subinstructions.

1.1.3. Some models

Let us consider the partial and full state machines given in

Figure 1.1a, composed of circles for the states and of arcs

for the transitions between the states.

Each transition has only one starting state, and only one

following state.

Let us suppose that to mark the initial state at the initial

instant a token is drawn in the state (note that sometimes

the initial state is marked by an arrow entering it and

coming from no other state).

When a transition is executed, after being enabled by an

event, the fact of going from the present state to the next

state will be called executing or firing a transition, and

this firing can be represented graphically by passing the

token from the present (starting) state to the next

(following) state. Note that, for a transition to be firable the

token must be in the place which is at the “input of the

transition”.

A token always exists in the graph, and indicates the

present state of the behavior (of the automata or of the

state machine), and each state represents a global state of

the model (and of the modeled behavior), i.e. a global

sequential activity.

In this figure, the notation “A; B” means that “A” is an input

and that “B” is an ouput.

From what has been said before, this means that when the

token is in the input state of the transition, the arrival of the

input event “A” causes the execution of the transition from

the present state to the next state, and the firing of this

transition produces the output action “B”.


