

Table of Contents

Preface

Chapter 1. A Short Insight into

Probabilistic Combinatorial Optimization

1.1. Motivations and applications

1.2. A formalism for probabilistic combinatorial

optimization

1.3. The main methodological issues dealing with

probabilistic combinatorial optimization

1.4. Miscellaneous and bibliographic notes

FIRST PART. Probabilistic Graph-problems

Chapter 2. The Probabilistic Maximum

Independent Set

2.1. The modification strategies and a preliminary

result

2.2. PROBABILISTIC MAX INDEPENDENT SET1

2.3. PROBABILISTIC MAX INDEPENDENT SET2 and

3

2.4. PROBABILISTIC MAX INDEPENDENT SET4

2.5. PROBABILISTIC MAX INDEPENDENT SET5

2.6. Summary of the results

2.7. Methodological questions

2.8. Proofs of the results

Chapter 3. The Probabilistic Minimum

Vertex Cover

3.1. The strategies M1, M2 and M3 and a general

preliminary result

3.2. PROBABILISTIC MIN VERTEX COVER1

3.3. PROBABILISTIC MIN VERTEX COVER2

3.4. PROBABILISTIC MIN VERTEX COVER3

3.5. Some methodological questions

3.6. Proofs of the results

Chapter 4. The Probabilistic Longest Path

4.1. Probabilistic longest path in terms of vertices

4.2. Probabilistic longest path in terms of arcs

4.3. Why the strategies used are pertinent

4.4. Proofs of the results

Chapter 5. Probabilistic Minimum Coloring

5.1. The functional E(G, C)

5.2. Basic properties of probabilistic coloring

5.3. PROBABILISTIC MIN COLORING in general graphs

5.4. PROBABILISTIC MIN COLORING in bipartite

graphs

5.5. Complements of bipartite graphs

5.6. Split graphs

5.7. Determining the best k-coloring in k-

colorable graphs

5.8. Comments and open problems

5.9. Proofs of the different results

SECOND PART. Structural Results

Chapter 6. Classification of Probabilistic

Graph-problems

6.1. When MS is feasible

6.2. When application of MS itself does not lead to

feasible solutions

6.3. Some comments

6.4. Proof of Theorem 6.4

Chapter 7. A Compendium of Probabilistic

NPO Problems on Graphs

7.1. Covering and partitioning

7.2. Subgraphs and supergraphs

7.3. Iso- and other morphisms

7.4. Cuts and connectivity

Appendix A. Mathematical Preliminaries

A.1. Sets, relations and functions

A.2. Basic concepts from graph-theory

A.3. Elements from discrete probabilities

Appendix B. Elements of the Complexity

and the Approximation Theory

B.1. Problem, algorithm, complexity

B.2. Some notorious complexity classes

B.3. Reductions and NP-completeness

B.4. Approximation of NP-hard problems

Bibliography

Index

First published in Great Britain and the United States in

2006 by ISTE Ltd

Apart from any fair dealing for the purposes of research or

private study, or criticism or review, as permitted under the

Copyright, Designs and Patents Act 1988, this publication

may only be reproduced, stored or transmitted, in any form

or by any means, with the prior permission in writing of the

publishers, or in the case of reprographic reproduction in

accordance with the terms and licenses issued by the CLA.

Enquiries concerning reproduction outside these terms

should be sent to the publishers at the undermentioned

address:

ISTE Ltd ISTE USA

6 Fitzroy Square 4308 Patrice Road

London W1T 5DX Newport Beach, CA 92663

UK USA

www.iste.co.uk

© ISTE Ltd, 2006

The rights of Cécile Murat and Vangelis Th. Paschos to be

identified as the authors of this work has been asserted by

them in accordance with the Copyright, Designs and Patents

Act 1988.

Library of Congress Cataloging-in-Publication Data

Murat, Cecile.

Probabilistic combinatorial optimization on graphs / Cécile

Murat and Vangelis Th. Paschos.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-1-905209-33-0

ISBN-10: 1-905209-33-9

http://www.iste.co.uk/

1. Combinatorial probabilities. 2. Combinatorial

optimization. 3. Random graphs. I. Paschos, Vangelis Th. II.

Title.

QA273.45.M87 2006

519.2--dc22

2006000868

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British

Library

ISBN 10: 1-905209-33-9

ISBN 13: 978-1-905209-33-0

Preface

This monograph is the outcome of our work on probabilistic

combinatorial optimization since 1994. The first time we

heard about it, it seemed to us to be a quite strange

scientific area, mainly because randomness in graphs is

traditionally expressed by considering probabilities on the

edges rather than on the vertices. This strangeness was our

first motivation to deal with probabilistic combinatorial

optimization. As our study progressed, we have discovered

nice mathematical problems, connections with other

domains of combinatorial optimization and of theoretical

computer science, as well as powerful ways to model real-

world situations in terms of graphs, by representing reality

much more faithfully than if we do not use probabilities on

the basic data describing them, i.e., the vertices.

What is probabilistic combinatorial optimization? Basically,

it is a way to deal with aspects of robustness in

combinatorial optimization. The basic problematic is the

following. We are given a graph (let us denote it by G(V, E),

where V is the set of its points, called vertices, and E is a set

of straight lines, called edges, linking some pairs of vertices

in V), on which we have to solve some optimization problem

П. But, for some reasons depending on the reality modelled

by G, П is only going to be solved for some subgraph G′ of G

(determined by the vertices that will finally be present)

rather than for the whole of G. The measure of how likely it

is that a vertex vi V will belong to G′ (i.e., will be present

for the final optimization) is expressed by a probability pi

associated with vi. How we can proceed in order to solve П

under this kind of uncertainty?

A first very natural idea that comes to mind is that one

waits until G′ is specified (i.e., it is present and ready for

optimization) and, at this time, one solves П in G′. This is

what is called re-optimization. But what if there remains

very little time for such a computation? We arrive here at

the basic problematic of the book. If there is no time for re-

optimization, another way to proceed is the following. One

solves П in the whole of G in order to get a feasible solution

(denoted by S), called a priori solution, which will serve

her/him as a kind of benchmark for the solution on the

effectively present subgraph G′. One has also to be provided

with an algorithm that modifies S in order to fit G′. This

algorithm is called modification strategy (let us denote it by

M). The objective now becomes to compute an a priori

solution that, when modified by M, remains “good” for any

subgraph of G (if this subgraph is the one where П will be

finally solved). This amounts to computing a solution that

optimizes a kind of expectation of the size of the

modification of S over all the possible subgraphs of G, i.e.,

the sum of the products of the probability that G′ is the

finally present graph multiplied by the value of the

modification of S in order to fit G′ over any subgraph G′ of G.

This expectation, depending on both the instance of the

deterministic problem П, the vertex-probabilities, and the

modification strategy adopted, will be called the functional.

Obviously, the presence-probability of G′ is the probability

that all of its vertices are present.

Seen in this way, the probabilistic version PП of a

(deterministic) combinatorial optimization problem П

becomes another equally deterministic problem П′, the

solutions of which have the same feasibility constraints as

those of П but with a different objective function where

vertex-probabilities intervene. In this sense, probabilistic

combinatorial optimization is very close to what in the last

couple of years has been called “one stage optimisation

under independent decision models”, an area very popular

in the stochastic optimization community.

What are the main mathematical problems dealing with

probabilistic consideration of a problem П in the sense

discussed above? We can identify at least five interesting

mathematical and computational problems dealing with

probabilistic combinatorial optimization:

1) write the functional down in an analytical closed form;

2) if such an expression of the functional is possible, prove

that its value is polynomially computable (this amounts to

proving that the modified problem П′ belongs to NP);

3) determine the complexity of the computation of the

optimal a priori solution, i.e., of the solution optimizing the

functional (in other words, determine the computational

complexity of П′);

4) if П′ is NP-hard, study polynomial approximation issues;

5) always, under the hypothesis of the NP-hardness of П′,

determine its complexity in the special cases where П is

polynomial, and in the case of NP-hardness, study

approximation issues.

Let us note that, although curious, point 2 in the above list

in neither trivial nor senseless. Simply consider that the

summation for the functional includes, in a graph of order n,

2n terms (one for each subgraph of G). So, polynomiality of

the computation of the functional is, in general, not

immediate.

Dealing with the contents of the book, in Chapter 1

probabilistic combinatorial optimization is formally

introduced and some old relative results are quickly

presented.

The rest of the book is subdivided into two parts. The first

one (Part I) is more computational, while the second (Part II)

is rather “structural”. In Part I, after formally introducing

probabilistic combinatorial optimization and presenting

some older results (Chapter 1), we deal with probabilistic

versions of four paradigmatic combinatorial problems,

namely, PROBABILISTIC MAX INDEPENDENT SET,

PROBABILISTIC MIN VERTEX COVER, PROBABILISTIC

LONGEST PATH and PROBABILISTIC MIN COLORING

(Chapters 2, 3, 4 and 5, respectively). For any of them, we

try, more or less, to solve the five types of problems just

mentioned.

As the reader will see in what follows, even if, mainly in

Chapters 2 and 3, several modification strategies are used

and analyzed, the strategy that comes back for all the

problems covered is the one consisting of moving absent

vertices out of the a priori solution (it is denoted by MS for

the rest of the book). Such a strategy is very quick, simple

and intuitive but it does not always produce feasible

solutions for any of the possible subgraphs (i.e., it is not

always feasible). For instance, if it is feasible for

PROBABILISTIC MAX INDEPENDENT SET, PROBABILISTIC MIN

VERTEX COVER and PROBABILISTIC MIN COLORING, this is

not the case for PROBABILISTIC LONGEST PATH, unless

particular structure is assumed for the input graph. So, in

Part II, we restrict ourselves to this particular strategy and

assume that either MS is feasible, or, in case of unfeasibility,

very little additional work is required in order to achieve

feasible solutions. Then, for large classes of problems (e.g.,

problems where feasible solutions are subsets of the initial

vertex-set or edge-set satisfying particular properties, such

as stability, etc.), we investigate relations between these

problems and their probabilistic counterparts (under MS).

Such relations very frequently derive answers to the above

mentioned five types of problems. Chapter 7 goes along the

same lines as Chapter 6. We present a small compendium of

probabilistic graph-problems (under MS). More precisely we

revisit the most well-known and well-studied graph-

problems and we investigate if strategy MS is feasible for any

of them. For the problems for which this statement holds,

we express the functional associated with it and, when

possible, we characterize the optimal a priori solution and

the complexity of its computation.

The book should be considered to be a monograph as in

general it presents the work of its authors on probabilistic

combinatorial optimization graph-problems. Nevertheless,

we think that when the interested readers finish reading,

they will be perfectly aware of the principles and the main

issues of the whole subject area. Moreover, the book aims at

being a self-contained work, requiring only some

mathematical maturity and some knowledge about

complexity and approximation theoretic notions. For help,

some appendices have been added, dealing, on the one

hand, with some mathematical preliminaries: on sets,

relations and functions, on basic concepts from graph-

theory and on some elements from discrete probabilities

and, on the other hand, with elements of the complexity and

the polynomial approximation theory: notorious complexity

classes, reductions and NP-completeness and basics about

the polynomial approximation of NP-hard problems. We

hope that with all that, the reader will be able to read the

book without much preliminary effort. Let us finally note

that, for simplifying reading of the book, technical proofs are

placed at the end of each chapter.

As we have mentioned in the beginning of this preface, we

have worked in this domain since 1994. During all these

years many colleagues have read, commented, improved

and contributed to the topics of the book. In particular, we

wish to thank Bruno Escoffier, Federico Della Croce and

Christophe Picouleau for having working with, and

encouraged us to write this book. The second author warmly

thanks Elias Koutsoupias and Vassilis Zissimopoulos for

frequent invitations to the University of Athens, allowing full-

time work on the book, and for very fruitful discussions.

Many thanks to Stratos Paschos for valuable help on LATEX.

Tender and grateful thanks to our families for generous

and plentiful support and encouragement during the task.

Finally, it is always a pleasure to work with Chantal and

Sami Menasce, Jon Lloyd and their colleagues at ISTE.

Cécile Murat and Vangelis Th. Paschos

Athens and Paris, October 2005

Chapter 1

A Short Insight into

Probabilistic Combinatorial

Optimization

1.1. Motivations and

applications

The most common way in which probabilities are

associated with combinatorial optimization problems is to

consider that the data of the problem are deterministic

(always present) and randomness carries over the relation

between these data (for example, randomness on the

existence of an edge linking two vertices in the framework

of a random graph theory problem ([BOL 85]) or

randomness on the fact that an element is included to a set

or not, when dealing with optimization problems on set-

systems or, even, randomness on the execution time of a

task in scheduling problems). Then, in order to solve an

optimization problem, algorithms (probabilistic or, more

frequently, deterministic) are devised, and the

mathematical expectation of the obtained solution is

measured. A main characteristic of this approach is that

probabilities do not intervene in the mathematical

formulation of the problems but only in the mathematical

analysis performed in order to get results.

More recently, in the late 1980s, another approach to the

randomness of combinatorial optimization problems was

developed: probabilities are associated with the data

describing an optimization problem (for a particular datum,

we can see the probability associated with it as a measure

of how much this datum is likely to be present in the

instance to be finally optimized) and, in this sense,

probabilistic elements are explicitly included in the

formulations of these problems. Such formulations give rise

to what we will call probabilistic combinatorial optimization

problems. Here, the objective function is a form of carefully

defined mathematical expectation over all possible

instances of size less than, or equal to, a given initial size.

The fact that, when dealing with probabilistic

combinatorial problems, randomness lies in the presence of

the data means that the underlying models are very

suitable for the modelling of natural problems, where

randomness is the quantification of uncertainty, or fuzzy

information, or inability to forecast phenomena, etc.

For instance, in several versions of satellite shot planning

problems, the uncertainty concerning meteorological

conditions can be quantified by a system of probabilities.

The optimization problems derived are, as we will see later

in this chapter, clearly of probabilistic nature. If, on the

other hand, during a salesman’s tour, some clients need not

to be visited, he should omit them from his tour and if the

fact that a client has to be visited or not is modelled in

terms of probabilities-systems, then a probabilistic traveling

salesman problem arises1. For similar or other reasons,

starting from a transportation, or computer, or any other

kind of network, we encounter problems like probabilistic

shortest path problem2 or probabilistic longest path

problem3, probabilistic minimum spanning tree problem4,

etc. Also, in industrial automation, the systems for

foreseeing workshops’ production give rise to probabilistic

scheduling, or probabilistic set covering or probabilistic set

packing, etc. Finally, in computer science, mainly when

dealing with parallelism or distributed computation,

probabilistic combinatorial optimization problems very

frequently have to be solved. For instance, modeling load-

balancing with non-uniform processors and failures

possibility becomes a probabilistic graph partitioning

problem; also in network reliability theory, many

probabilistic routing problems are met ([BER 90b]).

In all, models of probabilistic nature are very suitable and

appropriate real-life problems where randomness is a

constant source of concern and, on the other hand, the

study of the problems derived from these models are very

attractive as mathematical abstraction of real systems.

Another reason motivating work on probabilistic

combinatorial optimization is the study and the analysis of

the stability of the optimal solutions of deterministic

combinatorial optimization problems when the considered

instances are perturbed. For problems defined on graphs,

more particularly, these perturbations are simulated by the

occurrence, or the absence, of subsets of vertices (see, for

example, [PEE 99] where probabilistic combinatorial

optimization approaches and concepts are used to yield

robust solutions for an on-line traffic-assignment problem).

Informally, given a combinatorial optimization graph5-

problem Π, defined on a graph G(V, E), an instance of its

probabilistic counterpart, denoted by PΠ, is built by

associating a probability pi with any vertex vi in V. This

probability is considered as the presence-probability of vi in

the subgraph of G on which Π will be finally solved. Problem

PΠ expresses the fact that Π will, eventually, have to be

solved not on the whole G, but rather on some of its

subgraphs that will be specified very shortly before the

solution in this subgraph is required.

In order to illustrate the issue outlined above, we will

consider in what follows four examples of models that give

rise to probabilistic combinatorial optimization problems.

EXAMPLE 1.1.- Probabilistic traveling salesman. A repair

company has to perform a minimum-length daily tour

visiting n potential clients. This is the classical

(deterministic) traveling salesman problem, denoted by MIN

TSP in what follows. It is formally defined as follows: given a

set C of n cities and distances d(ci, cj) , for any pair (ci,

cj) C × C, i ≠ j, MIN TSP consists of determining a tour of

C, i.e., a permutation σ: {1,…,n} → {1,…,n}, minimizing the

length of the tour, i.e., the quantity

. MIN TSP is commonly

modeled in terms of a complete graph, denoted by Kn (see

section A.2 of Appendix A) on n vertices (representing the

cities). Edge (vi, vj) is weighted by d(ci, cj) and an optimal

solution is a Hamiltonian cycle (section A.2 of Appendix A) of

minimum total length (or distance), the length of a cycle

being the sum of the distances on its edges. But, if we

assume that any client will not need to be repaired every

day, then this implies that, a given date, only a subset of

clients need to be effectively visited; this subset changes

from day to day. What can be done is that a client i can be

assigned, for a random day, with a repairing-probability pi;

this probability is independent from the probabilities dealing

with the other clients. We thus get a version of the

probabilistic traveling salesman problem (initially introduced

and studied in [JAI 85, JAI 88a]).

EXAMPLE 1.2.- Probabilistic coloring. Consider for a given

University-fall a list of potential classes that students can

follow: any student has to choose a sublist of such classes.

For any of them, one knows the title, the teaching professor

and the time slot assigned to it, each such slot being

proposed by the professor in charge. A class will only take

place if the number of students having chosen it is above a

given threshold. So, nobody knows a priori if a particular

class will take place before the closing of students’

registrations (we can reasonably assume that the choice of

any student is dependent on the contents of the course and

of the teacher). On the other hand, one can, for example, by

looking at statistics on the behavior of the students during

past years, assign probabilities on the fact that a particular

class will really take place, the mandatory courses being

assigned with probability 1. The problem for the University

planning services is how many rooms need to be assigned

to the set of courses. This problem is typically an instance of

probabilistic coloring if one considers courses as vertices

and if one links two such vertices if the corresponding

classes cannot take place in the same room (because they

are planned with the same professor, or are assigned with

overlapping time slots). This type of graph is known by the

term incompatibility graph. Here, an independent set, i.e., a

potential color, corresponds to a set of “compatible

classes”, i.e., to classes that can be assigned with the same

room. The number of colors used in such a graph represents

the total number of rooms assigned to the set of classes

considered. The probabilities resulting from the statistical

analysis on the former students’ behavior are the presence

probabilities for the vertices (i.e., the probabilities that the

corresponding classes will really take place).

EXAMPLE 1.3.- Probabilistic independent set. Consider a

planning aiding process for realizing satellite shots. One

associates a vertex with any shot requested and one links

two vertices if they correspond to shots that cannot be

realized on the same orbit. But a shot realized under, for

example, strong cloud cover cannot be used for the

purposes for which it has been requested. Using

meteorological forecasting, one can assign to any shot

requested a probability that it will be usable. This problem

has been modelled in [GAB 97] (see also [GAB 94]) as a

maximum independent set and if one takes into account

probabilities associated with meteorological forecasting,

then one has to solve a probabilistic version of it.

EXAMPLE 1.4.- Probabilistic longest path. For the satellite

shot planning problem dealt in Example 1.3, one can use

another graph-representation (see [GAB 97] for details)

where an arc models the possibility of successive realization

of its two endpoints. Then, the satellite shot planning can be

represented as a particular longest path problem.

Integration of probabilities associated, for instance, with

meteorological forecasting to this model gives rise to a

probabilistic longest path.

1.2. A formalism for

probabilistic combinatorial

optimization

We have already mentioned that the probabilistic version

of an optimization problem models the fact that, given an

instance of the problem, only a subinstance of it will

eventually be solved. Since we do not know which is this

subinstance, the most natural approach that comes in mind

is to optimally solve any particular subinstance of the

problem at hand (following the probabilities on its vertices,

any such subinstance is more or less likely to be the one

where optimization has to be effectively performed). Such

an approach, called reoptimization in [BER 90b, BER 93, JAI

93], can be very much time- and space-consuming, in

particular when the initial problem is NP-hard. Indeed, given

a graph G(V, E) of order n (i.e., |V| = n), there exist 2n

subsets of V and consequently 2n subgraphs, induced by

these subsets, any of them candidate to be the instance

effectively under consideration. For an NP-hard problem

(this remains true even for a polynomial problem), the

amount of time needed to solve any of these instances to

the optimum can be huge so that reoptimization becomes

practically unrealistic.

This is the main reason for which another, more realistic,

approach is used and this will be dealt in this book. It is

called an a priori optimization and has been introduced in

[JAI 85, BER 88]. Informally, instead of reoptimizing any

subinstance, the underlying idea of an a priori optimization

consists of determining a solution of the whole (initial)

instance, i.e., the one where all data are present, called an a

priori solution, and to apply a strategy, called a modification

strategy, making it possible to adapt as quickly as possible

the a priori solution to the subinstance that must effectively

be solved. The choice of this strategy depends strongly on

the application modelled by the problem.

Consider a graph G(V, E) instance of a combinatorial

optimization problem Π, a feasible solution S, for Π in G, a

subset V′ of V and the subgraph G[V′] of G induced by V′. A

modification strategy M is an algorithm transforming S in

order to get a feasible Π-solution for any such G[V′].

Obviously, it is assumed that if M is applied on G (i.e., if V′ =

V), then S remains unchanged. Also, one can suppose that

application of M in the final instance is possible, in the sense

that there exists sufficient time for its achievement.

EXAMPLE 1.1. (CONTINUED) — Revisit the repairing

company dealt in Example 1.1. Assume that for several

material reasons, its staff do not wish to reoptimize the daily

tours for its vehicles. A possible way to plan these tours is

the following. One computes firstly a feasible tour T

including the whole set of the clients is computed; this is the

a priori solution mentioned just above. A possible

modification strategy in order to compute the effective tour

for a given day is to drop absent clients (i.e., clients that do

not ask for intervention during this day); then, it suffices to

visit the present ones following the order induced by the a

priori tour T.

In practice, the a priori approach corresponds to a behavior

observed for the real problem; the modification strategy

algorithmically models this behavior. The choice of a

modification strategy depends strongly on the real-world

application modelled. In order to illustrate this, consider the

following example inspired from a vehicle routing problem

studied in [BER 90b, BER 92, BER 96].

EXAMPLE 1.5.- The problem studied in [BER 90b, BER 92,

BER 96] consists of determining a shortest distance tour

through n clients under several constraints, for example,

limits on vehicle capacities together with assumptions that

any of the vehicles have to retrieve different quantities of

different objects from any client, etc. If any on day d only a

subset of the clients has to be visited, then for modifying an

a priori tour to fit these present clients, two modification

strategies could be used depending on when clients’

demands become available:

– In the first strategy, denoted by M1, a vehicle, following

the a priori tour, visits all the clients but it only serves the

ones having asked for service on day d. When the vehicle is

saturated, i.e., its capacity is attained and it returns to the

depot before continuing with the next client.

– The second strategy, denoted by M2, differs from M1 by

the fact that the vehicle only visits (following the a priori

tour) clients having asked for services on day d (returning to

the depot when saturated and then continuing with the next

client).

In order to illustrate differences between the two strategies,

consider an a priori tour (0, 1, 2, 3, 4, 5, 6, 0) and assume

that depot is vertex 0 and that vehicle has capacity 30. At

day d, the clients 1, 4 and 6 need not to be visited and that

the demands for clients 2, 3 and 5 are 20, 10 and 20,

respectively. The results for the two strategies above are

shown in Figure 1.1.

Figure 1.1. Application of modification strategies M1 and M2

for the probabilistic vehicle routing problem with capacity

constraints

As one can see, under strategy M1 (Figure 1.1(a)), the route

realized by the vehicle will be (0, 1, 2,3,0), then (0,4, 5,6,0),

while the route under M2 (Figure 1.1(b)) will be (0, 2, 3, 0),

then (0,5,0).

There exists an important difference between these two

strategies:

– M1 models situations where demand of a particular client

becomes clear (or known) only once it has been visited;

– M2 corresponds to situations where clients’ demands are

known in advance, i.e., before the vehicle starts the route.

A basic operational and computational feature of the a

priori optimization approach is that the optimization

problem considered has to be solved only once; next, the

only “tool” needed is a quick modification strategy which is

able to adapt the a priori solution to the subinstance to be

effectively optimized. In this way, computational time is not

really a serious problem.

The question now is: “what is the measure of an a priori

solution?”. Let S be a feasible solution for Π on G(V, E), M be

a modification strategy for S and V′ be a subset of V. Denote

by S(V′, M) the solution for Π in G[V′], obtained from S by

applying M and by m(G[V′], S(V′, M)) its value. A reasonable

requirement for S(V′, M) is that m(G[V′], S(V′,M)) is as close

as possible to the value of an optimal solution for Π in G[V′],

denoted by opt(G[V′]). Since, on the other hand, we do not

know a priori, which will be the subinstance to be solved, we

will use as evaluation-measure for S its expectation. Denote

by Pr[V′] the probability of presence of the vertices of V′,

hence the probability of G[V′] and set Pr[vi] = pi, the

presence-probability of vi V; then:

[1.1]

In particular, when pi = p, for any vi V, then [1.1]

becomes:

The measure (i.e., the objective function) of S for PΠ, also

called functional in what follows, is defined as:

[1.2]

where Pr[V′] is defined by [1.1].

In standard complexity-theoretic language, the problems

studied in this book belong to the class NPO. Informally, an

NPO problem is an optimization problem, the decision

versions of which is in NP (see also Appendix B). More

formally now, an NPO problem can be defined as follows.

DEFINITION 1.1.- A problem Π in NPO is a quadruple (Π, Sol

Π, mΠ, goal(Π)) where:

– Π is the set of instances of Π (and can be recognized in

polynomial time);

– given I Π, SolΠ(I) is the set of feasible solutions of I;

the size of a feasible solution of I is polynomial in the size |I|

of the instance; moreover, one can determine in polynomial

time if a solution is feasible or not;

– given I Π and S SolΠ(I), mΠ(I, S) denotes the value

of the solution S of the instance I; mΠ is called the objective

function, and is computable in polynomial time;

– goal(Π) {min, max}.

We can now give a formal definition for probabilistic

combinatorial optimization problems (under the a priori

optimization assumption), derived from Definition 1.1.

DEFINITION 1.2.- Let Π = (Π, SolΠ, mΠ, goal(Π)) be an NPO

problem as in Definition 1.1. The probabilistic version of Π,

denoted by PΠ, is a six-tuple ((Π, Pr), SolΠ, goal(Π), M, EΠ),

where:

– Π is as in Definition 1.1 and Pr is the set of all the

vectors Pr of the presence-probabilities of the data

representing I ; the pair (Π, Pr) is the instance-set of PΠ

and the couple I, Pr[I], I , Pr Pr is an instance of PΠ;

SolΠ and goal(Π) are as in the corresponding items of

Definition 1.1;

– M is an algorithm, called modification strategy, such

that, given an instance (I, Pr[I]) of Π, a solution S Sol(I,

Pr[I]) and any subinstance I′ of I, it modifies S in order to

produce a feasible solution S(I′, M);

– EΠ is the functional of S and is defined (analogously to

[1.2]) as:

[1.3]

where Pr[I′] is defined (analogously to [1.1]) as:

where di, dj draw data of I and Pr[di] and Pr[dj] their

presence probabilities respectively.

One can see that Definition 1.2 implies that modification

strategy M is part of the definition of the problem. In this

sense, two distinct strategies M1 and M2, associated with the

same NPO problem Π, give rise to two distinct probabilistic

problems PΠ1 and PΠ2, respectively, since changing a

modification strategy changes the functional. In other

words, distinct modification strategies lead to distinct

objective functions.

The modification strategy used most frequently until now

is the one consisting of dropping absent data out of the a

priori solution and of taking the remaining elements of it as

a solution for the effective instance. This simple strategy,

denoted by MS for the rest of this chapter, is feasible for

numerous problems (this is the case of all the problems

dealt in this monograph and for the ones dealt in [AVE 94,

AVE 95, BEL 93, BER 88, BER 89, BER 90b, JAI 85, JAI 88a, JAI

88b, JAI 92, SÉG 93]) but not for any problem. Let us take for

example the case of the probabilistic minimum independent

dominating set (also called the minimum maximal

independent set). Here, given an a priori maximal

independent set S, dropping the absent vertices out from S

does not necessarily result in a maximal independent set for

the present subgraph.

As we will see in the next chapters, in particular under

strategy MS and in the cases where the optimum a priori

solution has a closed combinatorial characterization, the

derived probabilistic problems can be equivalently stated as

“deterministic combinatorial optimization problems” under

particular and sometimes rather non-standard objective

functions.

Let us note also that a priori optimization under strategy MS

corresponds to the following robustness model for

combinatorial optimization. Consider a generic instance I of

a combinatorial optimization problem Π. Assume that Π is

not to be necessarily solved on the whole I, but rather on a

(unknown a priori) subinstance I′ ⊂ I. Suppose that any

datum di in the data-set describing I has a probability pi,

indicating how di is likely to be present in the final

subinstance I′. Consider finally that once instance I′ is

specified, the solver has no opportunity to solve directly

instance I′. In this case, there certainly exist many ways to

proceed. Here we deal with a simple and natural way where

one computes an initial solution S for Π in the entire

instance I and, once I′ becomes known, one removes from S

those elements of S that do not belong to I′ (providing that

this deletion results in a feasible solution for I′) thus giving a

solution S′ fitting I′. The objective is to determine an initial

solution S for I such that, for any subinstance I′ ⊆ I

presented for optimization, the solution S′ respects some

predefined quality criterion (for example, optimal for I′, or

achieving, say, constant approximation ratio, etc.).

Let us note that a measure analogous to the ones of [1.2]

or, more generally, of [1.3] can be obtained also for the

reoptimization approach. Consider a probabilistic

combinatorial optimization graph-problem PΠ, derived from

an optimization graph-problem Π and let G(V, E) be a

generic instance for the latter problem. Set n = |V| and

consider a vector (p1,…, pn) of presence-probabilities on the

vertices of V. Then the functional E*(G) of the reoptimization

for PΠ is defined as:

[1.4]

where S*(V′) is an optimal solution for Π in C[V′], and Pr[V′]

is as in [1.1].

1.3. The main methodological

issues dealing with probabilistic

combinatorial optimization

1.3.1. Complexity issues

1.3.1.1. Membership in NPO is not always obvious

As one can see from [1.3] computation of functional’s

value is not a priori polynomial, since this expectation

carries over all the possible subsets of the initial data-set.

So, with respect to Definition 1.1, probabilistic versions of

NPO problems do not trivially belong to NPO too. As we will

see in the next chapters, when dealing with strategy MS

sketched at the end of section 1.2, we succeed by more or

less simple algebraic manipulations to show that functionals

associated with it can be polynomially computed. This is the

case for the problems dealt with in the next chapters as well

as for the problems studied in [AVE 95, AVE 94, BEL 93, BER

88, BER 89, BER 90a, BER 90b, JAI 85, JAI 88a, JAI 92, JAI

88b, SÉG 93]. The basic idea underlying such a

simplification is the following: instead of computing the

value of the solution induced by any subinstance (recall that

there exist an exponential number of subinstances of a

given initial instance), one tries to determine, for any

element of the a priori solution, the number of subinstances

for which this element remains part of this solution. Even if

this simplification technique works for numerous problems

(associated with strategy MS), we will see in Chapters 2 and

3 that it quickly attains its limits once one tries to enrich MS

with elementary operations improving its result. In

particular, we will see that matching MS with natural greedy

improvement techniques largely complicates the

corresponding functionals in such a way that it is not

obvious that their computation can be performed in

polynomial time.

1.3.1.2. Complexity of deterministic vs. complexity of

probabilistic optimization problems

Obviously, for any probabilistic combinatorial optimization

graph-problem PΠ defined on a graph G(V, E), if pi = 1, for

any vi V, then PΠ coincides with Π in the sense that for

any a priori solution S for PΠ, its functional has the same

value as the objective value of S seen as solution of Π. This

remark implies that if the functional6 is computable in

polynomial time and if Π is NP-hard, then PΠ, being a

generalization of Π, is also NP-hard. Conversely, if Π is

polynomial, then no immediate result can be deduced for

PΠ.

Consider for instance two classical polynomial problems,

the shortest path problem for fixed departure- and arrival-

vertices s and t, respectively, and the minimum spanning

tree problem. A probabilistic version for the former one is

defined and studied in [JAI 92]. There, the input graph is

complete, its vertices are independent and uniformly

distributed in the unit square, some vertices are always

present (i.e., they have probability 1), in particular s and t,

and the rest of the vertices all have the same presence

probability. Given an a priori solution, the adopted

modification strategy consists of removing the absent

vertices from this solution (this is not a problem since the

input graph is assumed complete). As it is proved in [JAI 92],

this version of probabilistic shortest path problem is NP-

hard. The same holds for the minimum spanning tree

problem ([BER 88, BER 90a]). For this problem, the input is

the same as for shortest path. The modification strategy

considered is the following: given an a priori tree T and a

subgraph G[V′] of the input-graph, we consider the subtree

of T restricted to the vertices of V′ together with some

vertices of V \ V′ (and the edges of T incident to these

vertices) in order to guarantee connectivity of the induced

subtree. This probabilistic version of minimum spanning tree

is NP-hard.

When the deterministic version Π of a probabilistic

problem PΠ is NP-hard, an interesting mathematical

problem is to determine the complexity of PΠ for the classes

of instances where Π is polynomial. Here also, results for the

probabilistic problem are, very frequently, opposite to the

ones for its (deterministic) support. For instance, as we will

see in Chapter 5, the probabilistic versions of many coloring

problems studied there are NP-hard, even for graph-classes

for which deterministic coloring is polynomial.

Another interesting fact that will be clear in the next

chapters (mainly in Chapters 4 and 5) is the role that the

specific probability-system considered plays in complexity or

approximation behaviors of the problems dealt. For

instance, the fact that one assumes identical or distinct

vertex-probabilities can completely change the complexity

of a problem or its approximability.

Notice that an analogous fact can be established for the

probabilistic traveling salesman, even when the input-graph

Kn (the complete graph on n vertices) has identical vertex-

probabilities. Denote by T* an optimal a priori tour in Kn

(i.e., an optimal solution of probabilistic traveling salesman

under MS) and by an optimal tour for the deterministic

counterpart. In [JAI 85], counter-examples are given showing

that . In [BEL 93], it is shown that if n is odd (n = 2k +

1), then:

[1.5]

From [1.5], one can deduce the following two estimations:

[1.6]

[1.7]

The bounds given in [1.6] and [1.7] show that

constitutes a good approximation for T* only in the case

where p is large, i.e., when the probabilistic version

becomes “close” to the deterministic one.

