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Preface

Automated vehicles are currently raising considerable attention of politics and
industry alike. Although public funding of research and innovation on automated
driving dates back as far as the 1980s, interest has been peaking very recently
following the demonstration of advanced technologies by key players that seem-
ingly is at the verge of market-readiness. In effect, fierce competition is unfolding
between companies regarding the enabling technologies like sensors, powerful
automotive ECUs and actuators. At the same time, governments are debating on the
legal and infrastructural preconditions of automated driving and about how to
harmonize the necessary investments. Yet, the recent first fatal incident with a
beta-state self-driving vehicle remind us that the current technology is not yet
capable of mastering all complex situations.

The current developments imply two major challenges: Firstly, research and
innovation efforts need to be shifted from proof-of-concept to proof-of-safety on the
system level of automated driving technology. For instance, the performance
envelope of sensors, data fusion and object recognition systems has been pushed
considerably in recent years, but does still not cover the complexity that a vehicle
encounters in everyday life. Particularly for applications in urban environments and
at higher levels of automation, perception of the driving environment is a chal-
lenging task still to be mastered in a robust fashion. Smart systems integration that
applies a variety of vehicle and infrastructure based sensor systems and finally links
it with big data analytics in the cloud will play an important role in this domain,
with safety aspects as well as validation methodology becoming a prominent future
focus.

Secondly, it is obvious that the economically viable large-scale rollout of driving
automation requires involvement and agreement between a large and heterogeneous
group of stakeholders encompassing the automotive, IT and telecom sectors as well
as road infrastructure providers and public authorities. To this end, a first initiative
was launched in Sept. 2015 by Commissioner Oettinger with the Round
Table Automated Driving. The recently started Coordination and Support Action
“Safe and Connected Automation of Road Transport (SCOUT)” will develop a
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cross-sectorial roadmap regarding the implementation of high-degree automated
driving in Europe, which will assist the ambition of the roundtable and may serve as
a blueprint for research and innovation planning and regulatory actions in the
coming years.

The International Forum on Advanced Microsystems for Automotive
Applications (AMAA) has been exploring the technological foundations of con-
nected, automated and electrified vehicles for many years. Consequently, the topic
of this year’s 20th anniversary edition of AMAA, held in Brussels on 22-23
September 2016, is “Smart Systems for the Automobile of the Future”. The AMAA
organisers, Berlin-based VDI/VDE Innovation + Technik GmbH together with the
European Technology Platform on Smart Systems Integration (EPoSS), greatly
acknowledge the support given for this conference, particularly from the European
Union through the Coordination Actions “Safe and Connected Automation of Road
Transport (SCOUT)” and “Action Plan for the Future of Mobility in Europe
(Mobility4EU)”.

The papers in this book, a volume of the Lecture Notes in Mobility book series
by Springer, were written by leading engineers and researchers who have attended
the AMAA 2016 conference to report their recent progress in research and inno-
vation. The papers were selected by the members of the AMAA Steering
Committee and are made accessible worldwide. As the organisers and the chairman
of the AMAA 2016, we would like to express our great appreciation to all the
authors for their high-quality contributions to the conference and also to this book.
We would also like to gratefully acknowledge the tremendous support we have
received from our colleagues at VDI/VDE-IT.

Berlin, Germany Tim Schulze
August 2016 Beate Miiller
Gereon Meyer
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Requirements and Evaluation

of a Smartphone Based Dead Reckoning
Pedestrian Localization for Vehicle Safety
Applications

Johannes Riinz, Folko Flehmig, Wolfgang Rosenstiel
and Michael Knoop

Abstract The objective of this paper is to propose a smartphone based outdoor
dead reckoning localization solution, show its experimental performance and
classify this performance into the context of Vehicle-to-X (V2X) based pedestrian
protection systems for vehicle safety applications. The proposed approach estimates
the position, velocity and orientation with inertial measurement unit (IMU) sensors,
a global navigation satellite system (GNSS) receiver and an air pressure sensor
without any restriction to pedestrians, like step length models or a relationship
between smartphone orientation and walking direction. Thus, an application makes
sense in handbags, trouser pockets or school bags. The dead reckoning localization
filter was evaluated in measurements and compared with a highly accurate reference
system. Furthermore, the requirements of measurement and modelling uncertainties
in a pedestrian protection system with a low false-positive rate were derived and
compared with the reference measurements. The results demonstrated that an
appropriate use of the proposed system approach is only possible with more
accurate positioning solutions from the GNSS receiver. According to this the
necessity of differential GNSS methods was predicted.
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Keywords Smartphone based pedestrian protection - Pedestrian dead reckoning -
Vehicle safety

1 Introduction

To improve advanced pedestrian protection systems in future vehicles, it is nec-
essary to obtain better knowledge about the pedestrian behavior and the perception
to recognize pedestrians in the vehicle’s environment [1]. Situations which include
visually obstructed pedestrians or pedestrians that cannot be detected by the limited
field of view (e.g. in curves), are especially challenging. A possible solution is the
cooperative usage of the pedestrian’s smartphone with its internal localization
sensors and V2X technology to better protect the pedestrian. Besides, the modeling
of the pedestrian’s intention and behavior might be supported by information from
the smartphone. General analysis about the possible system architectures, com-
munication strategies as well as limitations and feasible benefits of pedestrians’
smartphones as cooperative sensors are described in [2-5]. Moreover, an experi-
mental proof of benefit for safety applications with bicycles using their smartphones
is presented in [6]. The author states that the accuracy of the smartphone’s global
navigation satellite system (GNSS) receiver is improved with a map-matching
algorithm and context knowledge.

As later described in this work, the requested low false-positive rates of
pedestrian protection systems lead to strict requirements on the position accuracy of
the pedestrian. A survey is given in [7], which shows the accuracy of smartphone
GNSS sensors and compares them with a Differential GNSS (DGNSS) system.
According to [8], the GNSS sensor is combined with a velocity and orientation
estimation through step detection, a gyroscope and a magnetic field sensor in order
to further improve the localization performance. A similar approach to improve the
GNSS measurements in outdoor environments is used by [9]. The challenge of such
approaches is that the orientation of the smartphone must be rigidly coupled with
the walking direction, which is not given in its daily use. Thus, the sensor data
fusion can deteriorate the accuracy of the GNSS measurements in wrong use cases.

Typical localization problems occur in the field of aerospace engineering with
six degrees of freedom: three position and three orientation dimensions. In these
surroundings, highly accurate acceleration sensors and gyroscopes are used to
derive the position, velocity and orientation of an object. Furthermore in inertial
navigation systems (INS) the determined position, velocity and orientation are
corrected by GNSS measurements with e.g. a Kalman filter (KF). In [10] imple-
mentations of such systems are presented. These methods are then adopted to a
drone equipped with MEMS acceleration and gyroscope sensors in [11].

In this work, methods from aerospace engineering are evaluated for INS by
using the smartphone’s internal sensors. The ambition is to show the localization
performance of such a system and classify the results in the context of vehicle
safety applications for pedestrians.
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First, in Sect. 2 the dead reckoning localization filter structure with its propa-
gation and observation models is described. Furthermore, in Sect. 3 the evaluation
procedure with its measurement setup is presented. Finally, Sect. 4 shows the
performance of the considered localization filter and classifies the results into the
context of pedestrian protection systems.

2 Localization Estimation Filter

In this work, a general approach from the aerospace engineering described in [10,
11], without assumptions about the relationship between walking direction and
smartphone orientation or step length, is used. In aerospace engineering, a filter that
estimates the position, velocity and orientation, is called navigation filter. Because
of the different meaning of “navigation” in the vehicle context, these filters will be
called localization filters in this paper.

Figure 1 shows the reduced structure of the estimation filter. The output of the
dead reckoning estimation filter consists of the estimated position p},,,, the estimated
velocity v}, and the estimated orientation ¢}, given in quaternion representation. As
inputs, an inertial measurement unit (IMU) with its measurements fﬁ, and wf-’b, a
GNSS receiver and a barometer are used.

To propagate the position, velocity and orientation with an IMU two different
methods are known. First the acceleration sensors can be mounted on a
Gyro-stabilized gimbal platform, which leads to a fixed orientation of the accel-
eration sensors, to the earth. The other method is, that the acceleration is rigidly
coupled with the body (“strap-down”), which leads to a more complex problem to
interpret the measurements. The strapdown algorithm determines the updated
position p,, velocity ¥} and orientation g}, with the corrected measurements f?,

Fig. 1 Schematic ~b b
resresentation of the Yo | MU Er_mr i Strapdown
localization filter structure (200Hz) f‘:'f;, Correction fﬁj algorithm
Ap, Pbns
AV, ‘}yn!
Ao 1
BB, [

GNSS Phb,int OF Phpubx OF 0

Error-State

| 4 o
(1, 5H2) Kalman Filter

p Air Pressure | (P)

Barometer,
Model
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and a)ﬁ) from the rigidly coupled acceleration sensor and gyroscope of the smart-
phone. This is done by three integration steps and compensation of parasitic
influences like the measured earth gravity. Because of the noncommutativity of
rotations and the Nyquist Shannon theorem, the strapdown algorithm is sampled
with a high frequency of 200 Hz. As a consequence of the strapdown algorithm, the
measured acceleration in and the rotation rate around the navigation coordinate
system axis (east-, north- and up-axis) can be directly determined. To have a long
term stability and accuracy, the estimated values must be corrected with absolute
position measurements. Therefore, an extended error-state KF uses GNSS and
barometric pressure measurements to estimate the position errors Ap, velocity errors
Av and orientation errors Ae, which are used to correct the absolute states pj,,, v},
and ¢7,. Furthermore, the KF estimates the parameters b,, and by of the measure-
ment error models.

It is also possible to observe the orientation with a magnetic field sensor and
earth magnetic field assumption. Due to unpredictable disturbances by ferromag-
netic materials in the environment, like vehicles, this method is not used in this
paper.

In the following, the sensor error models, the propagation error-state model and
the observations for correcting the KF error-state are presented.

2.1 Sensor Error Models and Impact of the Error Terms

The acceleration sensor should measure the specific force fibb while the gyro
measures the rotation rate @’,. The smartphone microelectromechanical systems
(MEMS) sensors have time-variant bias sensor errors b,, and l;f, which must be
estimated by the KF. Furthermore, there are scaling errors §, and §;, that are
assumed as time-invariant. The error models are then given by

ol = diag($,) @}, + b, and (1)
fi, = diag (Sf)ffZ + I3f. 2)

In this work, misalignment errors of the assembled IMU sensors are neglected.
The time-variant bias errors of MEMS IMUs lead to significant errors in the
position propagation with the strapdown algorithm. Especially bias errors of the
gyroscope result in wrong orientations that couple the gravity acceleration into the
two integration steps for position determination. For this reason the performance of
the strapdown algorithm is highly dependent on the bias errors estimation accuracy.
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2.2 Error-State Model

The model has the error-state vector
x = (Ap, Av,Ac, Ab,,, Abs, AcT)' (3)
where Ab,, and Ab; are the errors of the IMU biases and
AcT = c(Btyec, Otrec)
is the GNSS receiver’s clock error dt,.. and its drift dt,., which are essential to

consider the raw measurements of the GNSS receiver. The error propagation model
is in-depth derived in [11] and given in its continuous form by

0 1 0 0 0 0
0 0 —(Cifi,x) —Cp 0 0

oo 0 0 -C' 0

=10 0 0 0 0 o | (4)
0 0 0 0 0 0
00 0 0 0 Far

where I is the 3 x 3 identity matrix, C’Z is the direct cosine matrix to rotate the IMU
coordinates to the estimated navigation frame, f%, x is the skew-symmetric matrix
representation of the vector cross product of f° ﬁb and Fa.r is given by

Far=(o o) 5)

The absolute states are always corrected with the estimated errors after every
observation step of the KF. Afterwards, the error-states are reset to zero, so that a
nonlinear error propagation is not necessary.

2.3  Observation Models

For correcting the determined position, velocity and orientation of the strapdown
algorithm, the measurements of a GNSS receiver and a barometer are used.

Internally, a GNSS receiver measures the geometric distances to the satellites
which are summed up with other error terms. In particular the clock error ¢T of the
GNSS receiver produces a significant error. The measurement of the geometric
distance, added by the clock error term, is referred to as pseudorange p; of satellite
i. From a set of pseudoranges of different satellites, the GNSS receiver’s position
solution p¢;yes can be deduced.
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In a localization filter, either the pseudoranges in a tightly coupled filter concept
or the position solution in a loosely coupled filter concept can be used to improve
the estimation. In the next sections, the different observation matrixes are presented.

2.3.1 Loosely Coupled GNSS Measurement

In a loosely coupled filter the position solution p{;ycg GNSS is used as an observation
for the KF’s correction step. The observation matrix H), gnss is given in [11] by

H,gnss=(I 0 0 0 0 0), (6)
where I is a 3 x 3 identity matrix and 0 are zero matrices. The advantage of using
the position solution is the availability in every GNSS receiver and the low cal-
culation effort as compared to a tightly coupled system.

2.3.2 Tightly Coupled GNSS Measurement

The tightly coupled observation matrix H, is given by

H, = (egm_i 0 0 0 1 0) with (7)
" 7(pga 3 71)211)
eSar,i = : : (8)

T
\/(pgut,i - p?m) (pgut,i - p;lm)

The advantage of this method is that any number of pseudoranges helps to
improve the absolute position accuracy of the localization filter, whereas the loosely
coupled system typically needs four satellites to determine a position solution.
Furthermore, the handling with obvious measurement errors is easier with the
isolated pseudorange measurements.

2.3.3 Barometric Height Measurement

With the barometric formula

MgAh

pl00) = plho)exp - “52). o)

with p(hy) is the static pressure, M is the molar mass of Earth’s air, g gravitational
acceleration, R universal gas constant for air, T is the standard temperature and Ak is
the height difference to the height &, the observation matrix H, can be derived to
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H,,u:(O 0 p(ho)Mg—ﬁhexp(—Mg—ﬁh) 0 ... 0). (10)

To get consistent height measurements with the GNSS measurements, it is
necessary to adopt the static pressure p(ho) online.

3 Methods

The presented localization filter was implemented on a Samsung Galaxy S3. In
order to examine also a tightly coupled INS and the additional benefit of a more
accurate GNSS receiver a commercial u-blox M8EN receiver is connected to the
smartphone by USB OTG.

The KF is implemented according to the numerical stable Bierman-Thronton
[12] method. The scaling errors §,, and §; are assumed to be time-invariant and are
determined in a special calibration process before the measurements.

3.1 Reference Measurement System

The experiments were carried out with the setup shown in Fig. 2. A highly accurate
GeneSys ADMA-G was used to give a reference. The ADMA-G can be mounted
on the back of a pedestrian together with the GNSS antenna and the GSM receiver
unit for DGPS corrections. Optionally, a smartphone can be mounted on a dedi-
cated area to obtain a fixed orientation between the smartphone and the ADMA-G.

Fig. 2 Reference
measurement setup with a
high accuracy INS-System

ADMA-G with closed-loop . '\
fiber-optic gyroscope and GPS antenna ‘ | f
servo accelerometers i Sk st
3Vl dntenne
P

mobile phone
placement area

GSM DGPS-
RTK2 Receiver
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Table 1 Major differences between reference system GeneSys ADMA-G and smartphone sensors

Smartphone ADMA-G
Gyroscope type MEMS Closed-loop fiber gyroscope
Acceleration type MEMS 3 servo accelerometers
GPS type Single L1 Single L1, DPS-RTK2
Gyroscope accuracy +250°h~! 1°h7!
Acceleration accuracy +10mg Img
Positioning accuracy 1.8m...0.02m

The ADMA-G itself is also an INS system with highly accurate fiber-optic
gyroscope and servo accelerometers. The absolute position corrections are given by
a Single L1, DPS-RTK2 GNSS receiver, which permits a position accuracy up to
Op min = 0.02m [13].

Table 1 demonstrates the important differences between the reference and the
smartphone INS system. Primarily, the IMU sensors and the accurate DGPS system
results in a higher accuracy. The smartphone is assembled with an integrated tri-
axial accelerometer and triaxial gyroscope of type InvenSense MPU-6500.

To minimize errors in the strapdown algorithm, mainly caused by the
non-commutativity of the rotation, it is sampled with a high frequency of 200 Hz.
The atmospheric pressure measurements are sampled with 1 Hz because of the low
dynamics in height. The smartphone internal GNSS receiver supports a maximal
sample frequency of 1 Hz, whereas the external u-blox M8N receiver is sampled
with 5 Hz.

3.2 Measurement Environment

The measurements were done in a GNSS friendly environment (no or little mul-
tipath effects) on a cloudy day. The ADMA-G asserts a maximal position standard
deviation of 0.03 m during the whole considered measurement.

Figure 3 shows the trajectory of the measurement. The pedestrian walks on a
slightly curved way and does some 90° turns.

reference trajectory

= 30 Y / 1
£ 95 | ) |
_E ’ \'. - 2
s 20 . _".. :__, - |
40 60 80 100 120
east in m

Fig. 3 The considered reference measurement trajectory measured with ADMA-G. The trajectory
with some 90° turns was walked within 90 s on a slightly curved way in a GNSS-friendly
environment
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4 Results

4.1 GNSS Receiver and Method Comparison

Figure 4 shows the horizontal positioning errors of the different localization esti-
mation filters. The best results are achieved with the position solution of the
external u-blox M8N GNSS receiver with a RMS error of 0.74 m. The tightly
coupled position solution has a RMS error of 1.194 m with the existence of sig-
nificant outliers in comparison to the u-blox M8N loosely coupled solution. With a
RMS error of 1.90 m, the smartphone’s internal GNSS achieves the poorest posi-
tioning performance.

Due to the sensor data fusion, it is possible to compensate noise of the GNSS
receiver with the IMU strapdown propagation. But if the GNSS receiver, like the
smartphone’s internal GNSS receiver, has got a constant offset compared to the
reference, it is impossible to eliminate these errors through sensor data fusion or
averaging. To guarantee a better absolute positioning performance it is necessary to
have unbiased absolute position measurements e.g. usingDGNSS methods.

4.2 Velocity Accuracy

In particular for cooperative systems, as described in [14], the velocity of the
pedestrian is interesting for the situation risk assessment. The position can be
determined very quickly through the environment sensors, whereas the velocity
must be determined over a few measurements.

With the u-blox M8N GNNS receiver and a loosely coupled localization filter
architecture the overall RMS velocity error is 0.13 ms™'. Later in this work, this
value is used to assess the situation analysis.

Fig. 4 Horizontal horizontal positioning errors
positioning error
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Fig. 5 Horizontal position GNSS outtake
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4.3 Simulated Short-Time GNSS Outage

In Fig. 5 GNSS outage of 5 s during a 90° turn is simulated. It can be noticed that
the positioning error increases in this interval to a value of several meters. Thus, this
shows that the IMU of the smartphone can be used for a short-time position pre-
diction between GNSS updates. However, it is not possible to bridge longer GNSS
outages or to give a useful position estimation.

The advantage of the strapdown position propagation is the immediate reaction
response on changes in motion of the pedestrian. Furthermore, in comparison to the
accuracy of [8], it can be observed that with a good GNSS availability the prop-
agation accuracy of smartphone’s IMU during a step interval is good enough, so
that no further methods, like step detection to improve the velocity estimation, are
needed.

4.4 Location Estimation Accuracy Requirements
for Pedestrian Protection Systems

The parametrization of advanced driver assistant systems for pedestrian protection
is always a compromise between an inadvertent false-positive rate rpp and a
required true-positive rate rrp to achieve a system benefit. To determine these rates
in a given situation, it is necessary to know the probability Prp of a false-positive
event and Pyp of a true-positive event. In addition the statistical occurrence rate rg;
of such a situation must be known. This leads to

rep = Prprsi; and (10)
rrp = Prprsic. (11)

In the following, the false-positive und true-positive probabilities Prp and Ppp
are analyzed in-depth.
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First of all, the behavior of the pedestrian has to be modeled. In general the 2D
position trajectory p,,.,(t) of a pedestrian over a prediction interval ¢ € [0, 4] can
be expressed by

t

ppred(t) = Peas T Wmeas + // Anoder(1)dt dt, (12)
0

where p,,..s and V.. are the position and velocity of the measurement, e.g. the
localization filter, and @,,,4.(f) is the predictive behavior model of the pedestrian.
[14, 15] show possibilities to choose the prediction model @,q.(2). If it is assumed
that p,,...s, Vineas and @poqer (1) are binomial normal distributed and time-invariant, the
predicted position p,,.,(t) is also binomial normal distributed with mean p,,,(?)
and covariance X,q(7)

t2
nupred (t) = ”pred + t‘uvmem + E ‘uamodel and (13)
2 r*
Zpred(t) = EPVC’IJ +1°L,,, + Zzamodel (14)

Based on this information, the front collision probability P.,; for a certain
prediction time #,,,4 can be calculated as shown in [16]. It must be noted that the
uncertainty of position, velocity and orientation of the ego vehicle must be taken
into account for determining the collision probability P,,.

In the following, for simplicity, a diagonal covariance matrix Zpred(tTTC) =2l
is assumed. Figure 6 shows the front collision probability P,.,; of a pedestrian

front collision probability peoi, front

2
1.5
5] 0. Iz
2
g ! —___h‘“ﬂ-..x <
(7S a
[a) - \\_."
’ O.g U-\
collision ol collision-free
0 —-0.5 -1 —1.5 -2

py inm

Fig. 6 Front collision probability p..; respects to the standard deviation ¢ of the position
measurement and the pedestrians crossing point p,, of the vehicle front line. It is assumed that the
standard deviation ¢ is not growing with the time. In the shaded area there is a front collision with
the vehicle. Only the half vehicle front line is represented with the middle of the vehicle at
py=0m
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which crosses the vehicle front line at a given point p, with a given standard
deviation ¢. The vehicle front covers a horizontal-axis from p, € [—1, 1]. The grey
shaded area marks collisions where p, = 0 m means a collision at the middle of the
vehicle and p, = —1m is a collision with the right edge of the vehicle front. The
white area shows the space free of front collisions. The figure displays that for an
impact point e.g. at p, = —0.75 m and a model and measurement based uncertainty
of ¢ = 1.2 m, a front collision can only be predicted with a probability of about
55%.

When a system is triggered with a front collision probability peou, fron: greater
than a threshold value of py,.s, the probability of a system activation event peen

can be determined
Pevent = /// fmgu_dede s
Q

where fy..s 1S the probability density function of the position and velocity mea-
surement and Q is the set of all measurement values which leads to a p,; greater
than the threshold value of py,.s. A positive event is a true-positive event if there is
a collision with the vehicle, whereas a false-positive event is one without a collision
with the vehicle front.

Figure 7 shows the positive event probability for a threshold value of
Pires = 55%. As shown in Fig. 6, the horizontal-axis indicates the impact point of
the pedestrian. Figure 7 shows that in order to get an acceptable number of
false-positive events, it is necessary to have a low standard deviation ¢. For
o = 1 m, which would be a fair performance for GNSS based localization, the
false-positive rate is still about 10% for p, = 2m, e.g. if the pedestrian crosses the
vehicle front line with 1 m distance to the vehicle which is a common situation in
normal traffic. Therefore, such a great false-positive probability cannot be tolerated.

(15)

Fig. 7 False-positive and
true-positive rate prediction
with an assumed threshold
front collision probability of
Peoll, frone = 55%. The shaded
area shows the true-positive
rate, whereas the white area
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Fig. 8 False-positive and positive event probability (pyes = 75 %)
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Figure 8 shows the same content for a threshold of p,.s = 75%. Assuming that
a false-positive event in which a pedestrian crossing the front vehicle line with a
distance of <0.5m is tolerable, the false-positive event probability looks better for
all values of o. However the requirement on the standard deviation ¢ to get a
true-positive event probability by —0.75m of 50% are a maximal value of
c=04m.

Furthermore, Figs. 7 and 8§ also show impressively that a protection of pedes-
trians who impact the vehicle edge can only be protected if an increased
false-positive rate of the system is tolerated.

The demonstrated loosely coupled localization filter with a Samsung Galaxy S3
and the u-blox M8N GNSS receiver has a standard deviation of 0.75 m (¢,,.q = 15)
for the predicted pedestrian position with a neglected acceleration model @p4e;-
With an activation threshold of py,., = 75% the true-positive rate is lower than
50%. Besides, one has to be aware that the pedestrian’s acceleration model has a
strong impact on the model uncertainties, which leads to a greater predictive model
uncertainty E,,,ed(tnc) and stronger requirements on the measurement accuracy.
Research on the predictive model was made in [14, 15].

5 Discussion

In the context of situation assessment of a pedestrian protection system relevant
parameters are the accuracies of the measured position, velocity and the behavior
model to predict a collision and initiate the ego vehicle’s best maneuver as well as
the low false-positive rates with simultaneous high true-positive rates and earlier
system triggering. Furthermore, a smartphone based cooperative pedestrian pro-
tection system has to have a low power consumption.

As derived in Sect. 4 the accuracy of presented localization filter has to be
improved to protect pedestrians reliably. This is realizable by more accurate,
especially unbiased, GNSS methods or a fusion with the ego vehicle’s environment
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sensors like video, radar or LiDAR. The estimated position accuracy is poor
compared to the environment sensors, so that a fusion does not make sense.
Whereas the estimated cooperative velocity can be used to initialize new object in
the sensors’ tracking filters and enables an earlier and reliable situation assessment.
With the vehicle’s sensors, the velocity components or tangential velocity must be
derived by position measurements, which causes a settling time of the estimated
velocity in the tracking filters. It has to be taken in consideration, that in a fusion
approach, the problem is the object association because of the smartphone’s low
position accuracy and the impossible validation in the benefit scenarios, which are
in particular situations where the pedestrian is visually obstructed or outside the
field of view.

An advantage of the described method is, as described in Sect. 2, the availability
of the IMU measurements in earth related coordinates (east, north and up), which
could enable a better feature derivation for pedestrian behavior modeling.

In context of power consumption, the presented method generates small load on
the communication channel to transmit the estimated position and velocity. Perhaps
in a later system implementation it could be a pre-stage and a fundament of DGNSS
based methods with a lower power consumption, communication load and provider
of IMU’s error model parameters.

6 Conclusions

In the context of smartphone based pedestrian protection systems for vehicles, this
work evaluates different outdoor dead reckoning localization filters. The presented
method has no restrictions of the position or the relative orientation to the walking
direction of the smartphone. Thus, it allows pedestrians to carry the smartphone in
trouser pockets, handbags or school bags.

Furthermore, due to the strapdown algorithm it is possible to determine the
measured acceleration and rotation rate of the smartphone in earth fixed north, east
and up direction with a high sampling frequency. This enables the usage for
pedestrian behavior modeling and fast path prediction adaptations with V2X
technology.

However, the paper shows also that further research and improvement on the
used GNSS receiver and signal processing has to be done in order to ensure a better
and unbiased localization accuracy. This can be effectuated by advanced GNSS
techniques like computationally intensive Precise Point Positioning techniques or
communication intensive DGNNS approaches. Especially DGNSS approaches
between the ego vehicle and the smartphone GNSS receiver can enable better
relative localization accuracy.



