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Preface

The recent advances in high-throughput technologies for functional genomics and
proteomics have revolutionized our understanding of living processes. However,
these technologies, for the most part, are limited to a snapshot analysis of biological
processes that are by nature continuous and dynamic. Modern visual microscopy
enables video imaging of cellular and molecular dynamic events and provides
unprecedented opportunities to understand how spatiotemporal dynamic processes
work in a cellular and multicellular system. The application of these technologies is
becoming a mainstay of the biological sciences worldwide. To gain a more
mechanistic and systematic understanding of biological processes, we need to
elucidate cellular and molecular dynamic processes and events.

Video Bioinformatics as defined by the first author (BB) is concerned with the
automated processing, analysis, understanding, data mining, visualization,
query-based retrieval/storage of biological spatiotemporal events/data and
knowledge extracted from microscopic videos. It integrates expertise from the life
sciences, computer science and engineering to enable breakthrough capabilities in
understanding continuous biological processes. The video bioinformatics infor-
mation related to spatiotemporal dynamics of specific molecules/cells and their
interactions in conjunction with genome sequences are essential to understand how
genomes create cells, how cells constitute organisms, and how errant cells cause
disease.

Currently, new imaging instrumentation and devices perform live video imaging
to image molecules and subcellular structures in living cells and collect biological
videos for on-line/off-line processing. We can now see and study the complex
molecular machinery responsible for the formation of new cells. Multiple imaging
modalities can provide 2D to 5D (3D space, time, frequency/wavelength) data since
we can image 2D/3D objects for seconds to months and at many different wave-
lengths. However, data processing and analysis (informatics) techniques for han-
dling biological images/videos have lagged significantly and they are at their
infancy. There are several reasons for this, such as the complexity of biological
videos which are more challenging than the structured medical data, and the lack of
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interdisciplinary research at the intersection of life sciences and engineering and
computer science.

We already are at a point where researchers are overwhelmed by myriads of
high-quality videos without proper tools for their organization, analysis, and
interpretation. This is the main reason why video data are currently underutilized.
We believe that the next major advance in imaging of biological samples will come
from advances in the automated analysis of multi-dimensional images. Having tools
that enable processes to be studied rapidly and conveniently over time will, like
Hooke’s light microscope and Ruska’s electron microscope, open up a new world
of analysis to biologists, scientists, and engineers.

This interdisciplinary book on Video Bioinformatics presents computational
techniques for the solution of biological problems of significant current interest
such as 2D/3D live imaging, mild-traumatic brain injury, human embryonic stem
cells, growth of pollen tubes, cell tracking, cell trafficking, etc. The analytical
approaches presented here will enable the study of biological processes in 5D in
large video sequences and databases. These computational techniques will provide
greater sensitivity, objectivity, and repeatability of biological experiments. This will
make it possible for massive volumes of video data to be analyzed efficiently, and
many of the fundamental questions in life sciences and informatics be answered.
The book provides examples of these challenges for video understanding of cell
dynamics by developing innovative techniques. Multiple imaging modalities at
varying spatial and temporal resolutions are used in conjunction with computational
methods for video mining and knowledge discovery.

The book deals with many of the aspects of the video bioinformatics as defined
above. Most of the chapters that follow represent the work that was completed as
part of an NSF-funded IGERT program in Video Bioinformatics at the University
of California in Riverside. Several of the chapters deal with work that keynote
speakers presented at retreats sponsored by this program (Chaps. 14 and 16). Most
other chapters are work done by IGERT Ph.D. fellows who were selected to par-
ticipate in this program. The program emphasizes an interdisciplinary approach to
data analysis with graduate students from engineering and life sciences being paired
to work together as teams. These resulting chapters would likely never have been
produced without cooperation between these two distinct disciplines and demon-
strate the power of this type in interdisciplinary cooperation.

We appreciate the suggestions, support feedback and encouragement received
from the IGERT faculty, IGERT fellows and NSF IGERT Program Directors
Richard Tankersley, M.K. Ramasubramanian, Vikram Jaswal, Holly K. Given, and
Carol Stoel. Authors would like to thank Dean Reza Abbaschian, Dean Joe
Childers, Dallas Rabenstein, David Eastman, Victor Rodgers, Zhenbiao Yang,
Vassilis Tsotras, Dimitri Morikis, Aaron Seitz, Jiayu Liao, David Carter, Jerry
Schultz, Lisa Kohne, Bill Bingham, Mitch Boretz, Jhon Gonzalez, Michael Caputo,
Michael Dang and Benjamin Davis for their support and help with the IGERT
program. Authors would also like to thank Atena Zahedi for the sketch shown on
the inside title page. Further, the authors would like to thank Simon Rees and
Wayne Wheeler of Springer and Priyadarshini Senthilkumar (Scientific Publishing
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Services) for their efforts related with the publication of this book. The first author
(BB) would like to acknowledge the support from National Science Foundation
grants DGE 0903667 video bioinformatics, CNS 1330110 distributed sensing,
learning and control, IIS 0905671 video data mining, IIS 0915270 performance
prediction, CCF 0727129 bio-inspired computation, and DBI 0641076 morpho-
logical databases. The second author (PT) would like to acknowledge support from
the Tobacco Related Disease Research Program of California (18XT-0167;
19XT-0151; 20XT-0118; 22RT-0217), the California Institute of Regenerative
Medicine (CL1-00508), and NIH (R01 DA036493; R21 DA037365).

Riverside, CA, USA Bir Bhanu
June 2015 Prue Talbot
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