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Preface

The concept of three-dimensional integration of semiconductors originated with 
the US patent by IBM in 1969. The patent is titled “Hourglass-shaped conduc-
tive connection through semiconductor structures” (http://www.google.com.mx/
patents/US3648131). The original interconnect looks like an hourglass. Since 
1969, the three-dimensional integration concept has spread out to semiconductor 
industries all over the world and more than 40 consortia and companies have been 
involved in this development. Forty-five years after its invention, three-dimen-
sional integration of semiconductors is becoming very popular, and is about to be 
industrialized in advanced electronics in the very near future.

This book reviews the state of the art of three-dimensional semiconductor inte-
gration. Chapter 1 gives an overview of three-dimensional integration research and 
development history. Chapter 2 summarizes recent three-dimensional integration 
research and development activities and applications. Chapter  3 gives an expla-
nation of through-silicon via (TSV) formation processes. Chapters 4 and 5 cover 
wafer handling, wafer thinning, and bonding of wafers and dies. Chapter 6 explains 
metrology and inspection. Chapter 7 discusses reliability and characterization is-
sues. Chapter 8 covers trends in technology development of three-dimensional in-
tegration circuits testing. Finally, Chapter 9 summarizes research and development 
project results conducted by New Energy and Industrial Technology Development 
Organization (NEDO)/Association of Super-Advanced Electronics Technologies 
(ASET): Japan in 2008 to 2012.

We really hope that this book will help not only beginners in three-dimension-
al integration technology of semiconductors but also engineers who are already 
involved in this field, both in industry and academia. I was very much astonished 
when, in 2000, ASET members visited my university and asked for support to fill 
an interconnect via that was huge compared to the contact via created by the dam-
ascene process of copper electrodeposition. This introduction gave me the initial 
motivation to start my research on three-dimensional integration. Two editors, 
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Morihiro Kada and Kenji Takahasi, are former ASET leaders. The opportunity 
given by K. Howell of Springer to publish this book is very much appreciated.

Kazuo Kondo	 Osaka 
Morihiro Kada	 Osaka 
Kenji Takahasi	 Oita 
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Chapter 1
Research and Development History of 
Three-Dimensional Integration Technology

Morihiro Kada

1.1 � Introduction

Semiconductor integrated circuits have been developed according to Moore’s law; 
the conjecture made in 1965 was that the number of transistors in a dense integrated 
circuit (IC) will double every 2 years, and the industry has developed according to 
this trend [1]. Two different concepts have been proposed for future advancements. 
One is “More Moore,” which suggests that technological progress will continue to 
follow scaling theory, and the other is termed “More than Moore,” which empha-
sizes the evolution and diversification of function [2].

1.1.1 � The International Technology Roadmap 
for Semiconductors

The international semiconductor research community gathered in 2005, at the 
abovementioned meeting (the International Technology Roadmap for Semiconduc-
tors, ITRS), which led to the concept of “More than Moore.” Two years later, at 
ITRS 2007, a number of such ideas were formally defined. We elaborate on two of 
these: scaling and functional diversification with reference to Fig. 1.1.

1.	 Scaling: Fig. 1.1, vertical axis of “More Moore”

a.	 Geometrical scaling: Also referred to as constant field scaling, this design 
methodology involves reducing the horizontal and vertical dimensions of 
physical features of the on-chip logic and memory storage components to 
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improve density (cost per function reduction), performance (speed, power), 
and reliability (Fig. 1.1).

b.	 Equivalent scaling: This approach refers to (a) three-dimensional (3D) device 
structure (“design factor”) improvements as well as other nongeometric pro-
cessing techniques and the use of new materials that affect the performance 
of the chip; (b) novel design techniques and technologies, such as multi-core 
design. Equivalent scaling occurs in conjunction with geometric scaling and 
aims for the continuation of “Moore’s law.”

2.	 Functional Diversification: Fig. 1.1, horizontal axis of “More than Moore.”

Moore’s law is not the only way to provide additional value to the end user. A 
complementary approach is that of functional diversification, which refers to the 
incorporation of new functionalities into devices that are not necessarily scalings 
of existing hardware or software. Typical of this “More than Moore” approach 
is the migration of non-digital functionalities (e.g., radio frequency (RF) com-
munication, power control, passive components, sensors, and actuators) from 
the system board level into a particular chip-level (system on a chip; SoC) or 
package-level (system in package; SiP) implementation. As the need increases 
for evermore complex software to be embedded into SoCs and SiPs, the role of 
the software itself in performance scaling may also need to be considered. The 
objective of the “More than Moore” design methodology is to incorporate digital 
and non-digital functionalities into compact systems.

Fig. 1.1   A diagrammatic representation of the concepts of “Moore’s law” and “More than Moore”. 
(Reproduced with permission from Ref. [3], Fig. 4). RF radio frequency, CPU central processing 
unit, CMOS complementary metal–oxide–semiconductor
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1.1.2 � 3D Integration Technology

Although 3D integration technology is not explicit in the definition of “More than 
Moore,” it is generally considered to be one of the most important technology de-
velopment strategies. The transistor scaling that has continued for more than 40 
years is approaching the atomic level of silicon, and this physical limit will likely 
be reached in 10–15 years.

Entirely new device structures, such as carbon nanotubes, spintronics, and mo-
lecular switches are being developed to replace transistor technology. However, 
they will not be ready for 10–15 years. In the interim, 3D integration technology 
offers a viable solution for continued performance and economic advancement [4].

“More than Moore” is not just a solution to the limitation of “More Moore,” 
it also recognizes the evolution and potential for improvements of packaging 
technology. Figure 1.2 illustrates the history of IC packaging technology. Every 
10 years since the 1970s, packaging technology has undergone a technological 
revolution. The first decade of this century is the era of the 3D system in package 
(3D-SiP), and work has begun to develop new 3D technology termed through-Si 
via (TSV) that will define the present decade [5]. In TSV, the electrode passes 
completely through the silicon wafer (or chip). It represents the fusion of silicon 
wafer process technology (front end of line, FEOL) and semiconductor packaging 
technology (assembly/packaging).

3D integration using conventional technologies, such as with the wire bonding 
(WB) as shown in Fig. 1.3 (left), is referred to as 3D integration packaging tech-
nologies. In this book, we focus our attention on systems in which semiconduc-
tor chips are stacked and connected by TSV, as shown in Fig. 1.3 (right), which 

1980 1990      2000    2010     2020

100

1,000

Pins/cm2

BGA/CSP Era

Year

10

Through Hole 
Mounting
Package Era

Surface Mounting
Package Era

3D-SiP Era

TSV 3D-SiP  Era
ＳＲＡＭＳＲＡＭＳＲＡＭＳＲＡＭＳＲＡＭvＳＲＡＭ

Fig. 1.2   Toward the new TSV 3D-SiP Era. 3D-SiP three-dimensional system in package, TSV 
through-Si via, BGA/CSP ball grid array/chip-scale package
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define 3D integration technology [6]. We do not discuss 3D integrated circuits 
(3D-IC) that use FEOL, such as 3D NAND in which transistors are stacked, nor 
the Intel tri-gate transistors that were introduced in the 22-nm generation ivy 
bridge CPU.

1.2 � Motivation for 3D Integration Technology

The development impetus is accounted for in the following two points.

1.	 If semiconductor integrated circuit chips are connected using TSV, the inter-
connected distance is approximately 1/1000 of that using conventional WB 
(micrometers compared with millimeters). This results in dramatic reductions 
in electric resistance and capacitance, making possible high-speed operation and 
low power consumption.

2.	 It is difficult to make (wire) connections between the conventional packages on 
the mounting board on the order of thousands, but this task is straightforward, 
and on even grander scales, between Si chips using TSV. Thus, TSV-based sys-
tems that have several 1000 input/output (I/O) circuits are realizable, which also 
benefit from being lower power consumption devices with higher data transmis-
sion speeds.

3D integration need not be confined to like technologies. By combining semicon-
ductor integrated circuits with, for example, micro-electro-mechanical systems 
(MEMS) devices, unique functionalities can be developed in what is termed hetero-
geneous 3D integration technology.

Multi Chip Package 
MCP 

Package on Package 
PoP 

Using Conventional Wire bonding  

Package on Package 
PoP 

Multi Chip Package 
MCP 

Using TSV 

Fig. 1.3   3D integration packaging technology and 3D integration technology [6]
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1.3 � Research and Development History of 3D Integration 
Technology

1.3.1 � 3D Packaging Technology

Even as of 2015, the use of 3D-IC (TSV) is uncommon, with the exception of 
complementary metal–oxide–semiconductor imaging sensors (CIS). However, 
high-volume manufacturing of 3D integration packaging technology using WB 
continues.

In 1998, Sharp Corporation developed the world’s first stacked two-chip chip-
scale package (CSP) using WB [7]. Before that time, there was no notion of chip 
stacking in CSP. This led to its development for use in mobile phones, mostly by 
Japanese chip makers, such as Sharp, Mitsubishi, Hitachi, NEC, Toshiba, and Fujit-
su. This technology was called stacked chip-scale (size) package (S-CSP) or multi-
chip package (MCP). Figure 1.4 shows the typical construction of S-CSP (MCP).

S-CSP/MCP was first used to make combinations of NOR flash memory and of 
static random-access memory (SRAM), which are at the heart of all mobile phones. 
Consumer demand fuelled the development of smaller sizes and higher performance 
[8]. When Sharp developed the world’s first stacked CSP, the combination memory 
development race was called the “East versus West War” over standardization by 
the Joint Electron Device Engineering Council. It became a demonstration of the 
strength of Japanese packaging technology.

Although, in the beginning, the interconnect technology was only WB, CSP 
stacking has given rise to the package on package (PoP) model, which also uses 
flip chip (FC) technology. Today, this approach is integral to modern smart phones 
and tablets; dynamic random access memory (DRAM) and application and/or base-
band processors are stacked together using this technology. Upon these founda-
tions, newer technologies continue to drive advances in telecommunications, such 
as through mold via (TMV) [9, 10]; see Fig. 1.5.

In the present-day flash memory, there are more than eight chips stacked into a 
single package [11]; see, for example, Fig. 1.6. This technology will likely continue 
being a mainstay of 3D integration packaging technology for some time yet. On the 
horizon are wireless interconnect technologies, such as capacitive and inductive 3D 
coupling [12].

Organic Substrate

Over Mold Gold Wire

Gold Plated
Copper Trace

Solder Ball

IC Chip

Fig. 1.4   Typical construction 
of S-CSP (MCP). IC inte-
grated circuit
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1.3.2 � Origin of the TSV Concept

The underlying concept of TSV technology is not new. International Business Ma-
chines Corporation filed the patent USP3,648,131 entitled, “Hourglass-shaped con-
ductive connection through semiconductor structures” in November 1969, with the 
following abstract [13]:

Fig. 1.6   World’s first nine-
chip stacked memory. (With 
permission from Toshiba 
Corporation)
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Fig. 1.5   3D integration packaging technology transition [10]. (With permission from Amkor 
Technology, Inc., Chandler AZ). WB wire bonding, PoP package on package, FC flip chip, TMV 
through-mold via, TSV through-Si via
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“An integrated semiconductor structure including the fabrication thereof, and 
more particularly, an improved means for interconnecting the two planar surfaces 
of a semiconductor wafer. To provide the electrically conductive interconnections 
through the wafer, a hole is etched, insulated, and metallized. Active or passive 
devices may be formed on either or both sides of the wafer and connected to a 
substrate by solder pads without the use of beam leads or flying lead bonding.” The 
drawings are shown in Fig. 1.7.

Fig. 1.7   US Patent 3,648,131 A [13]
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Later on, patents JP (S59)1984-22954 (June 1, 1983) and patent JP (S61)1986–
88546 (October 5, 1984) were filed by Hitachi Ltd. and Fujitsu Ltd, respectively. 
The patent JP (S63)1988–156348 (December 19, 1986), by Fujitsu, describes a 
stacked chip structure. Figure 1.8 shows key schematics of chip stacking techniques 
sourced from 1989 and 1991 conference presentations by Tohoku University, Japan 
[14, 15].

1.3.3 � Research and Development History of 3D 
Technology in Organizations

Research and development of 3D integration technologies has been carried out 
through global efforts [16]. Some of the major contributions by region are sum-
marized in Fig. 1.9 [17].

Fig. 1.8   Extracts from presentations by Tohoku University researchers in 1989 [14] and 1991 
[15]. (With permission from Tohoku University, Japan). TSV through-Si via, LSI wafer large-scale 
integration wafer
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1.3.3.1 � Japan

In Japan, research and development of the “Three-Dimensional Circuit Element 
R&D Project” by the Research and Development Association for Future (New) 
Electron Devices was conducted from 1981 to 1990, and the technology developed 
was termed “Cumulatively Bonded IC” (CUBIC): (in Japanese); TSV was not in-
tegral to the design. A thin film (approximately 2-μm thick) of electron channel 
metal–oxide–semiconductor field-effect transistor (nMOSFET) was laminated onto 
the bulk silicon device. The electrical interconnection of 1600 wiring contact arrays 
was checked, and the contact volume resistance of 5 × 10−6 Ω · cm2 did not adversely 
affect the operation [18].

In Japan, the Association of Super-Advanced Electronics Technologies (ASET) 
carried out a research and development project of 3D integration technology using 
TSV during the 5-year period 1999–2003. The project was entitled, “R&D on High 
Density Electronic System Integration Technology” (in Japanese). Its execution 
was entrusted to the New Energy and Industrial Technology Development Organi-
zation (NEDO) organization of the Japanese government’s Ministry of Economy, 
Trade, and Industry (METI) [19]. Following on were the “Stacked Memory Chip 

History of 
WW R&D on 3D Integration/Interconnect  Technology

R&D in Asia

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

R&D in 
Japan
R&D in 

USA

R&D in 
Europe r

NEDO: R&D Project on Super High 
Density Electronic SI technology

Preparatory
Research NEDO:Dream Chip Project

(Private) Program (2007–)

3D-Integrated Wireless
Sensor Systems

3D IC Manufacturing Process

Europe (FP6): e-CUBES Proj.

NEDO: R&D Project on
memory chip stacking

technology

IMEC 3D-SiC Program(2005 –)
interconnects at the global or 

intermediate level

Ad-STAC Program: Organizing tie-ups among 
industry-academia-government-institutes

Joint R&D for 
international 

commercialization

3D EMC(2006~)

Europe (FP7): e-BRAINS
German BMBF Project

Best Reliable Ambient Intelligent 
Nanosensor Systems

DARPA: 3DL1, 3DM2, 3DM3 3D Circuit Design etc

IME 3DTSV Consortium (2009 ~ Singapore 
alliance of industry & government

KAIST , Hynix, Samsung (Korea) 

NEDO:Smart
Device Project

GR BMBT Pj.

3D ASSM: Georgia Tec (USA), IZM 
(Germany), KAIST (Korea)

Sematech

DARPDARPA: VISA Proj.

Source: M. Kada (ASET)Sep. 2009, Mate Feb.2010,  Modified 2014 

Fig. 1.9   History of global research and development on 3D integration technology. (Adapted from 
Ref. [16]). NEDO New Energy and Industrial Technology Development Organization, DARPA 
Defense Advanced Research Projects Agency, VISA vertically interconnected sensor arrays, AD-
STAC Advanced Stacked-System Technology and Application Consortium, TSV through-silicon 
via, ASSM All Silicon System Module, EMC Equipment and Materials Consortium, SiC stacked 
integrated circuit, German BMFT German Ministry of Research, BMBF Federal Ministry of Edu-
cation and Research, FP7 Seventh Framework Programme
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Technology Development Project” (in Japanese), 2004–2006 [20] and the “Devel-
opment on Functionally Innovative 3D-Integrated Circuit (Dream Chip) Technol-
ogy Project” (in Japanese), 2008–2012. In 2010, research was conducted with a 
focus on “Design Environmental Technology, Interposer Technology, Chip-Testing 
Technology, Three-dimensional Integration Basic Technology, Flex chip (FPGA) 
Technology, and RF MEMS.”

The majority of the semiconductor-related businesses in Japan were involved in 
these projects. These included semiconductor companies Elpida, Toshiba, Rene-
sas, and Rohm; electronic companies NEC, Sharp, Nac Image Tech., IBM, Pana-
sonic, Hitachi, and Fujitsu; and material/equipment companies Advantest, DNP, 
Ibiden, Shinko, TEL, Toppan, Yamaichi, and Zycube. Furthermore, The Universi-
ty of Tokyo, Tohoku University, and the National Institute of Advanced Industrial 
Science and Technology represented the academic participation [21–23].

In 2010, an interim assessment led to a focus shift to thermal management/chip 
stacking technology, thin wafer technology, 3D integration technology, ultra-wide 
bus 3D-SiP, mixed signal (digital–analog) 3D integration technology, and hetero-
geneous 3D integration technology. The research outcomes are described in later 
sections of this book [24, 25].

However, despite the sizeable investment by the Japanese government over these 
long periods of time, the national semiconductor industry is presently in decline and 
future research and development remains uncertain.

The WOW alliance based at the Tokyo Institute of Technology (based at The 
University of Tokyo until 2014) was founded in 2008 [26], and the “Three-Di-
mensional Semiconductor Investigation Center” (translated from the Japanese) in 
Kyushu commenced operations in 2011 [27].

1.3.3.2 � Japanese 3D Integration Technology Research and Development 
Project (Dream Chip)

The second full-scale national research and development (R&D) initiative of 3D 
integration technology using through-silicon via (TSV) was implemented over 
the 5-year period from 2008 to 2012. Super-Advanced Electronics Technologies 
(ASET) conducted the project “Development on Functionally Innovative 3D-In-
tegrated Circuit (Dream Chip) Technology Project,” and it was managed by the 
NEDO Organization that is based on “IT Innovation Program” of Japanese govern-
ment’s Ministry of Economy, Trade and Industry (METI). After the 2010 interim as-
sessment, the two focus areas became 3D integration process basic technologies and 
application technologies using TSV. The former consisted of thermal management/
chip-stacking technology, thin wafer technology, and 3D integration technology, 
while the latter focus area comprised ultra-wide bus 3D-SiP, mixed signal (digital–
analog) 3D, and heterogeneous 3D; see Fig. 1.10. For details beyond research and 
development subjects and results, the reader is referred to Chapter 9 [17, 28].



1  Research and Development History of Three-Dimensional … 11

1.3.3.3 � The USA

The US Defense Advanced Research Projects Agency (DARPA)’s work in mi-
crosystems technology has a long history. 3D-related research and development 
projects are controlled by the “Microsystems Technology Office (MTO).” These 
projects are:

1.	 Enhanced Digital (3D-IC Program)
−	 Large amounts of cache memory
−	 High memory bandwidth

2.	 Enhanced Analog (COSMOS Program)
−	 Heterogeneous integration
−	 Disparate process technologies (e.g., SiGe/Si, C.S./Si, SOI/Bulk)

3.	 Smart Focal Planes (Vertically Interconnected Sensor Arrays, VISA Program)
−	 Processing at each pixel
−	 High fill factors

4.	 Photonics (EPIC Program)

−	 Optical and electronic tiers

DARPA funding and the Microelectronics Center of North Carolina Research and 
Development Institute (MCNC-RDI) supported a project that was started in 2003. 
The research and development device comprised VISA that implemented highly 

Application to 3D process 
and design technology

■ 3D Integration Process Basic  Technologies

■ Application Technologies using TSV
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Thin Wafer
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Process Technology
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■ Thermal / 
Chip Stacking Technology 
High Power Dissipation Technology
C2C (Chip to Chip) Bonding Technology

■ Ultra-wide Bus SiP
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processing system 
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Fig. 1.10   Research and development subject of the Dream Chip Project. (With permission from 
the Electrochemical Society: ECS) [17]. TSV through-Si via

 


