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Preface

With kind permission of © Eckart Menzler

This volume is a tribute by several generations of proof theorists to Gerhard
Gentzen, one of the greatest logicians ever to whom we owe the most profound
investigation of the nature of proofs since Aristotle and Frege. The immediate
stimulus for its inception was Gentzen’s 100th birthday in 2009 which was
celebrated with a conference in Leeds and a workshop in Coimbra at which most of
the contributors to this volume spoke.

Gentzen has been described as logic’s lost genius1 whom Gödel sometimes called
a better logician than himself.2 It could be said that Gentzen and Gödel arrived,
each in their own exquisite manner, at opposing extremes of a spectrum. Gödel
found a very general negative result to the effect that no system embodying a correct

1E. Menzler-Trott: Logic’s Lost Genius: The Life of Gerhard Gentzen (AMS, Providence, 2007).
2G. Kreisel: Gödel’s excursions into intuitionistic logic, in: Gödel remembered, (Bibliopolis,
Napoli, 1987) p. 169.
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vi Preface

amount of number theory can prove its own consistency by transferring the trick
of the “Liar’s Paradox” from the context of truth to that of provability. Gentzen,
on the other hand, established the positive result that elementary number theory is
consistent, using at some crucial point the well-orderedness of a certain ordering
called "0 that sprang from Cantor’s normal form (for presenting ordinals). He also
gave a direct proof that the latter principle is not deducible in this theory, thereby
providing an entirely new proof of a mathematical incompleteness in number theory.

Gentzen can be rightly considered to be the founding father of modern proof
theory. His sequent calculus and natural deduction system beautifully explain the
deep symmetries of logic. They underlie modern developments in computer science
such as automated theorem proving and type theory. This volume’s chapters by lead-
ing proof-theorists attest to Gentzen’s enduring legacy in mathematical logic and
beyond. Their contributions range from philosophical reflections and re-evaluations
of Gentzen’s original consistency proofs and results in proof theory to some of the
most recent developments in this exciting area of modern mathematical logic.
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In Memoriam: Grigori Mints, 1939–2014

With kind permission of his wife © Marianna Rozenfeld

When this book was about to be sent to the publisher, we received the very sad news
that Grigori (“Grisha”) Mints had died on 30th May 2014. He was born on 7th June
1939 in Leningrad (now again St. Petersburg).

Grisha was a driving force in proof theory and constructivism and a loyal
promoter of Gentzen-style proof theory. He was the pre-eminent expert on Hilbert’s
epsilon calculus and the leading exponent of the substitution method approach to
proof theory, expanding its range of applications to strong subsystems of arithmetic.
His discovery of the method of continuous cut elimination for infinitary proofs
unearthed the deeper relationship between Gentzen’s reduction steps on finitary
derivations and infinitary proof theory. In pursuit of his wide ranging research
interests, he published three books, ten edited volumes, more than 200 scholarly
papers, and thousands of reviews, with the aid of which he also maintained and
fostered his world spanning network of intellectual contacts through sometimes
difficult years working in the Soviet Union. Vladimir Lifschitz wrote about Grisha1:

. . . his true calling was to study formal proofs in the spirit of pure mathematics in the best
sense of the word: the main project of Grisha’s professional life was to develop a clear,
complete understanding of properties of proofs, so that any possible question about them
will be easy to answer.

1https://philosophy.stanford.edu/news/professor-grigori-grisha-mints.
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viii In Memoriam: Grigori Mints, 1939–2014

In this way he can be seen as one of the leading executors of Gentzen’s legacy
and it seems to be more than adequate to dedicate this volume, celebrating Gerhard
Gentzen’s centenary, to the memory of Grisha Mints.
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Gentzen’s Consistency Proof in Context

Reinhard Kahle

1 Introduction

Gentzen’s celebrated consistency proof—or proofs, to distinguish the different
variations he gave1—of Peano Arithmetic in terms of transfinite induction up to
the ordinal2 "0 can be considered as the birth of modern proof theory. After the
blow which Gödel’s incompleteness theorems gave the original Hilbert Programme,
Gentzen’s result did not just provide a consistency proof of formalized Arithmetic,
it also opened a new way to deal “positively” with incompleteness phenomena.3

In addition, Gentzen invented, on the way to his result, structural proof theory,
understood as the branch of proof theory studying structural (in contrast to
mathematical) properties of formal systems [79, 111]. With the introduction of
sequent calculus and natural deduction and the corresponding theorems about
cut elimination and normalization, respectively,4 he revolutionized the concept of
derivation calculus, fundamental for all further developments of proof theory.

Here, we focus on the aspects of his work related to the quest for consistency
proofs of theories with mathematical content. We like to recall the context in which
the consistency proofs—one may add: “after Gödel”—have to be put, and what
might be their mathematical and/or philosophical rationale. For it, we will look

1Cf., e.g., [13, 87, 105], and [114] as well as [97] in this volume.
2For the ordinal "0 see, for instance, [58] in this volume.
3See, for instance, [90] in this volume.
4See, for instance, [15] and [87] in this volume.
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4 R. Kahle

back to Hilbert’s (original) programme and the immediate lessons one may learn
from Gödel’s theorems. We then consider consistency proofs for Arithmetic, whose
consistency, however, is not really at issue. After discussing the interesting case
of Analysis, we finish with a reflection on modern proof theory as it is guided by
the quest for consistency in the investigation of stronger and stronger mathematical
theories.

2 Hilbert’s Programme

Hilbert’s programme originates from his own second problem in the famous Paris
problem list [45] and, in its mature form, it proposes to carry out consistency proofs
of axioms systems for Arithmetic and Analysis “by finitistic methods.” Hilbert
didn’t specify exactly what he meant by “finitistic methods” and in modern formal
presentations one identifies these methods—following Tait [104]—with primitive-
recursive Arithmetic, PRA. From an abstract point of view, the main issue is that
the consistency of the base theory, in which the consistency proof should be carried
out, is beyond any reasonable doubt; and this should be the case for the finitistic
methods, whatever they are concretely.

The idea of Hilbert’s programme was somehow already conceived with the
question given in 1900, and a first sketch of how a consistency proof could be
performed was given by Hilbert in 1904 in his lecture at the International Congress
of Mathematicians in Heidelberg [47]. It was, however, only the appearance of
Brouwer’s Intuitionism which forced Hilbert to formulate his programme in precise
formal terms.5 Finitistic Mathematics should play, in this context, the role of the
part of Mathematics which is beyond any doubt concerning consistency. It was
then the aim to justify the other parts of Mathematics by formal consistency proofs
carried out using only finitistic means. It is worth noting that, with the choice of
finitistic Mathematics as the base, Hilbert was fully in line with the intuitionistic
movement—even on philosophical grounds, and it should not come as a surprise
that he himself was occasionally called an intuitionist.6 One can even find a

5For the development of Hilbert’s programme(s), cf. e.g., [98].
6See Fraenkel [28, p. 154]:

This is the point of view of HILBERT, who, therefore, picks up himself the methodical
starting point of his intuitionist opponents—but for the purpose to deny their thesis; one
could almost characterize him as an intuitionist.

(German original: “Dies etwa ist der Standpunkt HILBERTS, der somit den methodischen
Ausgangspunkt seiner intuitionistischen Gegner — allerdings zum Zweck der Bestreitung ihrer
Thesen — selbst aufnimmt; man könnte ihn geradezu als Intuitionisten bezeichnen.”) Van Dalen
adds to this citation [112, p. 309]: “Although the inner circle of experts in the area (e.g. Bernays,
Weyl, von Neumann, Brouwer) had reached the same conclusion some time before, it was Fraenkel
who put it on record.” See also footnote 18.
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“intuitionistic creed” given by Gentzen in 1938, when he wrote [102, p. 235]7:

The most consequential form of delimitation is that represented by the ‘intuitionistic’ point
of view, . . .

What separated Hilbert from Brouwer and Weyl was the latter’s attitude to ban “the
other mathematics” from the mathematical discourse. In contrast, he was proposing
to justify by his Beweistheorie Mathematics in all its extensions on the base of
finitistic Mathematics. Here, Hilbert’s programme gained a new aspect: besides
consistency, one could now also demand conservativity of “higher” Mathematics
over finitary Mathematics.8

Without any doubt, Gödel’s second incompleteness theorem put an end to
Hilbert’s programme in its original formulation.9 The so-called failure of Hilbert’s
Programme is advocated at several places, maybe most notable by Kreisel [66,
Abstract and p. 352]. But which kind of “failure” was it? Surely, it was the not the
one which was feared by the critics of classical mathematics. When Hermann Weyl
drew on the picture of a “house built on sand” [118, p. 1] he was afraid of possible
inconsistencies which could bring classical mathematics to collapse. Of course,
Gödel’s theorems suggest on no account that there would be an inconsistency in
classical mathematics (or even Arithmetic).10

As far as consistency is concerned, one may compare the situation with the
classical construction problems in Euclidean Geometry. There is no way to trisect an
angle by compass and ruler—but there are other means to do so (for instance, using
a marked ruler). Of course, in the context of a consistency proof, using other means
than finitistic ones will undermine Hilbert’s original philosophical starting point.
But Hilbert was, by no means, a philosophical hardliner. The only piece of written
evidence which we have about Hilbert’s reception of Gödel’s result is the cryptic
short preface in the first volume of the Grundlagen der Mathematik [52], saying
that Gödel’s result “shows only that—for more advanced consistency proofs—the
finitistic standpoint has to be exploited in a manner that is sharper [. . . ],”11 i.e.,
the philosophical starting point was to change. Bernays and Ackermann provide us
with two additional testimonies that Hilbert soon adapted his “meta-mathematical
standpoint.”

7German original [32, p. 6]: “Die folgerichtigste Art der Abgrenzung ist die durch den ‘intuition-
istischen’ Standpunkt [. . . ] gegebene.”
8We may leave it open here whether Hilbert himself was advocating such a conservativity. The
issue of conservativity can be considered, of course, without reference to historic figures.
9It is reported in the Schütte school that this was also immediately recognized in Göttingen.
10But one may note the puzzling lack of understanding of Russell, expressed in a letter to Leon
Henkin of 1 April 1963, cf. [18, p. 89ff].
11Hilbert and Bernays [55, p. VII]. German original: “Jenes Ergebnis zeigt in der Tat auch nur,
daß man für die weitergehenden Widerspruchsfreiheitsbeweise den finiten Standpunkt in einer
schäferen Weise ausnutzen muß, [. . . ].”
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Based on Bernays’s reports, Reid writes about Hilbert’s reaction to Gödel’s result
[92, p. 198]: “At first he was only angry and frustrated, but then he began to try to
deal constructively with the problem. Bernays found himself impressed that even
now, at the very end of his career, Hilbert was able to make great changes in his
program.”

Ackermann writes in a letter to Hilbert (August 23rd, 1933)12: “I was particularly
interested in the new meta-mathematical standpoint which you now adopt and which
was provoked by Gödel’s work.”

Unfortunately, we have no sources which explicate in detail Hilbert’s new
standpoint, but it goes without saying that Gentzen’s work was in line with it.13

In fact, Bernays starts the section heading of the presentation of Gentzen’s proof of
the consistency of Arithmetic in [53, Sect. 5.3] with “Transgression of the previous
methodological standpoint of proof theory.”14

Thus, with a more “liberal” philosophical position consistency proofs can still be
carried out, addressing Hilbert’s initial concerns. And Gentzen’s consistency proof
was among the first ones which provided such an argument. It was not even the only
one, and Gödel gave, as early as 1938, in a talk at Zilsel’s seminar in Vienna, an
interesting overview of possible alternatives to extend Hilbert’s original standpoint
[38, p. 95]15:

4. How then shall we extend? (Extension is necessary.) Three ways are known up to now:

1. Higher types of functions (functions of functions of number, etc.)
2. The modal-logical route (introduction of an absurdity applied to universal sentences

and a �notion of� “consequence”).
3. Transfinite induction, that is, inference by induction is added for certain concretely

defined ordinal numbers of the second number class.

Gödel himself preferred the first alternative, worked out in [39]; he judged the
second one, which is intuitionistic logic of Brouwer and Heyting augmented by a
modal-like operator B (for German beweisbar), “the worst of the three ways” [38,

12German original [1, p.1f]: “Besonders interessiert hat mich der neue meta-mathematische
Standpunkt, den Sie jetzt einnehmen und der durch die Gödelsche Arbeit veranlaßt worden ist.”
The letter was written after Ackermann visited Göttingen, but didn’t meet Hilbert and spoke only
with Arnold Schmidt, who informed him about “everything” going on in Göttingen.
13Detlefsen, [19] in this volume, however, points out that there are some fundamental differences
between Gentzen’s own philosophical view and Hilbert’s view.
14In German: “Überschreitung des bisherigen methodischen Standpunkts der Beweistheorie”.
15German original, [38, p. 94]:

4. Wie also erweitern? (Erweiterung nötig.) Drei Wege �sind� bisher bekannt:

1. Höhere Typen von Funktionen (Funktionen �von� Funktionen von Zahlen, etc.)
2. Modalitätslogischer Weg (Einführung einer Absurdität auf Allsätze angewendet und eines

“Folgerns”).
3. Transfinite Induktion, d.h., es wird der Schluß durch Induktion für gewisse konkret definierte

Ordinalzahlen der zweiten Klasse hinzugefügt.
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p. 103]; the third one is, of course, Gentzen’s way; for a detailed discussion of
(this passage from) Gödel talk at Zilsel’s seminar, see [24, p. 120f]. Of course, we
don’t depend on Gödel’s choice; what counts is that there are extensions of Hilbert’s
original standpoint which provide a rationale for modern consistency proofs.

With respect to the second aspect of Hilbert’s Programme—the supposed
conservativity of higher Mathematics over finitistic Mathematics—the “failure”
cannot be denied: there is no way to reduce all higher Mathematics to finitistic
Mathematics; even more: higher Mathematics may prove finitistic statements which
are not provable with pure finitistic methods.16 But let’s draw on a comparison here:
nobody will deny that Columbus failed to find the sea route to India; but he didn’t
sink in the Ocean, he discovered America. In the same way, Hilbert’s Programme,
aiming for consistency and (maybe) conservativity, didn’t sink in inconsistency, but
discovered Non-Conservativity. Exploring this new phenomena in Mathematics is
the driving force of modern proof theory.

3 Consistency Proofs for Arithmetic

Any consistency proof has to rely on some undisputed base. This was clearly stated
by Gentzen, for instance in [31, Sect. 2.31]17:

Such a consistency proof is once again a mathematical proof in which certain inferences
and derived concepts must be used. Their reliability (especially their consistency) must
already be presupposed. There can be no ‘absolute consistency proof’. A consistency proof
can merely reduce the correctness of certain forms of inference to the correctness of other
forms of inference.

16See, for instance, [75] in this volume.
17German original: “Ein solcher Widerspruchsfreiheitsbeweis wäre nun wieder ein mathematischer
Beweis, in dem gewisse Schlüsse und Begriffsbildungen verwendet würden. Diese müssen als
sicher (insbesondere als widerspruchsfrei) bereits vorausgesetzt werden. Ein ‘absoluter Wider-
spruchsfreiheitsbeweis’ ist also nicht möglich. Ein Widerpruchsfreiheitsbeweis kann lediglich die
Richtigkeit gewisser Schlußweisen auf die Richtigkeit anderer Schlußwiesen zurückführen. Man
wird also verlangen müssen, daß in einem Widerspruchsfreiheitsbeweis nur solche Schlußweisen
der Theorie, deren Widerspruchsfreiheit man beweist, als erheblich sicherer gelten können.”

Similarly in [32]:

In order to carry out a consistency proof, we naturally already require certain techniques
of proof whose reliability must be presupposed and can no longer be justified along these
lines. An absolute consistency proof, i.e., a proof which is free from presuppositions is of
course impossible. [102, p. 237].

German original: “Um einen Widerspruchsfreiheitsbeweis zu führen, braucht man natürlich bereits
gewisse mathematische Beweismittel, deren Unbedenklichkeit man voraussetzen muß und auf
diesem Wege schließlich nicht weiter begründen kann. Ein absoluter, d. h. voraussetzungsloser
Widerspruchsfreiheitsbeweis ist selbstverständlich unmöglich.”
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It is therefore clear that in a consistency proof we can use only forms of inference that count
as considerably more secure than the forms of inference of the theory whose consistency is
to be proven. [102, p. 138]

Hilbert’s original choice for such a base was finitistic Mathematics, and at that
time, this was even identified—by name—with intuitionistic Mathematics in the
Hilbert school.18 Now, taking Heyting’s intuitionistic formalization of Arithmetic
as undisputed base, there was already a consistency proof of classical Arithmetic
given by the double negation interpretation, independently found by Gödel [37]
and Gentzen [33]19, and even earlier by Kolmogorov [65]. In his paper Gentzen
expressed explicitly, [102, Sect. 6.1, p. 66f]:20

If intuitionistic arithmetic is accepted as consistent, then the consistency of classical
arithmetic is also guaranteed . . .

But Gentzen was not happy with this kind of consistency proof (cf. the neat
discussion in [102, p. 10f]), and went on to give his celebrated consistency proof in
terms of transfinite induction up to "0. This proof starts from a different base, i.e.,
primitive recursive arithmetic together with transfinite induction up to "0.

Here, we dispense with a presentation of Gentzen’s result which can be found, if
not in Gentzen’s original papers, in the standard proof-theoretic literature.21 Hilbert,
of course, was excited about the proof. But Kreisel [68, p. 121] reports also of
“familiar jokes (for example, by Tarski whose confidence [in the consistency] was
increased by <", or by Weyl who was astonished that one should use "0-induction
to prove the consistency of ordinary, that is !-induction).”22

Tarski’s “joke” (or a variation of it) is referred in detail in [102, p. 10]:
“Gentzen’s proof of the consistency of arithmetic is undoubtedly a very interesting
metamathematical result, which may prove very stimulating and fruitful. I cannot
say, however, that the consistency of arithmetic is now much more evident to me (at
any rate, perhaps, to use the terminology of the differential calculus more evident
than by an epsilon) than it was before the proof was given” [109, p. 19]. However,
for a “semanticist” like Tarski there cannot be any doubt about the consistency of

18“Concerning the use of the word intuitionistic [. . . ], it should be noted that according to Bernays
[[11, p. 502]], the prevailing view in the Hilbert school at the beginning of the 1930s equated
finitism with intuitionism.” [24, p. 117]. See also footnote 6 above.
19This paper was submitted in 1933, but withdrawn by Gentzen when he became known about
Gödel’s paper. An English translation appeared in print in 1969, [102, #2], the German version of
the Galley proofs, kept by Paul Bernays, was published only in 1974.
20German original [33, p. 131]: “Wenn man die intuitionistische Arithmetik als widerspruchsfrei
hinnimmt, so ist [. . . ] auch die Widerspruchsfreiheit der klassischen Arithmetik gesichert."
21An informal presentation of the main idea of the proof is given, for instance, by Takeuti in [120,
p. 128ff].
22A well-known proof theorists presumably heard the second joke from Kreisel but confused a “y”
with an “i” attributing it—with reference to Kreisel—to “un grand mathématicien français” [35,
p. 520, fn. 14]; this confusion is confirmed in [36, pp. 9 and 33] where André Weil is mentioned
by name (without reference to Kreisel).
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Arithmetic from the very onset—otherwise, even the idea of the structure of the
natural numbers would be pointless. We mention this, because on the assumption
of the existence of a structure, any correctness lemma results in a consistency
proof.23

Hermann Weyl’s joke is equally unfair, as it suppresses the whole issue of
Gentzen’s proof, i.e., that the induction up to "0 is applied to quantifier-free
formulas, only.24

Universal quantification—which was eliminated by Gentzen in the induction
schemata—was at the very bottom of Hilbert’s concerns, much more than, for
instance, the tertium-non-datur. Hilbert’s early outline of a consistency proof
in the 1904 Heidelberg talk [47] was criticized by Poincaré with the argu-
ment that, for any such consistency proof, Hilbert would have to reason induc-
tively25; but justifying induction by induction results in a vicious circle. Only
with the separation of Metamathematics—using “weak” induction—from Mathe-
matics proper—allowing for stronger induction—he developed a tool to respond
to this critics.26 Thus, Gentzen’s use of quantifier-free inductions, though being
transfinite, is fundamentally in line with Hilbert’s concern to address Poincaré’s
objection.27

Ackermann gave, shortly after Gentzen, a consistency proof for Arithmetic using
Hilbert’s "-substitution method, cf. [2], and its discussion in [53, Sect. 2] and [54,
Supplement V].28 From a historic point of view, it is probably more an adaptation of
Gentzen’s proof to a specific technique favored by Hilbert than a “new” consistency

23Smullyan [100, p. 56] illustrates very well this point in connection with Gödel’s (first) incom-
pleteness result, stressing that Gödel, by using !-consistency, makes a much weaker assumption
than correctness. The pointlessness of consisteny proofs by semantic methods was well stated by
Shoenfield [96, p. 214]:

The consistency proof for P by means of the standard model [. . . ] does not even increase
our understanding of P , since nothing goes into it which we did not put into P in the first
place.

24For sure, Weyl will have known exactly what’s going on here, and probably also classified his
remark only as a joke.
25See [84], cited in [98, p. 7].
26See, for instance, [10, p. 203]. This separation might have been suggested by Brouwer to Hilbert
in 1909, cf. [112, p. 302]. Sieg [98, p. 27] writes: “Hilbert claims in [[50]], that Poincaré arrived
at ‘his mistaken conviction by not distinguishing these two methods of induction, which are of
entirely different kinds’ and feels that ‘[u]nder these circumstances Poincaré had to reject my
theory, which, incidentally, existed at that time only in its completely inadequate early stages’.”
27It is defensible that Hilbert took Poincaré’s critics more serious than, for instance, Brouwer’s, cf.
[61, 62]; but since Poincaré died already in 1912, Hilbert had lost him as discussion partner at the
time his programme was worked out.
28This supplement, added to the second edition of [53] and published in 1970, also presents a
consistency proof of Kalmár, based on an unpublished manuscript of 1938.
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proof.29 However, the "-substitution method was recently revived by Mints for the
analysis of stronger systems, cf. [4, 76, 78] and [77] in this volume.

Gödel [39] published in 1958 a conceptually different consistency proof, a
worked out version of the idea already mentioned at Zilsel’s seminar in 1938 (see
above) which is based on functionals of higher types, known as Gödel’s T (the
theory) or the Dialectica-Interpretation (the interpretation of Arithmetic in T ). This
consistency proof is quite different from Gentzen’s, and it addresses particularly the
finitistic aspect of Hilbert’s programme, as the functionals of higher types can be
considered as fulfilling this aspect.

Even if somebody would not be convinced by any single consistency proof, (s)he
should take into account that here conceptually different approaches—intuitionism;
transfinite induction; functionals of higher type—all lead to the consistency of
Peano Arithmetic. For Church’s thesis sometimes the argument is put forward that
many independent approaches to computability lead to the same class of functions.
We have here a similar phenomenon, where the risk—put forward for Church’s
thesis—of “systematically overlooking something” is even lower, and one gains
some kind of independent evidences for the consistency of Arithmetic.

In any case, as the consistency of Arithmetic is not really at issue, for modern
proof theory Gentzen’s consistency proof must be put in the right perspective.
Macintyre writes in this respect [72, p. 2426]30:

Much nonsense has been pronounced about Gentzen’s work, even by extremely distin-
guished people. Consistency is not really the main issue at all. He did reveal fine structure
in the unprovability of consistency of PA, as a consequence of much deeper general
methodology.

4 Analysis

It should be clear that for Hilbert’s Programme Arithmetic could have been only
an intermediate goal on the way to Analysis. It was, of course, Analysis which
Hermann Weyl had in mind when speaking about a “house built on sand,” it was

29Cf. Bernays in [53, p. VII]:

Currently, W. Ackermann is developing his earlier consistency proof—by use of a sort
of transfinite induction as used by Gentzen—in a way that it obtains validity for the full
numbertheoretic formalism.

German original: “Gegenwärtig ist W. ACKERMANN dabei, seinen früheren (. . . ) Widerspruchs-
freiheitsbeweis durch Anwendung der transfiniten Induktion in der Art, wie sie von GENTZEN

benutzt wird, so auszugestalten, daß er für den vollen zahlentheoretischen Formalismus Gültigkeit
erhält.”

Von Plato writes in [115, end of I.4.10]: “A second proof of Gentzen’s result was given by an
unwilling Wilhelm Ackermann, after repeated pleadings on the part of Bernays.”
30In the continuation of the citation, the mentioned fine structure is illustrated by the result about
provably total functions of PA which one can obtain from Gentzen’s work.
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Analysis which Brouwer tried to “revolutionize” (using Weyl’s language) within
his intuitionistic philosophy. Analysis uses at its very base the definition of the real
numbers, a genuine impredicative concept. It was, first of all, Poincaré who put the
use of impredicative concepts into question (though he accepted the real numbers
as such).31 But also Hilbert’s own student Weyl was advocating a predicative
reconstruction of Mathematics in Das Kontinuum [117], being willing to give up
a large part of traditional Mathematics. Thus, for Hilbert, a consistency proof of
classical Analysis turned now from a “simple question” of his Paris problem list
into an issue of defense against an intuitionistic “Putschversuch” (as he expressed it
in [49]).

It is known that Gödel started from Analysis when he was still trying to fulfill
Hilbert’s programme; Wang [116, p. 654] reports: “In the summer of 1930, Gödel
began to study the problem of proving the consistency of analysis. [. . . ] The problem
he set for himself at that time was the relative consistency of analysis to number
theory.” In this context he encountered the incompleteness results which, in turn,
closed this lane of argumentation.

Thus, Gentzen’s consistency proof of Arithmetic is now only a first step, and the
search for a consistency proof of Analysis was started immediately after. We know
that Gentzen was working hard on such a consistency proof even in prison in Prague
just before his premature death in 1945,32 and some remaining notes about this work
are currently in the process of publication [115]. But, it is also clear that he didn’t
reach a final result.

In sharp contrast to intuitionistic Arithmetic, intuitionistic Analysis can hardly be
considered as a base to provide a consistency proof for (classical) Analysis which
would fit Hilbert’s aims. One problem are the additional principles for intuitionistic
Analysis proposed by Brouwer, which are inconsistent in the classical setting. This
makes it doubtful whether intuitionistic Analysis (in Brouwer’s formulation) could
be even considered as more reliable than classical Analysis in itself.33

Szabo in [102, pp. 12–16] gives a short review of other early consistency results,
going beyond Arithmetic, by Fitch, Lorenzen, Takeuti, Schütte, and Ackermann.
None of them are accepted as fulfilling Hilbert’s requirement on a consistency

31See, for instance, the talk on transfinite numbers given by Poincaré in Göttingen in 1909 in the
presence of Hilbert, included in [85] and translated by Ewald in [22, 22.G] (reprinted in [62]).
32Szabo [102, p. viii] refers to the memories of a friend of Gentzen in the prison: “He once confided
in me that he was really quite contented since now he had at last time to think about a consistency
proof for analysis. He was in fact fully convinced that he would succeed in carrying out such a
proof.”
33Here, one can turn Hilbert’s programme upside down and use interpretations of new intuitionistic
principles to justify them on classical grounds; see, for instance, [27, p. 340]. I also remember
a proof theorist, making good use of such principles, but calling them—trained in classical
Mathematics and therefore believing in the standard notion of mathematical truth—“totally wrong”
(as translation of the German “grob falsch”).
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proof.34 But they had, of course, some impact on the development of proof theory.
The most stimulating proposal was Takeuti’s Fundamental Conjecture, saying
roughly that cut-elimination holds for second-order logic, cf. [107] and the informal
presentation in [120, App. B]. There were soon some proofs of it [86, 93, 103, 106],
which, however, rely on set theoretic considerations. Thus, these proofs do not
provide additional reliability.35

Similar concerns regard other approaches, like Girard’s F [34], where the
candidates, used in the normalization proof, are subject to the same foundational
concerns as the theory itself.36;37

Spector [101] introduced bar recursion as a concept which could be used to
extend the Dialectica interpretation to Analysis.38 To serve as a consistency proof,
however, one would rely on bar recursion/bar induction as valid principle. Avigad
and Feferman [8, p. 370f] write in their “Evaluation of Spector’s interpretation”:

Spector was careful not to claim that the generalization of bar induction to higher types,
which he used to justify bar recursion for continuous functionals, should be accepted on
intuitionistic grounds. In fact, he offers the following caveat:

The author believes that the bar theorem is itself questionable, and that until the bar
theorem can be given a suitable foundation, the question whether bar induction is
intuitionistic is premature.

The question of whether bar recursion can be justified on constructive grounds was taken
up in a seminar on the foundations of analysis led by G. Kreisel at Stanford in the summer
of 1963. The seminar’s conclusion, summarized by Kreisel in an ensuing report [[69]], was
that

. . . the answer is negative by a wide margin, since not even bar recursion of type 2
can be proved consistent [by constructively accepted principles].

34Kreisel, in [67, p. 344], sketches also an extension of “Gödel’s old translation” of a system
for classical Analysis to a specific intuitionistic reformulation of Analysis, involving the general
Comprehension Axiom, which “provides an intuitionistic consistency proof of classical analysis”.
He himself classifies this result as “philosophically [. . . ] not significant at all”, except for “a
reduction to intuitionistic methods of proof ”—which he judges a “technical” property. In the
Discussion of this proof he reminds the reader to look for alternatives:

Quite naively, this easy proof in no way reduces the interest of a more detailed proof
theoretic reduction [. . . ]; just as Gödel’s original intuitionistic consistency proof for
classical arithmetic Z did not make Gentzen’s reduction superfluous.

35In a discussion of these proofs, Kreisel writes [67, p. 349, footnote 16]: “[I]n terms of consistency
proofs, Tait’s argument would only have proved the consistency of classical analysis in third order
arithmetic!”
36I remember a proof-theorist classifying such a normalization proof as simply “circular.”
37The worst-case scenario was experienced by Martin-Löf, when he realized that the normalization
proof of his first (inconsistent) type theory was carried out in an inconsistent metatheory (see
Setzer’s contribution in this volume [95]).
38For a thorough discussion of Spector’s proof see [26] in this volume. Oliva and Powell [80],
also in this volume, discuss some spin-offs we can get from proof-theoretic analyses in the
neighborhood of Spector’s approach.



Gentzen’s Consistency Proof in Context 13

When failing to prove Takeuti’s Fundamental Conjecture by more elementary
means, proof theory turned naturally to Subsystems of Analysis where impressive
results were established. Following the two traditions, called Schütte-style and
Takeuti-style proof theory, we are able to give today analyses up to …1

2 comprehen-
sion, cf. the work of Rathjen [88,89] and Arai [5–7], respectively.39 These analyses
of subsystems of Analysis in terms of ordinals are the natural extension of Gentzen’s
consistency proof for Arithmetic. It is particularly rewarding to provide the proof-
theoretic strength of a theory; with ordinals as measure one is able to compare
theories from different formal realms, like set-theoretical ones, type-theoretical
ones, or others like Theories of Inductive Definitions40 and Feferman’s Explicit
Mathematics. In return, these frameworks can help to carry out parts of the proof-
theoretic investigations.41

The rationale of ordinal analyses—in comparison with the approaches mentioned
above—was recently described by a colleague in the following neat characteriza-
tion:

Something that makes specifically ordinal-theoretical proof-theoretical analyses of a theory
particularly convincing is that in many cases there is a big difference between the
metatheory and the object theory; whereas with normalisation proofs based on Tait-style
computability, or Girard-style ‘candidates’, the meta-theory is (more-or-less) the theory
itself together with a uniform reflection principle. Something would be far wrong if one
couldn’t prove a normalisation theorem for Church’s theory of types in such a metatheory;
but the extra confidence one gets in the principles formulated therein from a normalisation
theorem is tiny.

Let us close this section with the reference to some subprogrammes which grew
out of Gentzen-style proof theory and which reach out for Analysis.

In [23], Feferman gives a comprehensive survey on the “viable rationale” of
reductive proof theory, using examples of “pairs” of frameworks where the first
one is reduced to the second one. Whereas Hilbert’s original hope about the
pair hinfinitary, finitaryi is limited by Gödel’s incompleteness theorems and only
exemplified by reductions to PRA [23, 5.1], one can look at other pairs like
huncountable infinitary, countable infinitaryi [23, 5.2]; himpredicative, predicativei
[23, 5.3]; and hnon-constructive, constructivei [23, 5.4].42

39See [81, 82, 94, 108] for comprehensive presentations of the background of the respective
developments.
40See, for instance, [14] and [57] in this volume.
41This was exemplified, in particular, by Kripke-Platek set theory, cf. e.g., [56, 81].
42In the further course of the discussion, Feferman expresses some doubts about current advances
in ordinal analysis with respect to the given rationale [23, p. 80]:

Even if one succeeds in reducing the system .…1
2-CA/ ˙ BI to a constructive system

(whether evidently so or not), one can hardly expect that doing so will appreciably increase
one’s belief in its consistency (if one has any doubts about that in the first place) in view of
the difficulty of checking the extremely complicated technical work needed for its ordinal
analysis.
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Another successful subprogramme is Reverse Mathematics which looks for the
weakest natural subsystem of Analysis which proves a given mathematical theorem,
cf. [99].

Finally, we like to mention Applied Proof Theory, sometimes also promoted
under the name proof mining, which aims to extract additional mathematical
information from an in-depth analysis of proofs in formal systems, cf. [64].

For all these subprogrammes the consistency issue is clearly secondary. But they
all rely on the techniques which were developed to a large extent out of Gentzen’s
methods used for his consistency proofs.

5 The Quest for Consistency

It was in an informal conversation, years ago, that two distinguished proof theorists
repeatedly assured each other that, for modern proof theory, “consistency is not
the question.” As a matter of fact, the working mathematician considers ZFC,
Zermelo–Fraenkel set theory including the axiom of choice, being beyond doubt.43

Let’s have a look at Wiles’s proof of Fermat’s Last Theorem. As it stands, its
formalization seems to require ZFC C some Grothendieck Universes on top [74].
This is an outrageously strong system for a theorem which can be formulated in
Peano Arithmetic. But no Mathematician would raise a minimal doubt about Wiles’s
proofs because it makes use of such a strong theory.

As an expert in set theory, W. Hugh Woodin makes the following “prediction”
[119, p. 453]44:

In the next ten thousand years, there will be no discovery of an inconsistency
in these theories [referring to three equiconsistent theories, including ZFC C
“There exist infinitely many Woodin cardinals”].

And Gaisi Takeuti points out that we cannot even imagine any longer the original
concerns of Hilbert’s times, [120, p. 122]:

In the current day, axiomatic set theory is fully accepted and it is generally acknowledged
that modern mathematics can be carried out in the framework of axiomatic set theory. No
contradiction has arisen in axiomatic set theory, and a sense of security that no contradiction
will arise in it in the future is supported by intuitive consensus. Under the current secure
circumstances one cannot imagine the sense of crises of that earlier time.

43This is, admittedly, in sharp contrast to the early times of axiomatic set theory, where Poincaré,
for instance, expressed his doubts about Zermelo’s axiomatization of set theory in the following
words, cf. [43, p. 540]:

But even though he has closed his sheepfold carefully, I am not sure that he has not set the
wolf to mind the sheep.

44Of course, this prediction is embedded in a thorough discussion which gives arguments for this
claim. But one may note that Woodin speaks here about the discovery not about the existence of an
inconsistency.
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Feferman, taking up explicitly an anti-platonist position, puts the following
argument forward for the consistency of standard formal theories [23, p. 72]45:

I, for one, have absolutely no doubt that PA and even PA2 are consistent, and no genuine
doubt that ZF is consistent, and there seems to be hardly anyone who seriously entertains
such doubts. Some may defend a belief in the consistency of these systems by simply
pointing to the fact that no obvious inconsistencies are forthcoming in them, or that these
systems have been used heavily for a long time without leading to an inconsistency. [. . . ]
My own reason for believing in the consistency of these systems is quite different. Namely,
in the case of PA, we have an absolutely clear intuitive model in the natural numbers,
which in the case of PA2 is expanded through the notion of arbitrary subset of the natural
numbers. Finally, ZF has an intuitive model in the transfinite iteration of the power set
operation taken cumulatively. This has nothing to do with a belief in a platonic reality
whose members include the natural numbers and arbitrary sets of natural numbers, and so
on. On the contrary, I disbelieve in such entities. But I have as good a conception of what
arbitrary subsets of natural numbers are supposed to be like as I do of the basic notions
of Euclidean geometry, where I am invited to conceive of points, lines and planes as being
utterly fine, utterly straight, and utterly flat, resp.

With respect to the standard formal theories, used in Mathematics, one may also
cite Kreisel46:

The doubts about the consistency are more doubtful than the consistency itself.

There is even an ironic corollary to Gödel’s second incompleteness theorem with
respect to “proof obligations”: Gödel tells us that we cannot prove the (absolute)
consistency of a formal mathematical theory. However, if somebody believes that a
certain theory is inconsistent, (s)he would be committed to prove it, as this would
be, of course, always possible. And such a person needs to be reminded of a word of
Dedekind from 1887: “In science, what is provable should never be believed without
proof.”47 But for one who believes in the consistency of a theory, Dedekind does not
apply—thanks Gödel.

Thus, what should we think of these alleged threats of inconsistencies?
One might argue that the history of Mathematics is full of examples which one

may consider as inconsistencies.48 Mathematicians may apply a new concept in a
way which results in false theorems. The simple fact that the supposed theorem

45The argument for the intuitive model of ZF is compared with the situation for Quine’s New
Foundation where the lack of such an intuitive model gives reason to look for a (relative)
consistency proof.
46Conveyed by Girard in French [35, p. 525]: “Les doutes quant à la cohérence sont plus douteux
que la cohérence elle-même.”
47German original: “Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt
werden.” cited and translated in [20, p. 97].
48See, for instance, [12]: “Historically speaking, it is of course quite untrue that mathematics is free
from contradiction” and later “[Contradictions] occur in the daily work of every mathematician,
beginner or master of his craft, as the result of more or less easily detected mistakes, [. . . ]”
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is false implies that a proper formalization of the argument will show a formal
inconsistency. However, in most cases, the solution was never a problem: either the
argumentation was dismissed with invalid, or—a little bit more interesting—some
fundamental assumptions about a certain mathematical area were revised which
improved our understanding of the this area.

Euler, for instance, in his famous book on Algebra [21], calculated
p�1p�4 Dp

4 D 2, applying the “general law”
p
a
p
b D p

ab.49 Adding this last “law”
to the axioms of the field of complex numbers, of course, leads to an inconsistent
theory. Such cases are not of much interest because, typically, the wrong assumption
is easy to isolate and to separate from the part which will be kept after a
revision.

But there are some interesting examples of inconsistencies in the history of
Mathematics which transcend such simple instances and which deserve a closer
inspection:

• Cantor’s naive set theory;
• Frege’s Grundgesetze der Arithmetik, and subsequent foundational systems by

Curry, Church, Kreisel, and Martin-Löf;
• Reinhardt cardinals over ZFC.

Cantor’s naive set theory may be based on an unreflected comprehension
principle expressed in Cantor’s famous first characterization of the notion of
set50:

By a ‘set’ we understand every collection to a whole M of definite, well-differentiated
objects m of our intuition or our thought.

It was soon discovered that this characterization allows for inconsistent set
constructions like the set of all cardinals (Cantor 1897, letter to Hilbert [17,
letter 156]), the set of all sets (Cantor 1899, letter to Dedekind [17, letter
163]), or the set of all ordinals (Burali-Forti 1897 [113, pp. 104ff]). It is
worth noting that Cantor himself did not see any problem here, but took the
“paradoxes” just as reductio-ad-absurdum arguments of the inexistence of the
respective sets; in his correspondence with Hilbert he refines, therefore, his
notion of set by distinguishing it as “consistent multiplicities.”51 Thus, for
Cantor it was natural that the (in)consistency of a set construction is verified a

49This example is taken from [20, p. 59].
50German original: “Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten
wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ‘Ele-
mente’ von M genannt werden) zu einem Ganzen.” [16, p. 282]. The translation is from [44,
p. 33].
51In German: “consistente Vielheiten,” letter to Hilbert from May 5th, 1899, [17, letter 160]; as
“finished set” (“fertige Menge”) already in a letter from December 2nd, 1897, [17, p. 390].
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posteriori. Hilbert did not agree with such an approach and demanded an a priori
justification.52

In practical terms, this was done by Zermelo in his axiomatization of set theory
[121].53 On the theoretical side, one finds here one of the motivations for Hilbert
to propose consistency proofs for theories to ensure the meaningfulness of their
mathematical notions.54

Frege’s aim to give a logicist foundation of Mathematics in his Grundgesetze
der Arithmetik [29,30] was destroyed by Russell’s Paradox. It is generally assumed
that Frege’s Basic Law V is responsible for the collapse of the system, but one
may consider alternatives to resolve the problem.55 What is of interest for us, as a
lesson for the history of logic, is that Frege had some kind of justification of his
axioms (one might as well call them meaning explanations). The problem was,
that these were local justifications for the single axioms, but their combination
turns out to be impossible; but it explains at the same time why we can single out
different consistent and meaningful subsystems. The fate of Frege’s system raises
the question to which extent we can trust any philosophical justification programme
based on local justifications (or meaning explanations).56;57 What should provide

52In [47] he writes, [113, p. 131]:

G. Cantor sensed the contradiction just mentioned and expressed this awareness by
differentiating between “consistent” and “inconsistent” sets. But, since in my opinion he
does not provide a precise criterion for this distinction, I must characterize his conception
on this point as one that still leaves latitude for subjective judgment and therefore affords
no objective certainty.

In German (cited in [17, S. 436]): “G. Cantor hat den genannten Widerspruch empfunden
und diesem Empfinden dadurch Ausdruck verliehen, daß er ‘konsistente’ und ‘nichtkonsistente’
Mengen unterscheidet. Indem er aber meiner Meinung nach für diese Unterscheidung kein scharfes
Kriterium aufstellt, muß ich seine Auffassung über diesen Punkt als eine solche bezeichnen, die
dem subjektiven Ermessen noch Spielraum läßt und daher keine objektive Sicherheit gewährt.” An
even stronger statement against Cantor’s approach can be found in a lecture note from 1917, [48],
cf. [59, 60].
53Although this axiomatization has the flaw that its justification is extrinsic where philosophers
would prefer to have an intrinsic one, cf. e.g., the discussion in [73].
54One may note that Cantor’s criterion for a “finished set” also requires a consistency proof, but
somehow locally for the particular construction only. However, as far as we know, Cantor only
took note of the criterion in the negative cases, to dismiss a set construction when it was shown to
be inconsistent.
55For instance, Aczel’s Frege Structures, [3].
56The situation becomes philosophically even more doubtful when such a justification depends, in
addition, on the approval of a “Master”. In this respect, Lorenzen complained about Brouwer [70]:

Unfortunately, the explanation which Brouwer himself offers for this phenomenon [that
some Mathematicians consider the ‘tertium non datur’ as unreliable] is an esoteric issue:
only one who listened the Master himself understands him.

(German original: “Unglücklicherweise ist die Erklärung, die Brouwer selbst für dieses Phänomen
anbietet, eine esoterische Angelegenheit: nur, wer den Meister selber hörte, versteht ihn.”)
57A complementary view on this issue is given by Setzer [95] in this volume.
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the evidence for a consistent combination if not a global justification—like a
model—which, then, could also be used directly?

After Frege, there were four more prominent examples of inconsistent foun-
dational systems: Curry’s combinatory logic, Church’s original �-calculus (both
subject to the Kleene-Rosser paradox), Kreisel’s theory of constructions (subject
to the Kreisel-Goodman paradox), and Martin-Löf’s first type theory (subject to
Girard’s paradox). Although these systems represent three quite different
approaches, it appears to us that the problems for all arise from the philosophical
motivation rather than from a formal (logical) inaccuracy in the formalization.58

This suggests the conclusion that philosophical motivations are apparently more
dangerous for formal systems than pure mathematical motivations (as in the case of
ZFC, for instance).

With a Reinhardt cardinal in ZFC we have, however, a completely different
case of inconsistency. A Reinhardt cardinal is a certain large cardinal which was
proposed by William Nelson Reinhardt in his doctoral dissertation in 1967, and
shown to be inconsistent over ZFC by Kenneth Kunen in 1971. To get a glance of the
fate of this cardinal—including its role in the absence of the Axiom of Choice where
no inconsistency is known—one may consult [119, Sect. 20.3]; more information
can be found in [63, Sect. 23]. In a simplified way, one can say that large cardinals
constitute a branch of set theory which tries to settle the Continuum’s Hypothesis on
the basis of “new axioms.”59 It is a fascinating area which—despite in failing so far
to settle ultimately the question of the Continuum’s Hypothesis—produced a large
amount of interesting results. The inconsistency of the Reinhardt cardinal over ZFC
simply puts a bound on what one may add.

What is important for us here is that this inconsistency should not surprise one
particularly. Even less should it raise a minimal doubt about the consistency of
“ordinary reasoning” in Mathematics. To the contrary, large cardinal axioms are,
in some sense, designed to push our axiomatic set theories to its ultimate limit; and
the Reinhardt cardinals simply show that we went beyond this limit. As Kanamori
puts it [63, p. 324]: “ZFC rallies at last to force a veritable Götterdämmerung for
large cardinals!”

As upshot one can say that there is simply no serious threat of inconsistencies
in Mathematics, if one doesn’t approach intentionally its ultimate limits—or
overstretch philosophical demands.

Still, there is an issue of consistency for Analysis—and, a forteriori, for set
theory: the impredicative features might have just not been explored sufficiently to
find a possible contradiction. And the reason for it might be that Mathematics uses
only a very limited part of the formal theories, a part which resides in an innocent,
consistent subsystem; in fact, Reverse Mathematics gives us strong evidence for

58This claim can be substantiated by the fact that it was not possible for any of the systems to
modify it in a way that the original aims of the authors would be preserved.
59A thorough discussion of this issue can be found in [25].
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such a claim. It was Gentzen himself who expressed the general concern in 1938 as
follows, [102, p. 235]:60

Indeed, it seems not entirely unreasonable to me to suppose that contradictions might
possibly be concealed even in classical analysis. The fact that, so for, none have been dis-
covered means very little when we consider that, in practice, mathematicians always work
with a comparatively limited part of the logically possible complexities of mathematical
constructs.

Thus, after recalling his consistency proof for elementary number theory, he
came to the conclusion that “the most important [consistency] proof of all in
practice, that for analysis, is still outstanding” [102, p. 236].61

By pursuing such a consistency proof, modern proof theory developed genuine
techniques not only to achieve consistency results but also to analyze the fine
structure of formal theories relevant for the mathematical practice.62 In terms of
our comparison above, we may say that pursuing the quest for consistency, Gentzen
provided us with the tools to explore and to map the newly discovered land of
unlimited mathematical strength.
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