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XIX

Preface

Life sometimes takes one on a journey that is quite unanticipated. After graduation, I had dreams
of making the world a better place by becoming a forensic scientist. Three years later, life took me
down a different path. As a young process engineer the objective changed and I had to console
myself with trying to make the world a better place in a different way. Thus started an industrial
career in the refining of synthetic liquids.

The energy business is tremendously dependent on the crude oil price, which by all accounts
seems to be inherently unpredictable. The crude oil price holds the synthetic liquids industry to
ransom, as it fluctuates in response to many global forces. Today, coal-to-liquids and gas-to-liquids
are economical processes – tomorrow it may not be. So, it goes on and on, and has been going
on for many decades.

When an idealistic individual is confronted with the realities of the energy business and the
fickleness of decisions related to the continuous quest for power and money, it can become
frustrating. It is not possible to develop technology for the refining of synthetic liquids in phase
with the waxing and waning of the oil price. This in turn leads to inefficient refining practices
and creates false impressions about the refining of synthetic liquids. Research is not amenable
to the stop–start–stop–start cycles dictated by the economic fortunes of the synthetic liquids
industry. The wheel has been reinvented many times over, as know-how is lost in times when
indirect liquefaction is not economical.

This book is an attempt to present and preserve some of the thinking around the refining of
Fischer–Tropsch syncrude in the hope that it will help bridge the stop–start–stop–start interest
in indirect liquefaction by Fischer–Tropsch synthesis. There are no other works on this topic,
except for the occasional chapter in works on Fischer–Tropsch synthesis. The catalysis related to
Fischer–Tropsch refining has been discussed in a recent book by Ed Furimsky and myself that
is titled ‘‘Catalysis in the refining of Fischer–Tropsch syncrude.’’ There was a deliberate attempt
to avoid duplication of effort and overlap with the aforementioned work. This book focuses on
the application of catalysis, the processes, the refining technologies, and the refinery design
associated with Fischer–Tropsch syncrude.

During the writing of this book, some decisions had to be made. The book also had to deal with
shortcomings in the reported literature that could not be overcome by the author’s experience in
this field. The intent is not to apologize for these decisions and shortcomings but rather to make
the reader aware of them.

1) Throughout the book, the International Union of Pure and Applied Chemistry (IUPAC)
chemical nomenclature was employed. This may create a slightly unfamiliar feel for many
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readers from the industry and maybe even some readers from the academia. It is a common
occurrence to refer to paraffins (not alkanes) and olefins (not alkenes). Yet, having waded
through a fair bit of the older literature on Fischer–Tropsch in writing this book, one
appreciates the value of having a consistent nomenclature. It was too often necessary to
scrounge around to establish what compound or mixture has been described by a colloquial
term that had been in common use 80 years ago, but is quite unfamiliar at present. As
concession and in order to improve readability, commonly used trivial names and terms
were provided in brackets with the IUPAC nomenclature. In cases where the trivial name
is unambiguous and recognized in IUPAC nomenclature, the more familiar name was
adopted, for example, o-xylene instead of 1,2-dimethylbenzene.

2) In chemical structures, hydrogen atoms are not indicated unless it improves readability.
The symbol ‘‘R’’ denotes an alkyl group or hydrogen and the symbol ‘‘M’’ denotes a metal
atom.

3) The Système International d’Unités (SI units) were used, albeit with some exceptions.
Temperature is reported in degrees Celsius (◦C) and not Kelvin (K). The conversion from
degrees Celsius to Kelvin is easy, just add 273.15. Kinematic viscosity is reported in
centistokes (cSt) and not square meter per second (1 cSt = 1 × 10−6 m2·s−1 = 1 mm2·s−1).
Not all rates were converted to a per second basis and more familiar time periods were
employed for production capacities and flow rates. Since the topic of the book is on refining,
it also became clear that the unit of barrels per day (bbl/day) cannot be avoided (1 bbl =
0.158 987 3 m3).

4) In the chapters that discuss transportation fuel specifications, the measurement of fuel
properties mainly refers to the American Society for Testing and Materials (ASTM) standard
test methods. There are of course equivalent methods from the Institute of Petroleum (IP),
International Standards Organization (ISO), and various national institutes. Reference to
the one rather than the other implies no value judgment.

5) Transportation fuel specifications are country dependent and are ever changing. No
attempt was made to provide an anthology of global specifications, which would in any case
become outdated rather quickly. The European motor-gasoline (EN228:2004) and diesel fuel
(EN590:2004) specifications were selected as the basis for discussion, with reference to some
other specifications, including the World Wide Fuel Charter (WWFC). The same applies to
jet fuel, where the DEF-STAN 91-91 Issue 6 has been selected as the basis for discussion.
There is no implicit value judgment. The discussion focuses on the fundamentals and the
specifications are only illustrative in nature.

6) Refining consists of conversion and separation processes. In the book, there is a definite
bias toward conversion processes. This does not imply that separation is less important than
conversion, but in many instances the challenge in fuel refining is not efficient separation,
but efficient conversion. In petrochemical refining, the roles are sometimes reversed. The
bias toward conversion goes hand in hand with the focus.

7) The effort that has been expended in literature to correctly identify and quantify compounds
varies considerably. If some compounds or compound classes have not been mentioned
in conjunction with a specific topic, it does not necessarily imply that these compounds
were not present. In Fischer–Tropsch literature, the oxygenates and especially the aqueous
products tend to be ignored or are considered with less care than is bestowed on the organic
product. Where possible this bias was rectified, but this was not possible in all instances.



Preface XXI

8) The book ‘‘Catalysis in the refining of Fischer–Tropsch syncrude’’ contains an in-depth
discussion on the catalysis needed for the refining of Fischer–Tropsch syncrude. It also
contains a review of the patent literature on syncrude refining. References to patent
literature and catalysis literature have therefore been kept to a minimum. Nevertheless,
some discussion of catalysis in the context of refining could not be avoided, since it is
critical to the success of syncrude refining.

9) Although every effort has been made to provide a comprehensive discussion of refining,
this book is not a general text on oil refining. Process flow diagrams and schematics have
consequently not been provided for every technology, and there was a deliberate attempt not
to duplicate material readily available in reference texts on crude oil refining. Details related
to general issues, such as the pressure and energy balance over fluid catalytic cracking
units, were therefore not discussed unless it had a direct bearing on syncrude refining.

10) A number of sections were devoted to the relationship between crude oil refining, trans-
portation fuel specifications, and syncrude refining. Yet, the focus throughout was on
Fischer–Tropsch syncrude refining. It was assumed that the reader has at least a superficial
knowledge of the conversion processes employed in crude oil refining. If this is not the case,
the narrative will be somewhat more taxing to follow, but should still be understandable.

Edmonton, AB, Canada, December 2010 Arno de Klerk
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1
Fischer–Tropsch Facilities at a Glance

1.1
Introduction

Industrial Fischer–Tropsch facilities are currently only used for coal-to-liquid (CTL) and
gas-to-liquid (GTL) conversion. The purpose of such facilities is to convert solid or gaseous
carbon-based energy sources into products that may be used as fuels or chemicals. Although
Fischer–Tropsch synthesis lies at the heart of the conversion, it is actually only a small part
of the overall process. The process can be divided into three steps (Figure 1.1): feed-to-syngas
conversion, syngas-to-syncrude conversion, and syncrude-to-product conversion. Generically,
this is called indirect liquefaction, because the feed is first transformed into synthesis gas (syngas)
and the syngas is then transformed into products.

From Figure 1.1 it can be seen that the type of feed materials that can be converted in the first
step is not restricted to coal and natural gas. The conversion of biomass in a biomass-to-liquids
(BTLs) process and waste in a waste-to-liquids (WTLs) process can likewise be considered.
Collectively, all of these processes are referred to as feed-to-liquids (XTLs) conversion processes.
The raw feed material limits the technology selection for the feed-to-syngas conversion step, but
not for the subsequent steps. Once the feed has been converted into syngas, which is a mixture of
carbon monoxide (CO) and hydrogen (H2), the syngas can be conditioned to serve as feed for any
syngas-to-syncrude conversion technology. Fischer–Tropsch synthesis is not the only possible
technology for the conversion of syngas into a synthetic crude oil (syncrude), but together with
syngas-to-methanol conversion [1], Fischer–Tropsch synthesis is industrially the most relevant.

This book deals with the third step in Figure 1.1, namely, the refining of the syncrude into final
marketable products, and it specifically deals with the refining of Fischer–Tropsch syncrude as
the title suggests. Since methanol is also a product of Fischer–Tropsch synthesis, the refining of
methanol as syncrude component is covered too.

The representation in Figure 1.1 does not do justice to the complexity of indirect liquefaction.
Whole texts have been devoted to aspects of the indirect liquefaction process, such as coal
gasification [2, 3], Fischer–Tropsch technology [4–7], and the catalysis of Fischer–Tropsch
syncrude refining [8]. This chapter provides only an overview of Fischer–Tropsch facilities.
It shows how the component parts are linked together and why they are interdependent. In
subsequent chapters, each one of the topics is revisited in more depth, in order to present the detail
that is necessary to comprehensively deal with the topic of this book, namely, Fischer–Tropsch
refining.

Fischer–Tropsch Refining, First Edition. Arno de Klerk.
 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 Overall indirect liquefaction process for feed-to-liquids (XTL) conversion.

1.2
Feed-to-Syngas Conversion

Feed-to-syngas conversion is an energy-intensive operation and also the most expensive step in
indirect liquefaction. Many of the advantages that are related to the feed-to-syngas conversion step
do not depend on subsequent processing. It is these advantages that make indirect liquefaction
attractive, despite its poorer energy efficiency than direct liquefaction [9–11].

1) Feed diversity. One of the major advantages of indirect liquefaction over direct liquefaction
is the wide selection of feed materials that can be used. In addition to coal and natural gas,
it is possible to employ almost any other carbon source as feed material. The conversion of
biomass and waste are attractive concepts, since biomass represents a renewable source of
energy and waste conversion represents the beneficial reuse of discarded material. Waste
products that can be considered include domestic and industrial waste, for example, discarded
plastic containers, old tires, and asphalthenes from carbon rejection processes. However,
feed diversity is not the same as feed flexibility. The design of the feed-to-syngas conversion
step has to be based on a specific feed slate and it generally has little feed flexibility beyond
its designed range of feed compositions.

2) Mineral rejection. Indirect liquefaction has the inherent ability to process and separate
carbon matter from mineral matter in mineral-containing carbon sources. Oil shales, peat,
coal, and oil sands are all mineral-containing carbon sources. Such solid feed materials are
typically converted in gasifiers to produce syngas. Once the carbon in these carbon sources
has been oxidized to carbon monoxide, separation of the gaseous products from the mineral
matter is easily achieved. The physical state of the rejected mineral matter depends on the
gasification technology that was employed and it may be a dry ash or a slag.

3) Heteroatom removal. Carbon-containing feed material usually contains other elements in
addition to carbon and hydrogen. When the feed is converted into a raw synthesis gas,
heteroatoms in the feed are also converted into gaseous compounds, such as hydrogen
sulfide (H2S), carbonyl sulfide (COS), and ammonia (NH3). When the raw synthesis gas is
purified, these heteroatom-containing compounds are removed to produce a pure synthesis
gas, consisting of only carbon monoxide and hydrogen. With the exception of oxygen, all other
heteroatoms are therefore removed during syngas purification. The removal of heteroatoms
benefits the syncrude refinery, since the syncrude now only contains CxHyOz-compounds.
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1.2.1
Feed Logistics and Feed Preparation

It is convenient to look at the carbon-containing feed merely as a feed process stream. In the
case of natural gas feed that is already available from a pipeline supply, this may be a good
approximation, but it is an oversimplification in most other cases. The steps involved in obtaining
and preparing feed for indirect liquefaction are more complex (Figure 1.2).

The carbon source is not always concentrated, as it is in the case of a natural nonrenewable
resource such as coal. Biomass-derived feed is not concentrated at a single point of origin.
Biomass has a low energy density and the feed logistics involved in collecting and transporting
the biomass from its origin to the indirect liquefaction facility significantly adds to the cost and
complexity of the process. Feed pretreatment and logistics are generally costlier than the direct
operating cost of indirect liquefaction to produce Fischer–Tropsch syncrude. It can account for
up to a third of the total production cost of the whole facility [12].

For natural gas, the feed logistics may be a significant factor in deciding whether to invest in
indirect liquefaction or not. Natural gas can be directly distributed by pipeline as fuel gas, or it
can be compressed and distributed as liquefied natural gas (LNG).

All raw materials, including natural gas, require some form of feed pretreatment before they
are suitable for conversion into syngas. The nature of the pretreatment is directly linked to the
method of syngas production. It is prudent to select the syngas production technology with this
in mind, since feed pretreatment can be a significant cost component.

1.2.2
Syngas Production

All syngas production technologies involve some form of partial oxidation (Chapter 3). It is
convenient to consider the production of syngas from gaseous and solid carbon sources separately.
Irrespective of the feed, the syngas production technology must be compatible with the feed and it
should ideally be selected to meet the syngas requirements of the syngas-to-syncrude conversion
technology. As rule of thumb, one aims for a H2:CO ratio of around 2 in the syngas. The exact
H2:CO ratio that is required depends on the Fischer–Tropsch technology and the design of
Fischer–Tropsch gas loop. The H2:CO ratio can also be adjusted during syngas conditioning
(Section 1.2.3).
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Resource Recovery Transport Feed preparation
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Figure 1.2 Feed logistics and preparation for indirect liquefaction.
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Natural gas is already gaseous and it has no associated mineral matter to contend with. The two
main conversion technologies for feed-to-syngas conversion are steam reforming and adiabatic
oxidative reforming.

Steam reforming is the dominant process for hydrogen production in refineries, and it is
able to convert hydrocarbon feed materials ranging from natural gas to heavy naphtha. A
steam reformer is essentially a reactor that consists of a fired heater with catalyst-filled tubes
placed in the radiant zone of the fired heater. The heat needed for reforming, which is an
endothermic conversion, is externally supplied by burning a fuel in the fired heater. The feed
consists of a mixture of hydrocarbons and steam (H2O). The syngas thus produced has a high
H2:CO ratio; a H2:CO > 2 is typical. When syngas is prepared for Fischer–Tropsch synthesis,
steam can be partially substituted by carbon dioxide (CO2) to lower the H2:CO ratio in the
syngas [13].

Adiabatic oxidative reforming produces a syngas with a lower H2:CO ratio; a H2:CO ratio in
the range 1.6–1.9 is typical. The feed consists of a methane-rich hydrocarbon source, an oxidant
(air or oxygen), and, in some instances, steam. The heat needed for reforming is directly supplied
by combustion of part of the feed. This allows for a more compact design than a steam reformer.
However, in the case of oxygen-fired reformers, it has the disadvantage of requiring an associated
air separation unit (ASU), which is not required by a steam reformer.

Solid feed materials have to be gasified in order to produce syngas. Gasification processes can
be classified in terms of gas outlet temperature or reactor properties. These two classifications
go hand in hand (Table 1.1) [3].

Low-temperature gasification typically employs a moving bed and has a gas outlet temperature
of 425–650 ◦C. The carbon-containing feed is fed from the top and the oxidizing gas is fed
at the bottom. In this countercurrent flow arrangement, the hot ash at the bottom of the bed
preheats the oxidizing gas before it enters the gasification zone. Gasification takes place in the
middle of the bed. As the hot syngas produced in the gasification zone moves upward through
the bed, it preheats and devolatilizes the carbon-containing feed at the top of the bed. Much of
the heat recovery therefore takes place in the gasifier. Owing to the lower temperature in the
top layer of the gasifier, pyrolysis liquids are coproduced during low-temperature gasification.
This is an important distinguishing feature of low-temperature gasification that has implications
for downstream refining. The refinery receives not only syncrude from the syngas-to-syncrude

Table 1.1 Classification of gasification technologies for feed-to-syngas conversion and their main attributes.

Attribute Gasification technology

Low temperature Medium temperature High temperature

Temperature of syngas (◦C) 425–650 900–1050 1250–1600
Reactor technology Moving bed Fluidized bed Entrained flow
Particle size of feed (mm) 6–50 6–10 <0.1
Oxidant demand Low Moderate High
Steam demand High Moderate Low
Pyrolysis products in gas Yes Possibly No
H2:CO ratio in syngas >2 : 1 to <1 : 1 <1 : 1 ∼1 : 2


