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Introduction

Bruno Benedetti, Emanuele Delucchi, and Luca Moci

Combinatorics and discrete geometry have been studied since the beginning of
mathematics. Yet it is only in the last 50 years that combinatorics has flourished,
with striking structural developments and a growing field of applications. Part of
the reason for this blossoming may lie in the startling developments of computer
science, which have taught us to look at mathematics with algorithmic eyes.

Moreover, many new connections between combinatorics and classical areas of
mathematics, such as algebra and geometry, have emerged since the 70s. With no
claim of completeness, let us provide (without references) five examples.

Hyperplane Arrangements A finite collection of linear one-codimensional sub-
spaces in a complex vector space V is called an arrangement of hyperplanes. The
intersection pattern of these hyperplanes gives rise to a rich combinatorial structure
(see below under “Matroid”) bearing a subtle relationship with the topology of
the space obtained by removing the hyperplanes from V. Classical objects such
as configuration spaces arise as special instances of these spaces which, in general,
enjoy some nice topological properties—for instance, they are minimal (e.g., they
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2 B. Benedetti et al.

have the homotopy type of CW complexes where, in every dimension, the number
of cells equals the rank of the homology).

From the point of view of algebraic geometry, an arrangement is defined by
a product p(z) of degree-one homogeneous polynomials. One of the main topics
of current research in this field is the study of the Milnor fiber p~'(1) of the
arrangement.

Coxeter Groups A Coxeter group W is any group presented as

(Sl, vy Sy I §iSjSi ... = SjSﬂj...)
N—— ——
mjj terms mjj terms
withm; = 1and 2 < my < oo forall i # j, where 1 < i,j < n and m;; = oo means

that no condition on s;s; is imposed. Symmetric groups and dihedral groups are of
this type: indeed, the name of these groups reveals their origin in the study of regular
polytopes by H.S.M. Coxeter. The combinatorics of Coxeter groups is very rich
and deeply connected with the representation theory of Lie algebras, the algebraic
geometry of flag varieties, and the topology of (real) reflection arrangements. With
every pair of elements in W one can associate a Kazhdan-Lusztig polynomial. The
coefficients of these polynomials are non-negative, and (when W is finite) they can
be expressed in terms of the intersection cohomology Schubert varieties.

Removing the restriction m; = 1 from the presentation of a Coxeter group, we
obtain the associated Artin group. A theorem of Deligne shows that the orbit space
of the action of a finite-type Coxeter group on the complement of the hyperplane
arrangement defined by (the complexification of) its reflection hyperplanes is a
classifying space for the associated Artin group.

Matroids Matroids are certain types of set systems whose study was initiated by H.
Whitney in the 1930s as an abstract common generalization of properties of linear
algebra and graph theory. One possible definition is the following. A matroid on a
finite set E is a nonempty collection ‘B of subsets of E such that the exchange axiom
holds:

e If A,B € B, for any a € A \ B there exists an element b € B\ A such that
A\ {a} U {b}isin B.

The elements of B are called bases, and from this definition the connection to
linear algebra should be apparent: if E is any finite subset of a K-vector space V,
the maximal linearly independent subsets of E form a matroid, which in this case
is said to be realizable over K. However, not all matroids arise in this way: some
matroids are realizable only over some field, and some are not realizable over any
field. Characterization of realizability is one of the main areas of research in matroid
theory. The connection with graphs is as follows: if E is the edge set of a connected
graph, the set of all edge sets of spanning trees satisfies the above definition and thus
forms a matroid on E.

The interplay of matroid theory with algebraic geometry and commutative
algebra has undergone thriving development in recent years, one of the main bridges
being the language of tropical geometry.
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Stanley—Reisner Ideals Let A be a simplicial complex on n vertices. The Stanley—
Reisner ideal I is defined by

InE () i:igF).

F facet of A

Since the ideals on the right-hand side are monomial and prime, /A is monomial
and radical. The uniqueness of prime decompositions of ideals implies that I
determines A uniquely. Interestingly, every radical monomial ideal [ is of the form
I for a suitable complex A. This shows that there is a one-to-one correspondence
between simplicial complexes (on n vertices) and radical monomial ideals (in
n variables)—they are thus essentially the same thing. This allows transfer of
properties back and forth between the two worlds: for example, one can characterize
topologically the simplicial complexes A for which the ring S/In is Cohen—
Macaulay. A well studied combinatorial property implying Cohen—Macaulayness
is, for example, shellability.

Face Vectors of Polytopes Given a simplicial complex A, we denote by f; the
number of i-dimensional faces; by convention f_; = 1. The f-vector of C is
the vector (f—1,fo, . ..,fa). The h-vector (ho, ..., hy) is defined by the polynomial
equality

d d
D ohxT =i (x - 14
i=0

i=0

A natural question is: What integer vectors can arise as f-vectors of triangulated
spheres?

When the sphere is the boundary of a polytope, the question was settled by the so-
called g-theorem, proved by Billera-Lee and by Stanley in 1979 using commutative
algebra and toric varieties and thereby giving a new stimulus to these fields. In the
general case, progress was made by S. Murai, who in 2007 proved that a large family
of shellable spheres, most of which are non-polytopal, satisfies the “Hard Lefschetz
property”, proved by Stanley for polytopes as a crucial step in his contribution to
the g-theorem.

A consequence of the g-theorem is that A-numbers form a unimodal sequence,
ie,hy < h < ... < hyp = ... = hg Recently, Murai and Nevo proved the
generalized lower bound conjecture, which claims the following: if in the h-vector
of a d-polytope P one sees hy—; = hy for some k < d/2, then there is a triangulation
of P without simplices of dimension < d — k.

The present volume arises from a workshop on these interactions that was
especially devoted to promoting outstanding young researchers. This INdAM Con-
ference, entitled “Combinatorial Methods in Topology and Algebra” (or CoMeTA
for short) took place in Cortona in September 2013. The detailed program of the
conference is available at the website www.cometa2013.org.


www.cometa2013.org

B. Benedetti et al.

About this Book

In the first part we have collected short surveys, which may be viewed as written
and expanded versions of the talks given by the various speakers. Since the quality
level of the lectures was very high, we believe that the inclusion of such material
may be of great help for future studies. These surveys cover various topics:

@
(i1)
(iii)
@v)
v)
(vi)

(vii)

Hyperplane arrangements.

Matroids.

Polytopes and geometric combinatorics.

f-vectors of cellular complexes and triangulations.
Combinatorial commutative algebra.

Coxeter groups and Kazhdan—Lusztig and Eulerian polynomials.

Combinatorial approaches to physics and analysis.
The second part consists of three peer-reviewed full research papers.
The first sheds new light on positive sum systems. If xi, . . . , x, are real numbers
summing to zero, consider the family P™ of all subsets J C [n] := {1,2,...,n}

such that ) jes % > 0. Bjorner proves that the order complex of Pt viewed
as a poset under set containment, triangulates a shellable ball, whose f-
vector depends only on n, and whose A-polynomial is the classical Eulerian
polynomial.

The second investigates an unexpected action by the group S,,+; on the minimal
projective De Concini—Procesi model associated to the braid arrangements
of type A,—1. The action naturally arises from the fact that this model is
isomorphic to the moduli space M, of genus 0 stable curves with n + 1
marked points.

The third contribution focuses on Stanley’s 1977 conjecture that the h-vectors
of matroids are pure O-sequences. The conjecture is shown to hold in a few
special cases, for example when the Cohen-Macaulay type is less than or equal
to 3.



Part I



Extremal Graph Theory and Face Numbers
of Flag Triangulations of Manifolds

Michal Adamaszek

Abstract We indicate how tools of extremal graph theory, mainly the stability
method for Turdn graphs, can be applied to derive upper bounds for face numbers
of flag triangulations of spheres and manifolds.

1 Introduction

If G = (V, E) is an arbitrary simple, finite, undirected graph, we denote by C1(G) the
clique complex of G, which is a simplicial complex defined as follows. The vertices
of CI(G) are the vertices of G and the faces of CI(G) are those vertex sets which
induce a clique (a complete subgraph) of G. The simplicial complexes which arise
in this way are also known as flag complexes. This family includes for instance order
complexes of posets and it appears in Gromov’s theory of non-positive simplicial
curvature [3].

A typical problem studied in enumerative combinatorics is to describe
the f-vectors of interesting families of simplicial complexes. The f-vector
(fo(K), ...,fs(K)) of a d-dimensional complex K has as its ith entry, f;(K), the
number of i-dimensional faces of K. The full classification of f-vectors of all
flag complexes is probably impossible, although they are known to satisfy a
number of non-trivial constraints [6]. We study this problem for the family of
flag complexes which triangulate spheres and, more generally, homology manifolds
and pseudomanifolds.

Note that G is the 1-skeleton of CI(G). If we denote by c¢;(G) the number of
cliques of cardinality i in G, then f;(C1(G)) = c¢;+1(G), in particular fo(Cl(G)) =
|[V(G)| and f;(CI(G)) = |E(G)|. Our problem is thus equivalent to asking for
the relations between clique numbers of graphs which satisfy some topological
hypotheses.

M. Adamaszek (D<)
Fachbereich Mathematik, Universitdt Bremen, Bibliothekstrae 1, 28359 Bremen, Germany
e-mail: aszek @mimuw.edu.pl
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8 M. Adamaszek
2 Upper Bounds

Let K(n,s) denote the n-vertex balanced complete s-partite graph. It is uniquely
determined by the requirement that the vertices can be split into s parts of sizes | %]
or [ ] each, with all possible edges between the parts and no edges within any part
(see Fig. 1). By Turdn’s theorem this graph maximizes the number of edges among
n-vertex graphs G which satisfy c¢;41(G) = 0.

Now let J(n, s) be defined in the same way, except that we require each of the
s parts to induce a cycle. We call this graph the join of s cycles of (almost) equal
lengths. Note that C1(J(n, s)) is homeomorphic to the sphere $~! (it is a topological
join of s copies of S'). The meta-statement we wish to advertise is that, provided n
is large enough, J(n, s) maximizes the number of edges among n-vertex graphs G
for which CI1(G) is manifold-like in any reasonable sense.

More precisely, in [1] we show the following upper bound.

Theorem 1 Let G be a graph with n vertices such that C1(G) is a weak pseudoman-
ifold of odd dimension d = 2s — 1, which satisfies the middle Dehn-Sommerville
equation. If n is sufficiently large then we have

s —

|E(G)| < s1n2 +n (=~ |EU(n,s)]).

In particular, the conclusion holds when CI(G) is a (2s — 1)-dimensional homology
manifold.

If d = 3 and CI(G) is a homology 3-manifold the same bound was shown to hold
for all n in [7]. A simplicial complex of dimension d is a weak pseudomanifold if
every (d — 1)-dimensional face belongs to exactly two facets. The graph G which
achieves the upper bound of the theorem is J(n, s). Moreover, one can expect this
extremum to be stable, in the sense that the graphs for which |E(G)]| is close enough
to the upper bound will be similar to J(n, s). In [2] this was shown in dimension
d = 3 in the form of the next theorem, which also contributes to the classification
problem for f-vectors of flag 3-spheres.

Theorem 2 Suppose G is a graph with n vertices such that CI(G) is a 3-
dimensional homology manifold and

1 1 17 1

If n is sufficiently large then G is a join of two cycles of lengths %n + 0(/n).
Fig. 1 Illustration for the

definition of K (n, s) (left) and
J(n, s) (right)
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By Zykov’s extension of Turan’s theorem the graph K(n, s) maximizes not only
the number of edges, but in fact all clique numbers ¢2(G), ..., ¢;(G) among graphs
G with n vertices and ¢;41(G) = 0. It is likely that the methods used for Theorems 1
and 2 can be extended to prove an analogous statement about maximality of higher
face numbers of Cl(J(n,s)). At the time of writing it appears that the following
conjecture (also stated in [8]) can be turned into a theorem.

Conjecture 3 1If G is a graph with n vertices such that CI(G) is a homology manifold
of odd dimension d = 25 — 1 and n is sufficiently large, then

a(G) = a(J(n,s))

foralll <k <s.

3 Proofs

The technique we use to study dense flag manifold triangulations was developed in
[2]. It relies on the similarity between the graphs K(n, s) and J(n, s) coupled with
the special role played by Turan’s graphs K (n, s) in extremal graph theory. A typical
application of this technique goes along the following lines.

1. Suppose G is a graph with n vertices such that C1(G) is a homology manifold of
dimension d = 2s — 1. In the first step we use the middle Dehn-Sommerville
equation for CI(G) to conclude that c¢;4+(G) is a linear combination of the
numbers 1, ¢1(G), ..., ¢;(G). In particular ¢;41(G) = O(n°).

2. Now assume that G is as dense as K (n, 5), i.e. it has approximately %nz or more
edges. In a “typical” or “random” graph with this edge density a constant fraction
of (s + 1)-tuples of vertices would span a clique. However, G has much fewer
(s+ 1)-cliques, namely just O(n®). This has a consequence for the structure of G,
which must be “similar” to K(n, s), meaning that it can be obtained from K (n, s)
by adding or removing a relatively small number of edges (which can be o(n?) or
even O(n) depending on the specific problem). This step is known as the stability
method in extremal graph theory, its origins going back to [5].

3. A graph which is similar to K(n,s) is also similar to J(n,s). The additional
geometric properties of CI(G), such as being a pseudomanifold or having
homology spheres as face links, provide extra restrictions on the structure of G.
They can now be used to rigidify G and conclude that it must be a join of cycles.

Let us mention that in the even dimensions d = 2s this strategy is complicated
by the fact that the extremal examples are (conjecturally) highly non-unique: one
can take a join of s — 1 cycles with an arbitrary flag triangulation of S2.
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4 Conclusion

Much more is conjectured, than known, about the f-vectors of flag triangulations of
spheres. In dimensions d = 1 and d = 2 they are easy to describe. In dimension
d = 3 they can be classified up to, possibly, a finite number of exceptions, by the
combined results of [2, 4, 7, 9]. The classification will be complete if Theorem 2
holds for all values of n, not just for sufficiently large ones. Note that already for
d = 3 the classification relies on the deep result of Davis and Okun [4], namely
the three-dimensional Charney-Davis conjecture. Full classification is available in
dimension d = 4 (see [9]). In higher dimensions the only non-trivial restrictions
known to hold are the upper bounds of Theorem 1. For more conjectures in this area
see [7, 10].
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Combinatorial Stratifications and Minimality
of Two-Arrangements

Karim A. Adiprasito

Abstract I present a result according to which the complement of any affine 2-
arrangement in R? is minimal, that is, it is homotopy equivalent to a cell complex
with as many i-cells as its ith Betti number. To this end, we prove that the
Bjorner—Ziegler complement complexes, induced by combinatorial stratifications
of any essential 2-arrangement, admit perfect discrete Morse functions. This result
extend previous work by Falk, Dimca-Papadima, Hattori, Randell, and Salvetti—
Settepanella, among others.

A c-arrangement is a finite collection of distinct affine subspaces of RY, all of
codimension ¢, with the property that the codimension of the non-empty intersection
of any subset of 2 is a multiple of c. For example, after identifying C with R?, any
collection of hyperplanes in C“ can be viewed as a 2-arrangement in R>. However,
not all two-arrangements arise this way, cf. [10, Sect. III, 5.2] and [22]. In this paper,
we study the complement ¢ := R¢\2 of any 2-arrangement 2 in R¢.

Subspace arrangements 2 and their complements 2(° have been extensively
studied in several areas of mathematics. Thanks to the work by Goresky and
MacPherson [10], the homology of 2° is well understood; it is determined by
the intersection poset of the arrangement, which is the set of all nonempty
intersections of its elements, ordered by reverse inclusion. In fact, the intersection
poset determines even the homotopy type of the compactification of 2 [23]. On
the other hand, it does not determine the homotopy type of the complement of 2(°,
even if we restrict ourselves to complex hyperplane arrangements [3, 16, 17], and
understanding the homotopy type of 2(¢ remains challenging.

A standard approach to study the homotopy type of a topological space X is to
find a model for it, that is, a CW complex homotopy equivalent to it. By cellular
homology any model of a space X must use at least §;(X) i-cells for each i, where
Bi is the ith (rational) Betti number. A natural question arises: Is the complement of
an arrangement minimal, i.e., does it have a model with exactly B;(X) i-cells for all
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12 K.A. Adiprasito

i? Studying minimality is not without its motivations; it appears, for instance, in the
study of abelian covers of X [14].

Building on previous work by Hattori [12], Falk [8], and Cohen—Suciu [6],
around 2000 Dimca—Papadima [7] and Randell [15] independently showed that the
complement of any complex hyperplane arrangement is a minimal space. Roughly
speaking, the idea is to consider the distance to a complex hyperplane in general
position as a Morse function on the Milnor fiber to establish a Lefschetz-type
hyperplane theorem for the complement of the arrangement. An elegant inductive
argument completes their proof.

On the other hand, the complement of an arbitrary subspace arrangement is, in
general, not minimal. In fact, complements of subspace arrangements might have
arbitrary torsion in cohomology (cf. [10, Sect. III, Theorem. A]). This naturally leads
to the following question:

Problem 1 (Minimality) Is the complement 2(° of every c-arrangement 2 mini-
mal?

The interesting case is ¢ = 2. In fact, if ¢ is not 2, the complements of c-
arrangements, and even c-arrangements of pseudospheres (cf. [5, Sects. 8 and 9]),
are easily shown to be minimal. In 2007, Salvetti—Settepanella [19] proposed a
combinatorial approach to Problem 1, based on Forman’s discretization of Morse
theory [9]. Discrete Morse functions are defined on regular CW complexes rather
than on manifolds; instead of critical points, they have combinatorially-defined
critical faces. Any discrete Morse function with ¢; critical i-faces on a complex
C yields a model for C with exactly ¢; i-cells. Salvetti—Settepanella studied
discrete Morse functions on the Salvetti complexes [18], which are models for
complements of complexified real arrangements. Remarkably, they found that all
Salvetti complexes admit perfect discrete Morse functions, that is, functions with
exactly B;(2°) critical i-faces. Formans’s Theorem now yields the desired minimal
models for 2A°.

This tactic does not extend to the generality of complex hyperplane arrange-
ments. However, models for complex arrangements, and even for c-arrangements,
have been introduced and studied by Bjorner and Ziegler [5]. In the case of
complexified-real arrangements, their models contain the Salvetti complex as
a special case. While our notion of the combinatorial stratification is slightly
more restrictive than Bjorner—Ziegler’s, it still includes most of the combinatorial
stratifications studied in [5]. For example, we still recover the s'V-stratification
which gives rise to the Salvetti complex. With these tools at hand, we can tackle
Problem 1 combinatorially:

Problem 2 (Optimality of Classical Models) Are there perfect discrete Morse
functions on the Bjorner—Ziegler models for the complements of arbitrary two-
arrangements?

We are motivated by the fact that discrete Morse theory provides a simple
yet powerful tool to study stratified spaces. On the other hand, there are several



Combinatorial Stratifications and Minimality of Two-Arrangements 13

difficulties to overcome. In fact, Problem 2 is more ambitious than Problem 1 in
many respects:

e Few regular CW complexes, even among the minimal ones, admit perfect
discrete Morse functions. For example, many 3-balls [4] and many contractible
2-complexes [21] are not collapsible.

e There are few results in the literature predicting the existence of perfect Morse
functions. For example, it is not known whether any subdivision of the 4-simplex
is collapsible, cf. [13, Problem. 5.5].

* Solving Problem 2 could help in obtaining a more explicit picture of the
attaching maps for the minimal model; compare Salvetti—Settepanella [19] and
Yoshinaga [20].

We answer both problems in the affirmative.

Theorem 3 ([1]) Any complement complex of any 2-arrangement 2 in S¢ or R?
admits a perfect discrete Morse function.

Corollary 4 ([1]) The complement of any affine 2-arrangement in R? and the
complement of any 2-arrangement in 8%, is a minimal space.

A crucial step on the way to the proof of Theorem 3 is the proof of a Lefschetz-
type hyperplane theorem for the complements of two-arrangements. The lemma we
actually need is a bit technical, but roughly speaking, the result can be phrased in
the following way:

Theorem 5 ([1]) Let 2A° denote the complement of any affine 2-arrangement 2l in
RY, and let H be any hyperplane in R? in general position with respect to . Then
¢ is homotopy equivalent to H N AC with finitely many e-cells attached, where

e=[42] =d—|92].

An analogous theorem holds for complements of c-arrangements (¢ # 2, with
e = d — |9/c]); it is an immediate consequence of the analogue of Corollary 4
for c-arrangements, ¢ # 2. Theorem 5 extends a result on complex hyperplane
arrangements, which follows the classical Lefschetz theorem, applied to the Milnor
fiber [7, 11, 15]. The main ingredients to our study are:

* The formula to compute the homology of subspace arrangements in terms of the
intersection lattice, due to Goresky and MacPherson [10].

* The study of combinatorial stratifications as initiated by Bjorner and Ziegler [5].

* The study of the collapsibility of complexes whose geometric realizations satisfy
certain geometric constraints, as discussed previous work of Benedetti and
Adiprasito, cf. [2].

* The idea of Alexander duality for Morse functions, in particular the elementary
notion of “out-j collapse”.

* The notion of (Poincaré) duality of discrete Morse functions, which goes back
to Forman [9]. This is used to establish discrete Morse functions on complement
complexes.
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Random Triangular Groups

Sylwia Antoniuk, Tomasz FL.uczak, and Jacek Swigtkowski

Abstract Let (S|R) denote a group presentation, where S is a set of n generators
while R is a set of relations consisting of distinct cyclically reduced words of
length three. The above presentation is called a triangular group presentation and
the group it generates is called a triangular group. We study the following model
I'(n, p) of a random triangular group. The set of relations R in I'(n, p) is chosen
randomly, namely every relation is present in R independently with probability p.
We study how certain properties of a random group I'(n, p) change with respect to
the probability p. In particular, we show that there exist constants ¢, C > 0 such that
if p < -5, then a.a.s. a random group I'(n, p) is a free group and if p > Cl(;%", then
a.a.s. this group has Kazhdan’s property (T). What is more interesting, we show that
there exist constants ¢/, C’ > 0 such that if % <p<c 1(;%", then a.a.s. a random
group I'(n, p) is neither free, nor has Kazhdan’s property (T). We prove the above

statements using random graphs and random hypergraphs.

The notion of a random group goes back to Gromov [3], who studied groups given
by random group presentations. Let (S|R) denote a group presentation with a set of
generators S and a set of relations R consisting of distinct cyclically reduced words
of length three, that is R consists of words of the form abc, where a,b,c € S U s1
anda # b~',b # ¢!, c # a~'. The above presentation is called a triangular group
presentation and the group it generates is called a triangular group.

The subject of our interest is the following model of a random triangular group.

Definition 1 Let I'(#, p) denote a model of a random triangular group given by a
random group presentation (S|R) with n generators, in which the set of relations R
is chosen randomly in the following way: each cyclically reduced word of length
three over the alphabet S U S~! is present in R independently with probability p.

S. Antoniuk (<))  T. Luczak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska
87, 61-614 Poznan, Poland

e-mail: antoniuk@amu.edu.pl; tomasz@amu.edu.pl

J. Swiatkowski
Instytut Matematyczny, Uniwersytet Wroctawski, pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland
e-mail: swiatkow @math.uni.wroc.pl

© Springer International Publishing Switzerland 2015 15
B. Benedetti et al. (eds.), Combinatorial Methods in Topology and Algebra,
Springer INAAM Series 12, DOI 10.1007/978-3-319-20155-9_4


mailto:antoniuk@amu.edu.pl
mailto:tomasz@amu.edu.pl
mailto:swiatkow@math.uni.wroc.pl

16 S. Antoniuk et al.

We are especially interested in the asymptotic properties of groups in the I'(n, p)
model. In particular, we say that the random group I'(n,p), where p = p(n) is
some function of n, has a given property asymptotically almost surely (a.a.s.), if the
probability that I (, p) has this property tends to 1 as n — oco.

In [4] Zuk investigated threshold functions for specific and important properties
of random triangular groups, such as Kazhdan’s property (T), the property of being
a free group or the property of being a trivial group. However, we should mention
that Zuk studied a slightly different model of a random triangular group in which,
rather than picking every relation independently, we choose uniformly at random the
whole set of relations R among all the sets of prescribed size. Zuk’s results stated
for the I'(n, p) model read as follows.

Theorem 2 (Zuk [4]) Let € > 0.

1. Ifp < n=>¢, then a.a.s. T'(n, p) is a free group.

2. If n72*¢ < p < n327¢ then a.a.s. T'(n,p) is infinite, hyperbolic and has
Kazhdan’s property (T).

3. Ifp > n=3/%%¢ then a.a.s. T (n, p) is trivial.

In our work we managed to determine threshold functions more precisely than

just up to the n° factor. Our main results are captured in the following two
theorems.

Theorem 3 (Antoniuk et al. [2])
There exist constants ¢, c’, C,C' > 0, such that:

1. Ifp < 5, thena.a.s I'(n,p) is a free group.

2. If% <p< C/:;g", then a.a.s. T (n, p) is neither free, nor has Kazhdan’s property
(T).

3. Ifp> %, then a.a.s. I'(n, p) has Kazhdan’s property (T).

Here, it is worth mentioning that we managed not only to improve bounds on the
critical probability, but what is more interesting, we discovered a new period in the
evolution of a random triangular group, in which a.a.s. this group is neither free, nor
has Kazhdan’s property (T).

Theorem 4 (Antoniuk et al. [1]) There exists a constant C > 0, such that for
p > Cn=? a.as. T(n,p) is trivial.

The proof of the first part of Theorem 3 relies on the fact that if p is small
enough, then the expected number of relations in a random presentation (S|R) is also
small and therefore we can find a generator a € S such that a and a™! are present
in at most one relation. Consequently, using Tietze movements we can eliminate
generators from presentation one by one obtaining in the end a presentation without
any relations.

For the second part of the proof of Theorem 3 we use the fact that if p > ;—;
for sufficiently large constant ¢’ > 0, the presentation complex Cp of a random
presentation (S|R) is a.a.s. aspherical and therefore it is the classifying space for



