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Preface to the Wiley Series on

Electrocatalysis and

Electrochemistry

This series covers recent advances in electrocatalysis and

electrochemistry and depicts prospects for their contribution

into the present and future of the industrial world. It aims to

illustrate the transition of electrochemical sciences from its

beginnings as a solid chapter of physical chemistry

(covering mainly electron transfer reactions, concepts of

electrode potentials, and structure of electrical double layer)

to the field in which electrochemical reactivity is shown as a

unique chapter of heterogeneous catalysis, is supported by

high-level theory, connects to other areas of science, and

includes focus on electrode surface structure, reaction

environment, and interfacial spectroscopy.

The scope of this series ranges from electrocatalysis

(practice, theory, relevance to fuel cell science and

technology) to electrochemical charge transfer reactions,

biocatalysis, and photoelectrochemistry. While individual

volumes may appear quite diverse, the series promises

updated and overall synergistic reports providing insights to

help further our understanding of the properties of

electrified solid–liquid systems. Readers of the series will

also find strong reference to theoretical approaches for

predicting electrocatalytic reactivity by such high-level

theories as density functional theory. Beyond the theoretical

perspective, further vehicles for growth are such significant

topics such as energy storage, syntheses of catalytic

materials via rational design, nanometer-scale technologies,

prospects in electrosynthesis, new instrumentation, and

surface modifications. In this context, the reader will notice



that new methods being developed for one field may be

readily adapted for application in another.

Electrochemistry and electrocatalysis have both benefited

from numerous monographs and review articles due to their

depth, complexity, and relevance to the practical world. The

Wiley Series on Electrocatalysis and Electrochemistry is

dedicated to present the current activity by focusing each

volume on a specific topic that is timely and promising in

terms of its potential toward useful science and technology.

The chapters in these volumes will also demonstrate the

connection of electrochemistry to other disciplines beyond

chemistry and chemical engineering, such as physics,

quantum mechanics, surface science, and biology. The

integral goal is to offer a broad-based analysis of the total

development of the fields. The progress of the series will

provide a global definition of what electrocatalysis and

electrochemistry are now, and will contain projections about

how these fields will further evolve in time. The purpose is

twofold, to provide a modern reference for graduate

instruction and for active researchers in the two disciplines,

as well as to document that electrocatalysis and

electrochemistry are dynamic fields that are expanding

rapidly, and are likewise rapidly changing in their scientific

profiles and potential.

Creation of each volume required the editors involvement,

vision, enthusiasm, and time. The Series Editor thanks each

Volume Editor who graciously accepted his invitation.

Special thanks go to Ms. Anita Lekhwani, the Series

Acquisitions Editor, who extended the invitation to edit this

series to me and has been a wonderful help in its

assembling process.

ANDRZEJ WIECKOWSKI

Series Editor



Foreword

Despite extensive efforts, the electrochemical interface,

where central processes in electrochemical reactions occur,

had long been a black box until researchers started to shed

light on it in the 1960s. At the beginning, the light used was

mostly that in the visible region, but information obtainable

by visible light was very limited, and the use of vibrational

spectroscopy, which can provide detailed information on

molecules, was strongly desired. In 1974, an innovation was

made in spectroelectrochemistry by the application of

Raman spectroscopy. It is well known that the Raman study

of pyridine adsorbed on silver electrodes led to the

discovery of surface-enhanced Raman scattering (SERS).

The application of infrared reflection absorption

spectroscopy (IRAS) to electrochemical interfaces in 1980

also was a great achievement. Surface-enhanced infrared

absorption (SEIRA), an effect similar to SERS, was

discovered in the same year, and the first observation of

sum frequency generation (SFG) from monolayers on solid

surfaces was made in 1986, although their applications to

electrochemical interfaces were somewhat delayed. During

the last four decades, these surface vibrational

spectroscopy techniques have been advanced greatly owing

to the improvement in instrumentation and the

development of experimental techniques, which are still

further developing year by year.

Vibrational spectroscopy is a powerful tool to identify

molecules and to study their structures and reactions, as it

is often mentioned that vibrational spectra are letters from

molecules. It is also the case at surfaces and interfaces. It

provides us information on adsorbed structures and

orientations of molecules. Spectra are sensitive to changes



in the environment at interfaces, from which we can obtain

deeper insight into chemistry and physics at the interfaces.

In situ, time-resolved monitoring of reactions taking place at

surfaces and interfaces is also possible. Owing to these

advantages, they have gained wide application, from

fundamental electrochemistry to many other related fields

of science and technology, including surface science,

heterogeneous electrocatalysis, energy conversion,

biochemistry, nanotechnology, and sensors. However, each

technique has strong and weak points. Difficulty in

interpretation of the obtained spectra is another problem.

For appropriate use of the techniques and for correct

interpretation of spectra, sufficient fundamental

understanding of the techniques is required.

This book, which features all the aforementioned four

surface vibrational spectroscopy techniques and their

applications to recent research topics, will provide

fundamental information for nonspecialists and an up-to-

date account of recent advances in this field for specialists.

MASATOSHI OSAWA

Catalysis Research Center, Hokkaido University, Sapporo,

Japan



Preface

Electrified interfaces play an important role in many

phenomena. Electric fields that develop at junctions

between different phases can align molecules and ions into

configurations that greatly influence the physical and

chemical nature of the interface. The molecular structure of

charged interfaces impacts many practical processes,

including energy conversion in batteries, solar cells, and fuel

cells, corrosion at solid surfaces, chemical reactions over

oxide particles in the earth and atmosphere, biochemical

transformations, signal transduction in chemical sensors,

and heterogeneous catalytic reactions, to name a few.

Surface vibrational spectroscopy techniques probe the

structure and composition of interfaces at a molecular level.

Their versatility and typically nondestructive nature often

enable in situ measurements of operating devices and

monitoring of interface-controlled processes under reactive

conditions. This book highlights modern applications of

Raman, infrared, and nonlinear optical spectroscopy in the

study of charged interfaces.

Early chapters in the book provide a glimpse into the

breadth of systems that can be investigated through the use

of nonlinear optical techniques. Properties of interfacial

water, ions, and biomolecules at charged dielectric, metal

oxide, and electronically conductive metal catalyst surfaces,

as probed by nonlinear optical techniques, are discussed in

Part I. In addition to examples of practical experimental

interest, the chapters guide readers to the latest in

measurement and instrumental techniques. Part II includes

coverage of Raman spectroscopy from the standpoint of

sensitive approaches for detection of biomolecules at solid–

liquid interfaces and the use of photon depolarization



strategies to elucidate molecular orientation at surfaces.

Part III reports on wide-ranging systems from small fuel

molecules at well-defined surfaces to macromolecular

complexes as building blocks of functional interfaces in

devices that have applications in chemical sensing and

electric power generation. These interfaces are amenable

for infrared spectroscopy due to versatile sampling

methods, that is, specular and diffuse reflectance,

polarization–modulation, and total internal reflection modes.

ANDRZEJ WIECKOWSKI

CAROL KORZENIEWSKI

BJÖRN BRAUNSCHWEIG
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Chapter 1

Water Hydrogen Bonding

Dynamics at Charged Interfaces

Observed with Ultrafast

Nonlinear Vibrational

Spectroscopy

Emily E. Fenn and Michael D. Fayer

Department of Chemistry, Stanford University, Stanford,

California

1.1 Introduction

The question of how charged species affect water structure

and dynamics is relevant to many applications in chemistry,

biology, geology, and industry. Biological systems are often

crowded aqueous environments filled with proteins,

membranes, vesicles, and other structures that often rely on

the presence of ions for stability and proper functioning [1–

6]. The ion–water interface is critical for ion exchange resins

[7, 8], heterogeneous catalysis [9–11], electrochemistry

[12], as well as processes involving mineral dissolution [13,

14] and ion adsorption [15, 16]. Because the behavior of

water in the presence of ions impacts a wide range of

technical and scientific fields, a great deal of literature over

the years has been dedicated to studying the aqueous



solvation of ions and the properties of water at charged

interfaces. Studies that have examined ion–water interfaces

have employed x-ray and neutron diffraction [17–19],

Raman spectroscopy [20], ultrafast infrared spectroscopy

[21–26], Fourier transform infrared (FTIR) spectroscopy [20,

27], and other spectroscopic techniques [15, 28, 29].

Theoretical models [30, 31], molecular dynamics (MD)

simulations [32–35], and Monte Carlo (MC) calculations [20]

have also been employed. While simulations can provide

some insight into the underlying dynamics, most

experimental techniques only provide steady-state data.

Here we utilize ultrafast infrared spectroscopy to examine

the hydrogen bonding dynamics of water at several types of

charged and uncharged interfaces.

Ultrafast infrared spectroscopy has been shown to be a

powerful technique for elucidating dynamics in water–ion

systems [21–26], other hydrogen bonding systems [36–43],

protein environments [44–52], and systems that undergo

chemical exchange [25, 53–57]. Here, we apply ultrafast

infrared pump–probe and two-dimensional infrared (2D IR)

vibrational echo spectroscopic techniques to examine the

dynamics of water when it is confined in nanoscopic

environments and interacting with interfaces. The question

is whether the nature of confinement or the chemical

composition of the interface most significantly influences

the dynamics. To explore this question, the dynamics of

water at charged and neutral interfaces in reverse micelles

are compared. In addition, water in ionic solutions is

investigated. Some water molecules are hydrogen bonded

to ions, while others are hydrogen bonded to water

molecules. These are in equilibrium, with water molecules

bound to ions switching and becoming bound to water

molecules, and vice versa. Using 2D IR chemical exchange

spectroscopy, we determine the exchange time required for

a water hydroxyl initially hydrogen bonded to an anion to



switch to being hydrogen bonded to another water

molecule.

Reverse micelles consist of a water pool surrounded by a

layer of surfactant molecules and are often used as model

systems for confined environments. The surfactant

molecules are terminated by a hydrophilic head group that

can be either charged or neutral. These hydrophilic head

groups face in toward the water pool while the alkyl

(hydrophobic) tails of the surfactant are suspended in a

nonpolar organic phase. A schematic of a reverse micelle

utilizing the surfactant Aerosol-OT, or AOT [sodium bis(2-

ethylhexyl) sulfosuccinate], is shown in Figure 1.1. The AOT

surfactant (Fig. 1.2) forms spherical monodispersed reverse

micelles that have been well characterized. The size of the

AOT reverse micelles can be easily controlled by varying the

amounts of starting materials according to the w0

parameter: w0 = [H2O]/[surfactant] [58–60]. AOT can yield

sizes of w0 = 0 (essentially dry reverse micelles) all the way

up to w0 = 60, which has a water pool diameter of 28 nm

and contains ∼350,000 water molecules [61]. Isooctane is a

common solvent used as the nonpolar phase of AOT reverse

micelle systems, but other solvents such as carbon

tetrachloride, cyclohexane, and benzene can also be used

with minimal changes in water pool size for a given w0 [62].

A recent study has shown that the identity of the nonpolar

phase has no effect on the water pool dynamics [63].

Figure 1.1 Illustration of the reverse micelle interior. The

bulk water core is surrounded by a layer of interfacial water.

The total water pool diameter is denoted by d. The

hydrophilic AOT head groups face in toward the water pool

while the alkyl tails are suspended in the organic phase. The

sodium counterions are dispersed in the water pool, but

they generally reside close to the head group interface.



Figure 1.2 Molecular structures for AOT and Igepal CO-520.

AOT (top) is terminated by a charged sulfonate head group

with a sodium counterion while Igepal (bottom) has a

neutral hydroxyl head group.

As shown in Figure 1.2, AOT has a sulfonate head group

with a sodium counterion. The head group region of the

reverse micelle therefore creates a charged interface that

surrounds the water pool. The sodium ions will generally

reside in a region close to the interface. Figure 1.1 illustrates

the regions of a reverse micelle. When the total water pool

diameter, d, is sufficiently large (≥4.6  nm) the reverse



micelle can support a core of water with bulklike properties.

Below we will discuss how far perturbations from the

charged sulfonate interfacial region extend into the water

pool and what happens to the water dynamics as the size of

the water pool changes in size. The chemical identity of the

surfactant layer can be changed by using a neutral

surfactant molecule called Igepal CO-520 (Fig. 1.2). Igepal is

terminated with neutral hydroxyl head groups, so the

interfacial water molecules will be exposed to a very

different chemical surface compared to the AOT reverse

micelle system. To what extent changes in surfactant

identity, particularly charged versus neutral head group

regions, and reverse micelle size affect water dynamics will

be described.

Water dynamics are investigated through the processes of

orientational relaxation, spectral diffusion, and vibrational

relaxation, which can be measured with ultrafast infrared

vibrational spectroscopy. These observables report on how

the hydrogen bond network of water evolves and rearranges

over time. The hydroxyl stretch of water is monitored during

the experiments and is used as a reporter for hydrogen

bond dynamics. During vibrational relaxation, vibrational

energy dissipates by transferring into a combination of low-

frequency modes, such as torsions and bath modes [64, 65].

Energy must be conserved during this process. Certain

pathways that facilitate vibrational relaxation in one system

may or not be present in a different system. Thus,

vibrational relaxation is extremely sensitive to local

environments. Orientational relaxation measures how

quickly water molecules reorient by monitoring the direction

of the transition dipole of the hydroxyl stretch. Molecular

reorientation is involved in water hydrogen bond exchange,

which leads to global hydrogen bond network reorganization

[66, 67]. Bulk water consists of an extended network of

hydrogen bonds that are continually rearranging and



exchanging with one another. According to the theory of

Laage and Hynes, water molecules exchange hydrogen

bonds via a jump reorientation mechanism that involves

concerted motions of water molecules in the first and

second solvation shells [66, 67]. The mechanism proceeds

when a molecule in the second solvation shell of another

water molecule moves in toward the first solvation shell. In

order to swap hydrogen bonds with the approaching water

from the second solvation shell, a water molecule must pass

through a five-coordinate transition state and then undergo

a large-amplitude rotational motion (or “jump”). The jump

allows it to switch one of its hydrogen bonds to the

approaching water molecule. These large-amplitude jumps

change the orientation of the transition dipole. Solutes and

interfaces (such as the surfactant shell of the reverse

micelles) can disrupt the jump reorientation mechanism,

thus slowing down the process of reorientation [23, 68–72].

Both vibrational and orientational relaxation can be

measured with ultrafast infrared pump–probe spectroscopy.

Ultrafast 2D IR vibrational echo spectroscopy is used to

measure spectral diffusion of the water hydroxyl stretch.

The linear infrared absorption spectrum of the hydroxyl

stretch is very broad due to a large distribution in the

lengths and strengths of hydrogen bonds. At the beginning

of the 2D IR experiment, a hydroxyl will vibrate at a certain

frequency, but due to dynamic structural evolution of the

system, that frequency will change over time. This process

of frequency evolution is known as spectral diffusion and

reports on how quickly water molecules sample different

structural environments.

In addition, 2D IR vibrational echo chemical exchange

spectroscopy is used to examine how quickly a water

hydroxyl bound to an anion will switch to being hydrogen

bonded to a neighboring water hydroxyl. This process is

illustrated schematically in Figure 1.3. A model system for


