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Preface

“One of the principal objects of theoretical research in
any department of knowledge is to find the point of view
from which the subject appears in its greatest simplicity”1

This book originates from the lecture notes for a course on yield
design taught at Hong Kong City University during recent years. It is
presented in the form of a survey of the theory of yield design, which
brings together and summarizes the books and lecture notes I
published in French on that topic when teaching at École Nationale
des Ponts et Chausssées and École Polytechnique (Paris, France).

The terminology “yield design” has been chosen as a counterpart
and translation of the French “Calcul à la rupture” or “Analyse à la
rupture” which has been used for a long time by civil engineers and
others to refer to stability analyses of structures where only the
concepts of equilibrium and resistance are taken into account.

In an explicit form, such analyses have been carried out for nearly
four centuries, if we take Galileo’s Discorsi as a starting point of the
story, but they were overshadowed by the achievements of the theory
of elasticity in the 19th Century.

1 GIBBS J.W., Proceedings of the American Academy of Arts and Sciences, May
1880 – June 1881, XVI, VIII, Boston, University Press/John Wilson & Co.,
pp. 420–421, 1881.
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To make a long story short, we may jump to the mid-20th Century
when we observe a renewal of interest in the yield design methods
with the development of the theory of plasticity. At that time, within
the framework of the perfectly plastic model with associated flow rule
for the constituent material, the lower and upper bound theorems of
limit analysis and the theory of limit loads were established, which
provide the traditional yield design approaches with sound theoretical
bases. In particular, the upper bound theorem of limit analysis refers
to the kinematic approach, where the rate of work by the external
forces is compared with the plastic dissipation rate. Also, after several
unconvincing attempts based on the concept of a rigid perfectly plastic
material, the status of limit loads was definitely settled in the 1970s
through the mathematical theorem of existence and uniqueness of the
solution to the elastoplastic evolution problem: under the assumption
of elastic and perfectly plastic behavior with associated flow rule,
these loads are the maximum loads that can actually be sustained by
the system considered in a given geometry.

This is a happy ending to the story from the theoretical point of
view but, since it is dependent on the assumption of a perfectly plastic
behavior with associated flow rule, it may appear as substantiating the
idea that the yield design approach loses all interest when this
assumption is not valid (which is often the case for practical problems,
e.g. stability analyses of earth structures in civil engineering).

As a matter of fact, the lower and upper bound theorems are only
the consequences of the sole assumption that the resistance of the
constituent material is defined by a convex domain assigned to the
internal forces. In particular, the upper bound theorem is derived from
the dual definition of this domain without referring to a flow rule or
constitutive equation. Therefore, these theorems hold as the lower and
upper bound theorems for the extreme loads in the yield design theory,
encompassing the many aspects of its implementation to various
stability analysis problems. From the theoretical viewpoint, the status
of the extreme loads is now restricted to that of upper bounds for the
stability or load carrying capacity of the system. This does not make
any difference in what concerns the application of the method to
practice since practical validation is the general rule come what may.
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Therefore, the purpose of this book is to present a theory of yield
design within the original “equilibrium/resistance” framework without
referring to the theories of plasticity or limit analysis. The general
theory is developed for the three-dimensional continuum model in a
versatile form based on simple arguments from the mathematical
theory of convexity. It is then straightforwardly transposed to the one-
dimensional curvilinear continuum, for the yield design analysis of
beams, and to the two-dimensional continuum model of plates and
thin slabs subjected to bending.

The book is structured as follows:
– Chapter 1 gives an introduction of the concept of yield design,

starting from historical landmarks and based on field and laboratory
observations of the collapse of mechanical systems. Compatibility
between the equilibrium of the considered system subjected to
prescribed loads and the resistance of its constituent material is set as
the cornerstone of yield design analyses as is apparent in recent
construction codes implementing the ultimate limit state design
(ULSD) philosophy.

– Chapter 2 presents the simple example of a truss structure in
order to give an outline of the method introducing the concept of
potential stability.

– Since the general theory will be developed within the continuum
mechanics framework, Chapter 3 recalls the fundamentals of this
model in its primal formulation, leading to the classical equilibrium
equations, and its dual formulation with the theorem/principle of
virtual (rate of) work.

Chapters 4 – 6 present the core of the theory:
– In Chapter 4, after defining the concept of multi-parameter

loading mode, the compatibility between equilibrium and resistance is
first expressed in its primal form, on the basis of the equilibrium
equations and the strength domain of the material defined by a convex
strength condition. The definition of the domain of potentially safe
loads follows from the mathematical compatibility between the
equilibrium equations and the strength condition. As a consequence of
the convexity of the strength condition, the domain of potentially safe
loads is convex, which makes it possible to obtain convenient interior
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estimates through the construction of statically admissible stress fields
that comply with the strength condition.

– Chapters 5 and 6 discuss the dual approach of the domain of
potentially safe loads. Through the theorem/principle of virtual (rate
of) work, it is possible to derive a necessary condition to be satisfied
by the potentially safe loads, which does not refer to any stress field
but uses kinematically admissible virtual velocity fields as test
functions. This leads to the kinematic exterior approach of the domain
of potentially safe loads, where the material strength condition is
expressed in its mathematical dual formulation of maximum resisting
(rate of) work. It is essential to keep in mind that this formulation does
not imply any constitutive law and is just the mathematical dualization
of the primal one.

– Chapter 7 is a kind of a return to Chapter 1 since it highlights the
role played implicitly by the theory of yield design as the fundamental
basis of the ULSD philosophy. It appears that the fundamental
inequality of the kinematic exterior approach makes it possible to give
an unambiguous quantified meaning to the symbolic inequality of
ULSD.

– Chapter 8, with the explicit introduction of resistance parameters,
takes advantage of the symmetric roles played by the loads applied to
a system on the one side and the resistance of its constituent materials
on the other in the equations to be satisfied for potential stability. It
introduces the concept of potentially safe dimensioning of a system
under a given set of prescribed loads as the counterpart of potentially
safe loads when the dimensioning of the system is given. Potentially
safe dimensioning generates a convex domain for which interior and
kinematic exterior approaches are derived from the general theory.
Optimal dimensioning of the system results in minimizing a given
objective function. Also it is possible to account for the variability of
the prescribed loads and for the physical scattering of the resistance
parameters by giving a stochastic character to these data. From the
definition of the domains of potentially safe loads and potentially safe
dimensionings, there is no ambiguity in defining the concept of
probability of stability of a system. Again, the interior approach and,
essentially, the kinematic exterior approach provide lower and upper
bound estimates for this probability.



Preface xv

– Chapter 9 looks at the yield design of structures. The curvilinear
one-dimensional continuum model is first recalled with the concepts
of wrench of forces and velocity distributor. The implementation of
the yield design theory is straightforward, provided that the strength
criteria of the constitutive elements, the joints and supports of the
structure are correctly written.

– To conclude with a concise presentation of the yield design
analysis of plates and thin slabs, Chapter 10 analyzes the construction
of the corresponding two-dimensional model. The kinematics is
defined by velocity distributor fields. The external forces are
represented by force and moment densities and the internal forces are
modeled by tensorial wrench fields.

– Chapter 11 presents the implementation of the yield design
theory to metal plates and reinforced concrete slabs subjected to pure
bending with strength criteria depending only on the internal moment
tensor. The kinematic exterior approach appears as the most popular
method, especially with relevant virtual motions based on the concept
of hinge lines.
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Chapter 1

Origins and Topicality of a Concept

Limit state design is, to some extent, a familiar terminology within
the syllabuses of civil engineers’ education, as it appears explicitly in
the stability analyses of various types of structures or is present
“anonymously” in the methods used for such analyses. Nevertheless,
the variety of the corresponding approaches often makes it difficult to
recognize that they proceed from the same fundamental principles,
which are now the basis of the ultimate limit state design (ULSD)
approach to the safety analysis of structures. As an introduction to the
theory, this chapter will both present some famous historical
milestones and the topicality of the subject referring to the principles
of ULSD.

1.1. Historical milestones

1.1.1. Dialogs concerning two new sciences

The fundamental concept to be acknowledged first is that of yield
strength as introduced by Galileo in his Discorsi [GAL 38a] on the
simple experiment of a specimen in pure tension (Figure 1.1).
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Origins and Topicality of a Concept 5

The first guiding idea of Coulomb’s rationale in tackling these
problems is making a clear distinction between the active forces,
which are the prescribed loads acting on the structure under
consideration, and the characteristics of resistance of the material,
which set the bounds to the “coherence” forces that can be mobilized
(Figure 1.5).

Figure 1.5. Defining friction and cohesion in Coulomb’s Essay [COU 73]

The second guiding idea is that the resistance forces are exerted
locally along an assumed failure surface, anticipating, to a certain
extent, the concept of the stress vector to be introduced some 50 years
later. In the simple case of a stone column under a compressive load
(Figure 1.4), Coulomb explains the principles of the analysis: the
active force on the assumed fracture surface must be balanced by the
“coherence” force; the fracture surface will be determined through a
minimization process.

On the basis of the same principle, Coulomb’s stability analysis of
a retaining wall is a fundamental landmark for the theory of yield
design. Coulomb starts with the celebrated “Coulomb’s wedge”
reasoning (Figures 1.4, 1.6), where he assumes the failure surface to
be plane and states a condition for stability that the active forces on



6 Yield Design

the assumed fracture surface Ba must be balanced by the “coherence”
forces, from which he derives, through minimization and
maximization processes, two bounds for the horizontal force that can
be applied to CB so that the wall be stable. Because of its simplicity,
this reasoning is often presented as the Coulomb analysis of the
stability of a retaining wall. In fact, Coulomb, after showing how
the friction along the wall could be taken into account, states that, to
be complete, the analysis should look for the curve that produces the
highest pressure on CB and sketches the process for this
determination.

Figure 1.6. Coulomb’s wedge [COU 73]

1.1.3. Compatibility between equilibrium and resistance

It is not difficult to point out the common features of the analyses
that have been briefly presented here.

– First, the concept of resistance is introduced as a mechanical
characteristic of the constituent material. After having been
determined through a given simple experiment, it is used in any other
circumstances and sets the limits to the resisting forces that can be
actually mobilized.

– Then, the idea that the resistance of a given structure – a result
at the global level – can be derived from the knowledge of the
resistance of its constituent material(s), which is a property at the local
level.
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– For this determination, the rationale is based upon the statement
that equilibrium equations of the structure must be satisfied while
complying with the limits imposed by the resistance of the constituent
material(s). In other words, equilibrium and resistance must be
mathematically compatible.

– The practical implementation of this statement is made through
the choice or the assumption of some particularly crucial zone in the
structure (cross-section in the first case and failure surface in the
second case), where it is anticipated that compatibility between
equilibrium and resistance should be checked.

As it is shown in Figure 1.3 in the case of Galileo’s analysis, it may
be objected that such approaches do not take into account the behavior
of the material, that is the fact that the material deforms under the
forces it is subjected to. But it must be recalled that although the
concept of linear elasticity was first introduced by Hooke in the 1660s,
it was only in 1807 that Young’s recognized shear as an elastic
deformation; three-dimensional linear elasticity itself was only really
formalized in the 1820s (Navier, Cauchy and others) at the same time
as the concept of the stress tensor. As noted before, the yield design
approach implicitly embodies an anticipation of the concept of
internal forces. This is not surprising since the intuition of internal
forces is primarily linked to that of rupture being localized on surfaces
or lines as observed on full-, reduced- or small-scale experiments
(Figures 1.7 and 1.8).

Figure 1.7. “Slip line” pattern under a foundation in a purely cohesive material
(medium-scale experiment) [HAB 84]
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Figure 1.8. Bending of a reinforced plaster slab: evidence of hinge
curves (M. Milicevic)

1.2. Topicality of the yield design approach

1.2.1. The Coulomb’s Essay legacy

Coulomb’s Memoir was at the origin of many methods used by
engineers for the stability analyses of various types of structures. In
the case of masonry vaults, the works by Méry [MER 40] and
Durand-Claye [DUR 67, DUR 80] have been extensively studied by
Heyman [HEY 66, HEY 69, HEY 72, HEY 80, HEY 82, HEY 98] and
Delbecq [DEL 81, DEL 82]: it is interesting to note that they often
combined Coulomb’s original reasoning with elastic arguments, thus
losing its original theoretical meaning without any damage from the
practical point of view.

Soil mechanics, which is sometimes considered as having found its
very origin in Coulomb’s Memoir, exhibits numerous methods clearly
related to it for the stability analysis of slopes, retaining walls, fills
and earth dams or for the calculation of the bearing capacity of the
surface foundations [BER 52, BIS 54, BØN 77, BRI 53, BU 93,
CHA 07, CHE 69a, CHE 69b, CHE 70a, CHE 70b, CHE 73a,
CHE 75a, CHE 75b, COU 79, JOS 80, DRU 52, GRE 49, HIL 50,
HOU 82, KÖT 03, KÖT 09, LAU 11, MAN 72, MAR 05, MAR 09,
MAS 99, MAT 79, MEY 51, MEY 53, MEY 63, MIC 98, MIC 09,
PRA 55, REN 35, SAL 74, SAL 76, SAL 82, SAL 85, SAL 95a,


