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PREFACE

Because complex aromatic compounds have been utilized in various functional
organic materials (e.g., liquid crystals, organic light-emitting devices), functional
reagents (e.g., ligands, catalysts), and biologically active compounds (e.g., medicines,
pesticides), the development of new reactions for the synthesis of aromatic com-
pounds is a hot research field in modern organic synthesis. A conventional synthetic
route to aromatic compounds is that of substitution reactions of aromatic nucleus, but
this approach is not satisfactory in some cases. Recent significant advances in the area
of transition-metal-mediated aromatization reactions enable the efficient construction
of substituted aromatic rings in practical as well as convenient ways. These aromatic
ring construction reactions would open promising new routes to complex aromatic
compounds. Consequently, these reactions have been the subject of intense research
in recent years, as evidenced by the number of research papers and reviews that have
appeared.

Although transition-metal-mediated substitution reactions of aromatic nucleus
have been well described in a number of books, a book that focuses on the transition-
metal-mediated construction of aromatic rings has not appeared to date. A book
explaining the use of transition-metal-mediated aromatic ring construction reactions
for the complex aromatic compounds targeted would, therefore be useful for both
academic and industrial chemists. For these reasons, in this book we demonstrate
comprehensively how to use transition-metal-mediated aromatic ring construction
reactions for the synthesis of complex aromatic compounds.

xxi
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1
COBALT-MEDIATED [2 + 2 + 2]
CYCLOADDITION

Vincent Gandon

1.1 INTRODUCTION

An expedient way to envisage the synthesis of conjugated six-membered rings such as
benzenes, pyridines, pyridones, and related heterocycles is by a [2 + 2 + 2] cycload-
dition retrosynthetic approach. These conjugated systems can indeed be viewed as
cycloadducts of three readily available unsaturated partners, such as alkynes, nitriles,
isothiocyanates, carbon disulfide, isocyanates, and carbodiimides (Scheme 1.1,
X = N, S; Y = N, O, S). Although the thermal version of this reaction is usually hardly
feasible [1], it becomes straightforward in the presence of the appropriate catalyst. The
first example of transition-metal-catalyzed [2 + 2 + 2] cycloaddition was reported by
Reppe and Schweckendiek in 1948 [2]. A nickel complex was used as a precatalyst to
cyclotrimerize alkynes into benzenes. Until the early 1970s, it was shown that many
other metals could be employed, notably cobalt. Afterward, led by Vollhardt, who
reported a considerable number of applications, this chemistry clearly proved to be
priceless in organic synthesis. Since the topic has already been thoroughly reviewed
[3], in this chapter we emphasize the latest development of the cobalt-catalyzed
[2 + 2 + 2] cycloaddition reaction over the past 10 years.

Transition-Metal-Mediated Aromatic Ring Construction, First Edition. Edited by Ken Tanaka.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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1.2 SYNTHESIS OF BENZENES

1.2.1 New Catalytic Systems

The typical cobalt complexes used to form benzenes by [2 + 2 + 2] cycloadditions
can be classified into three categories (Figure 1.1). The first concerns those contain-
ing cyclopentadienyl ligands (CpCoL2, Cp∗CoL2, or other modified Cp′CoL2). The
most common ones are CpCo(CO)2, CpCo(C2H4)2, and CpCo(COD), sometimes
associated with a phosphine. CpCoL2 catalysts can be used in a variety of organic
solvents, as well as supercritical CO2 or H2O [3m]. The functionalization of the
Cp (cyclopentadienyl) ring with a polar side chain allows the reaction to take place

Co
L L

Co Co

CO

OC

OC

CO

CO

CO
CoX2/M/L

cat. 1 cat. 2 cat. 3

FIGURE 1.1
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in aqueous solution [4]. As shown below, new complexes of type CpCo(alkene)(L)
have recently been used as catalysts. The second category deals with such cobalt
carbonyls as Co2(CO)8, Co3(H)(CO)(PMe3)6, and Co4(CO)12. A new versatile com-
plex has also been developed. The third category contains cobalt halides of type
CoX(PR3)3 or CoX(PR3)(CO)2 (X = Cl, Br; R = Ph, Me), as well as CoX2/M/L
catalytic systems (X = Cl, Br, I; M = Mn, Zn, NaBH4, etc.; L = phosphines, imines,
etc.). These systems, based on Co(II) sources, have aroused great enthusiasm in the
past 10 years.

1.2.1.1 [CpCo] Complexes Various problems associated with the synthesis of
benzenes have been circumvented recently by using precatalysts I to III, displayed
in Figure 1.2.

CoCo

P
tBu2

Co
OC

MeO2C

CO2Me

I II III

FIGURE 1.2

Yong and Butenschön succeeded in achieving alkyne cyclotrimerizations in an
aqueous medium at room temperature using I [5]. While standard catalysts such
as CpCo(COD) allow the formation of pyridines at room temperature in water
[6], this feature has so far not been possible for benzenes, for which an elevated
temperature is required [4]. Complex I was tested toward the cyclotrimerization
of mono-substituted alkynes 1 and gave the expected regioisomeric mixture 2/3
in good yields and often good selectivities compared to reactions carried out
in organic solvents (Scheme 1.2). The cyclotrimerization of the disubstituted
alkynes 2,5-dimethyl-3-hexyne and diphenylacetylene to give 4 and 5, respectively,
was also reported, as well as bimolecular reactions between 1,7-octadiyne and
phenylacetylene or ethyl propiolate to give 6 and 7, respectively. Catalyst I could
also be used to assemble pyridines (see Section 1.3.1.1).

The [2 + 2 + 2] cycloaddition reaction can give rise to chiral compounds, espe-
cially biaryls [3q]. Control of the enantioselectivity in such transformations is of
prime importance, notably because biaryls can be used as ligands in asymmetric
catalysis. This topic is covered in detail in Chapter 9. Nowadays, cobalt still looks
like a poor relation in this field, which is largely dominated by rhodium. Never-
theless, a report from Heller et al. shows for the first time that phosphorus-bearing
axially chiral biaryls 9 can be formed by enantioselective benzene formation using the
neomenthyl-indenyl cobalt complex II as a catalyst (Scheme 1.3) [7]. Good yields
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and ee values were obtained after the cycloaddition of 2 equiv of acetylene with
alkynyl phosphine oxides 8.

In many cases, standard catalysts such as CpCo(CO)2 or CpCo(COD) necessitate
heat and visible light irradiation to be active. Conversely, CpCo(C2H4)2 turns over
at room or lower temperatures [8]. However, these catalysts are sensitive to oxygen
and usually require thoroughly degassed solvents. Complex III is a new air- and
moisture-stable catalyst for [2 + 2 + 2] cycloadditions [9]. Heat is still necessary,
but not irradiation. The reaction can be carried out in hot toluene or in microwaved
dimethylformamide (DMF). Crude solvents can be used as found in the laboratory
without purification. The catalyst is still active after months of storage in simple vials.
Whereas the first report focused on simple cycloadditions of alkynes 10 or triynes
14 (Scheme 1.4), complex III proved useful as well with more sophisticated systems
(see Section 1.2.2).


