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FOREWORD

This book grew out of a course of lectures on functional

analysis taught over many years to second-year graduate

students at the Courant Institute of New York University. It is

a graduate text, not a treatise or a monograph. Most of the

chapters are short, for it is easier to digest material in small

chunks. Not all topics can be presented briefly, so some of

the chapters are longer. Theorems and lemmas, as well as

equations, are numbered consecutively in each chapter.

The first 23 chapters make only a modest technical

demand on the reader; this material would serve very well

as text for an introductory graduate course on functional

analysis. The rest of the material is well suited as text for a

more advanced graduate course on functional analysis in

general, or on Hilbert space in particular.

When I was a student, the only text on functional analysis

was Banach’s original classic, written in 1932; Hille’s book

appeared in time to serve as my graduation present. For

Hilbert space there was Stone’s Colloquium publication, also

from 1932, and Sz.-Nagy’s Ergebnisse volume. Since then,

our cup hath run over; first came Riesz and Sz.-Nagy, then

Dunford and Schwartz, Yosida, later Reed and Simon, and

Rudin. For Hilbert space, there was Halmos’s elegant

slender volume, and Achiezer and Glazman, all of which I

read with pleasure and profit. Many, many more good texts

have appeared since. Yet I believe that my book offers

something new: the order in which the material is arranged,

the interspersing of chapters on theory with chapters on

applications, so that cold abstractions are made flesh and

blood, and the inclusion of a very rich fare of mathematical

problems that can be clarified and solved from the

functional analytic point of view.



In choosing topics I heeded the warning of my teacher

Friedrichs: “It is easy to write a book if you are willing to put

into it everything you know about the subject.” I present the

basic structure of the subject, and those more advanced

topics that loom large in the body of mathematics. Among

these are the spectral resolution and spectral representation

of self-adjoint operators, the theory of compact operators,

the Krein-Milman theorem, Gelfand’s theory of commutative

Banach algebras, invariant subspaces, strongly continuous

one-parameter semigroups. I discuss the index of operators,

so important in calculating topological invariants; the

celebrated trace formula of Lidskii, a powerful tool in

analysis; the Fredholm determinant and its generalizations,

rising again after almost a hundred years of hibernation;

and scattering theory, another gift from physics to

mathematics. I have also included some (but not all) special

topics close to my heart.

What has been omitted? All of nonlinear functional

analysis, for which I recommend the four-volume treatise by

Zeidler. Operator algebras, except for Gelfand’s theory of

commutative Banach algebras. I slight the geometric theory

of Banach spaces; happily a handbook on this subject,

edited by Bill Johnson and Joram Lindenstrauss is about to

be published by North Holland.

What are the prerequisites? What every second-year

graduate student-and many undergraduates—knows:

Naive set theory. Denumerable sets, the continuum,

Zorn’s lemma.

Linear algebra. The alternative for linear maps, trace

and determinant of a matrix, the spectral theory of

general and symmetric matrices, functions of a matrix.

Point set topology. Complete metric spaces, the Baire

category principle, Hausdorff spaces, compact sets,

Tychonov’s theorem.

Basic theory of functions of a complex variable.



Real variables. The Arzela-Ascoli theorem, the Lebesgue

decomposition of measures on , Borel measure on

compact spaces.

It is an accident of history that measure theory was

invented before functional analysis. The usual presentations

of measure theory fail to take advantage of the concepts

and constructions of functional analysis. In an appendix on

the Riesz-Kakutani representation theorem I show how to

use the tools of functional analysis in measure theory.

Another appendix summarizes the basic facts of Laurent

Schwartz’s theory of distributions.

Many of the applications are to problems of partial

differential equations. Here a nodding aquaintance with the

Laplace and the wave equation would help, although an

alert uninformed reader could pick up some of the basic

results from these pages.

Like most mathematicians, I am no historian. Yet I have

included historical remarks in some of the chapters, mainly

where I had some firsthand knowledge, or where

conventional history has been blatantly silent concerning

the tragic fate of many of the founding fathers of functional

analysis during the European horrors of the 1930s and

1940s.

I am indebted to many. I learned the rudiments of

functional analysis, and how to apply them, from my

teacher Friedrichs. Subsequently my views were shaped by

the work of Tosio Kato, who has brought the power of

functional analysis to bear on an astonishing range of

problems. My happy and long collaboration with Ralph

Phillips has led to some unusual uses of functional analysis.

r learned much from Israel Gohberg, especially about the

index of Toeplitz operators, from Bill Johnson about the fine

points of the geometry of Banach spaces, and from Bob

Phelps about Choquet’s theorem. I thank Reuben Hersh and

Louise Raphael for their critique of the appendix on



distributions, and Jerry Goldstein for his expert comments

on the material on semigroups and scattering theory. To all

of them, as well as to Gabor Francsics, my thanks.

Jerry Berkowitz and I alternated teaching functional

analysis at the Courant Institute. This would be a better

book had he lived and looked the manuscript over critically.

I thank Jeff Rosenbluth and Paul Chernoff for a careful

reading of the early chapters, and Keisha Grady for TEXing

the manuscript, and cheerfully making subsequent changes

and corrections.

The lecture course was popular and successful with

graduate students of the Courant Institute. I hope this

printed version retains the spirit of the lectures.

PETER D. LAX

New York. NY

November 2001



1

LINEAR SPACES

A linear space X over a field F is a mathematical object in

which two operations are defined: addition and

multiplication by scalars.

Addition, denoted by +,as in

(1) 

is assumed to be commutative,

(2) 

associative,

(3) 

and to form a group, with the neutral element denoted as 0:

(4) 

The inverse of addition is denoted by-:

(5) 

The second operation is the multiplication of elements of X

by elements k of the field F:

The result of this multiplication is again an element of X.

Multiplication by elements of F is assumed to be

associative,

(6) 

and distributive,

(7) 

as well as

(8) 



We assume that multiplication by the unit of F, denoted as

1, acts as the identity:

(9) 

These are the axioms of linear algebra. From them

proceed to draw some deductions.

Set b = 0 in (8). It follows that for all x,

(10) 

Set a = 1, b = –1 in (8). Using (9) and (10), we deduce that

for all x,

(11) 

The finite-dimensional linear spaces are dealt with in

courses on linear algebra. In this book the emphasis is on

the infinite-dimensional ones—those that are not

finitedimensional. The field F will be either the real numbers

 or the complex numbers  Here are some examples.

Example 1. X is the space of all polynomials in a single

variable s, with real coefficients, here F = 

Example 2. X is the space of all polynomials in N variables

s1, … , s N, with real coefficients, here F = 

Example 3. G is a domain in the complex plane, and X the

space of all functions complex analytic in G, here F = .

Example 4. X = space of all vectors

with infinitely many real components, here F = 

Example 5. Q is a Hausdorff space, X the space of all

continuous real-valued functions on Q, here F = 

Example 6. M is a C∞ differentiable manifold, X = C∞ (M),

the space of all differentiable functions on M.

Example 7. Q is a measure space with measure m, X = L1

(Q, m).

Example 8. X = LP(Q,m).

Example 9. X = harmonic functions in the upper half-plane.



Example 10. X = all solutions of a linear partial differential

equation in a given domain.

Example 11. All meromorphic functions on a given

Riemann surface; F = .

We start the development of the theory by giving the basic

constructions and concepts. Given two subsets S and T of a

linear space X, we define their sum, denoted as S + T to be

the set of all points x of the form x = y + z, y in S, z in T.

The negative of a set S, denoted as –S, consists of all points

x of the form x = –y, y in S.

Given two linear spaces Z and U over the same field, their

direct sum is a linear space denoted as Z ⊕ U, consisting of

ordered pairs (z,u), z in Z, u in U. Addition and multiplication

by scalars is componentwise.

Definition. A subset Y of a linear space X is called a linear

subspace of X if sums and scalar multiples of Y belong to Y.

Theorem 1.

(i) The sets {0} and X are linear subspaces of X.

(ii) The sum of any collection of subspaces is a subspace.

(iii) The intersection of any collection of subspaces is a

subspace.

(iv) The union of a collection of subspaces totally ordered

by inclusion is a sub-space.

Exercise 1. Prove theorem 1.

Let S be some subset of the linear space X. Consider the

collection {Yσ } of all linear subspaces that contain the

setS. This collection is not empty, since it certainly contains

X.

Definition. The intersection ∩Yσ of all linear subspaces Yσ

containing the set S is called the linear span of the set S.

Theorem2.

(i) The linear span of a set S is the smallest linear

subspace containing S.



(ii) The linear span of S consists of all elements x of the

form

(12) 

Proof Part (i) is merely a rephrasing of the definition of

linear span. To prove part (ii), we remark that on the one

hand, the elements of the form (12) form a linear subspace

of X; on the other hand, every x of form (12) is contained in

any subspace Y containing S.

REMARK 1. An element x of form (12) is called a linear

combination of the points x1, … ,xn. So theorem 1 can be

restated as follows:

The linear span of a subset S of a linear space consists of

all linear combinations of elements of S.

Definition. X a linear space, Y a linear subspace of X. Two

points x1 and x2 of X are called equivalent modulo Y,

denoted as x1 = x2 (mod Y), if x1 − x2 belongs to Y.

It follows from the properties of addition that equivalence

mod Y is an equivalence relation, meaning that it is

symmetric, reflexive, and transitive. That being the case, we

can divide X into distinct equivalence classes mod Y. We

denote the set of equivalence classes as X / Y. The set X / Y

has a natural linear structure; the sum of two equivalence

classes is defined by choosing arbitrary points in each

equivalence class, adding them and forming the

equivalence class of the sum. It is easy to check that the

last equivalence class is independent of the representatives

we picked; put differently, if x1 ≡ z1, x2 ≡ z2. then x1 + x2

≡ z1 + z2 mod Y. Similarly we define multiplication by a

scalar by picking arbitrary elements in the equivalence

class. The resulting operation does not depend on the

choice, since, if x1 ≡ z1, then kx1 ≡ kz1 mod Y.The quotient

set X / Y endowed with this natural linear structure is called



the quotient space of X mod Y. We define codim Y = dim X /

Y.

Exercise 2. Verify the assertions made above.

As with all algebraic structures, so with linear structures

we have the concept of isomorphism.

Definition. Two linear spaces X and Z over the same field

are isomorphic if there is a one-to-one correspondence T

carrying one into the other that maps sums into sums,

scalar multiples into scalar multiples; that is,

(13) 

We define similarly homomorphism, called in this context a

linear map.

Definition. X and U are linear spaces over the same field. A

mapping M : X → U is called linear if it carries sums into

sums, and scalar multiples into scalar multiples; that is, if

for all x, y in X and all k in F

(14) 

X is called the domain of M, U its target.

REMARK 2. An isomorphism of linear spaces is a linear map

that is one-to-one and onto.

Theorem 3.

(i) The image of a linear subspace Y of X under a linear

map M : X → U is a linear subspace of U.

(ii) The inverse imaRe under M of a linear subspace V of

U is a linear subspace of X.

Exercise 3. Prove theorem 3.

A very important concept in a linear space over the reals is

convexity:

Definition. X is a linear space over the reals; a subset K of

X is called convex if, whenever x and y belong to K, the

whole segment with endpoints x, y, meaning all points of

the form



(15) 

also belong to K.

Examples of convex sets in the plane are the circular disk,

triangle, and semicircular disk. The following property of

convex sets is an immediate consequence of the definition:

Theorem 4. Let K be a convex subset of a linear space X

over the reals. Suppose that x1, … , xn belong to K; then so

does every x of the form

(16) 

Exercise 4. Prove theorem 4.

An x of form (16) is called a convex combination of x1 ,x2,

… ,xn.

Theorem 5. Let X be a linear space over the reals.

(i) The empty set is convex.

(ii) A subset consisting of a single point is convex.

(iii) Every linear subspace of X is convex.

(iv) The sum of two convex subsets is convex.

(v) If K is convex, so is –K.

(vi) The intersection of an arbitrary collection of convex

sets is convex.

(vii) Let {Kj} be a collection of convex subsets that is

totally ordered by inclusion. Then their union ∪Kj is

convex.

(viii) The image of a convex set under a linear map is

convex.

(ix) The inverse image of a convex set under a linear

map is convex.

Exercise 5. Prove theorem 5.



Definition. Let S be any subset of a linear space X over the

reals. The convex hull of S is defined as the intersection of

all convex sets containing S. The hull is denoted as .

Theorem 6.

(i) The convex hull of S is the smallest convex set

containing S.

(ii) The convex hull of S consists of all convex

combinations (16) of points of S.

Exercise 6. Prove theorem 6.

Definition. A subset E of a convex set K is called an

extreme subset of K if:

(i) E is convex and nonempty.

(ii) whenever a point x of E is expressed as

then both y and z belong to E.

An extreme subset consisting of a single point is called an

extreme point of K.

Example 1. K is the interval 0 ≤ x ≤ 1; the two endpoints

are extreme points.

Example 2. K is the closed disk

Every point on the circle x2 + y2 = 1 is an extreme point.

Example 3. The open disk

has no extreme points.

Example 4. K a polyhedron, including faces. Its extreme

subsets are its faces, edges, vertices, and of course K itself.

Theorem 7. Let K be a convex set, E an extreme subset of

K, and Fan extreme subset of E. Then F is an extreme subset

of K.

Exercise 7. Prove theorem 7.



Theorem 8. Let M be a linear map of the linear space X

into the linear space U. Let K be a convex subset of U, E an

extreme subset of K. Then the inverse image of E is either

empty or an extreme subset of the inverse image of K.

Exercise 8. Prove theorem 8.

Exercise 9. Give an example to show that the image of an

extreme subset under a linear map need not be an extreme

subset of the image.

Taking U to be one dimensional, we get

Corollary 8′. Denote by H a convex subset of a linear space

X, ℓ a linear map of X into , Hmin and Hmax the subsets of

H, where ℓ  achieves its minimum and maximum,

respectively.

Assertion. When nonempty, Hmin and Hmax are extreme

subsets of H.



2

LINEAR MAPS

2.1 ALGEBRA OF LINEAR

MAPS
We recall from chapter 1 that a linear map from one linear

space X into another, U, both over 1he same field of scalars,

is a mapping of X into U,

that is an algebraic homomorphism:

(1) 

In this section we explore those properties of linear maps

that depend on the purely algebraic properties (1), without

any topological restrictions imposed on the spaces X,U.

The sum of two linear maps M and N of X into U, and the

scalar multiple is defined as

(2) 

(3) 

This makes a linear space out of the set of linear maps of

X into U. The space is denoted as (X, U). Given two linear

maps, one, M from X → U, the other, N from U → W, we can

define their product as the composite map

(4) 

Since compositon of maps in general is associative, so is in

particular the composition of linear maps. As we will see,

composition is far from being commutative.



From now on we omit the bracket and denote the action of

a linear map on x as

This notation suggests that the action of M on x is a kind of

multiplication; indeed (1) and (2) give the distributive

property of this kind of multiplication.

Exercise 1. Verify that the composite of two linear maps is

linear, and that the distributive law holds:

Definition. A mapping is invertible if it maps X one-to-one

and onto U.

If M is invertible, it has an inverse, denoted as M-1, that

satisfies

where I on the left is the identity mapping in X, on the right

on U. If M is linear, so is M-1.

Definition. The nullspace of M, denoted by NM, is the set

of points mapped into zero.

The range of M, denoted by RM, is the image of X under M

in U.

Theorem 1. Let M be a linear map of X → U.

(i) The nullspace N
M

 is a linear subspace of X, the range

RM a linear subspace of U.

(ii) M is invertible iff NM = {0} and RM = U.

(iii) M maps the quotient space X/NM one-to-one onto

RM.

(iv) If M : X → U and K : U → W are both invertible, so is

their product, and

(v) If KM is invertible, then



Exercise 2. Prove theorem 1.

We remark that when x = U = W are finite dimensional,

then the invertibility of the product NM implies that N and

M separately are invertible. This is not so in the infinite-

dimensional case; take, for instance, X to be the space of

infinite sequences

and define R and L to be right and left shift: Rx = (0, a1, a2,

…), Lx = (a2, a3, …). Clearly, LR is the identity map, but

neither R nor L are invertible; nor is RL the identity.

We formulate now a number of useful notions and results

concerning mappings of a linear space into itself:

We denote by Nj the nullspace of the jth power of M:

(5) 

Theorem 2. The subspaces Nj defined in (5) have these

properties:

(6) 

and

(7) 

Proof. Equation (6) is an immediate consequence of (5). To

show (7), we claim that M maps Nj+1/Nj into Nj/Nj-1 in a

one-to-one fashion. To see this, note that a nonzero element

of Nj+1/Nj is represented by a point z in Nj+1 that does not

lie in Nj. Clearly, Mz lies in Nj but not in Nj-1; this shows the

one-to-oneness. It follows that Nj+1/Nj is isomorphic to a

subspace of Nj/Nj-1, from which the statement (7) about

dimension follows. When Nj+1/Nj is infinite-dimensional, so

is Nj/Nj-1.


