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FOREWORD

This book grew out of a course of lectures on functional
analysis taught over many years to second-year graduate
students at the Courant Institute of New York University. It is
a graduate text, not a treatise or a monograph. Most of the
chapters are short, for it is easier to digest material in small
chunks. Not all topics can be presented briefly, so some of
the chapters are longer. Theorems and lemmas, as well as
equations, are numbered consecutively in each chapter.

The first 23 chapters make only a modest technical
demand on the reader; this material would serve very well
as text for an introductory graduate course on functional
analysis. The rest of the material is well suited as text for a
more advanced graduate course on functional analysis in
general, or on Hilbert space in particular.

When | was a student, the only text on functional analysis
was Banach’s original classic, written in 1932; Hille’s book
appeared in time to serve as my graduation present. For
Hilbert space there was Stone’s Colloquium publication, also
from 1932, and Sz.-Nagy’s Ergebnisse volume. Since then,
our cup hath run over; first came Riesz and Sz.-Nagy, then
Dunford and Schwartz, Yosida, later Reed and Simon, and
Rudin. For Hilbert space, there was Halmos’s elegant
slender volume, and Achiezer and Glazman, all of which |
read with pleasure and profit. Many, many more good texts
have appeared since. Yet | believe that my book offers
something new: the order in which the material is arranged,
the interspersing of chapters on theory with chapters on
applications, so that cold abstractions are made flesh and
blood, and the inclusion of a very rich fare of mathematical
problems that can be clarified and solved from the
functional analytic point of view.



In choosing topics | heeded the warning of my teacher
Friedrichs: “It is easy to write a book if you are willing to put
into it everything you know about the subject.” | present the
basic structure of the subject, and those more advanced
topics that loom large in the body of mathematics. Among
these are the spectral resolution and spectral representation
of self-adjoint operators, the theory of compact operators,
the Krein-Milman theorem, Gelfand’s theory of commutative
Banach algebras, invariant subspaces, strongly continuous
one-parameter semigroups. | discuss the index of operators,
so important in calculating topological invariants; the
celebrated trace formula of Lidskii, a powerful tool in
analysis; the Fredholm determinant and its generalizations,
rising again after almost a hundred years of hibernation;
and scattering theory, another gqift from physics to
mathematics. | have also included some (but not all) special
topics close to my heart.

What has been omitted? All of nonlinear functional
analysis, for which | recommend the four-volume treatise by
Zeidler. Operator algebras, except for Gelfand’s theory of
commutative Banach algebras. | slight the geometric theory
of Banach spaces; happily a handbook on this subject,
edited by Bill Johnson and Joram Lindenstrauss is about to
be published by North Holland.

What are the prerequisites? What every second-year
graduate student-and many undergraduates—knows:

e Naive set theory. Denumerable sets, the continuum,
Zorn’s lemma.

e Linear algebra. The alternative for linear maps, trace
and determinant of a matrix, the spectral theory of
general and symmetric matrices, functions of a matrix.

e Point set topology. Complete metric spaces, the Baire
category principle, Hausdorff spaces, compact sets,
Tychonov’s theorem.

e Basic theory of functions of a complex variable.



e Real variables. The Arzela-Ascoli theorem, the Lebesgue
decomposition of measures on i, Borel measure on
compact spaces.

It is an accident of history that measure theory was
invented before functional analysis. The usual presentations
of measure theory fail to take advantage of the concepts
and constructions of functional analysis. In an appendix on
the Riesz-Kakutani representation theorem | show how to
use the tools of functional analysis in measure theory.
Another appendix summarizes the basic facts of Laurent
Schwartz’s theory of distributions.

Many of the applications are to problems of partial
differential equations. Here a nodding aquaintance with the
Laplace and the wave equation would help, although an
alert uninformed reader could pick up some of the basic
results from these pages.

Like most mathematicians, | am no historian. Yet | have
included historical remarks in some of the chapters, mainly
where | had some firsthand knowledge, or where
conventional history has been blatantly silent concerning
the tragic fate of many of the founding fathers of functional
analysis during the European horrors of the 1930s and
1940s.

| am indebted to many. | learned the rudiments of
functional analysis, and how to apply them, from my
teacher Friedrichs. Subsequently my views were shaped by
the work of Tosio Kato, who has brought the power of
functional analysis to bear on an astonishing range of
problems. My happy and long collaboration with Ralph
Phillips has led to some unusual uses of functional analysis.
r learned much from lIsrael Gohberg, especially about the
index of Toeplitz operators, from Bill Johnson about the fine
points of the geometry of Banach spaces, and from Bob
Phelps about Choquet’s theorem. | thank Reuben Hersh and
Louise Raphael for their critique of the appendix on



distributions, and Jerry Goldstein for his expert comments
on the material on semigroups and scattering theory. To all
of them, as well as to Gabor Francsics, my thanks.

Jerry Berkowitz and | alternated teaching functional
analysis at the Courant Institute. This would be a better
book had he lived and looked the manuscript over critically.

| thank Jeff Rosenbluth and Paul Chernoff for a careful
reading of the early chapters, and Keisha Grady for TEXing
the manuscript, and cheerfully making subsequent changes
and corrections.

The lecture course was popular and successful with
graduate students of the Courant Institute. | hope this
printed version retains the spirit of the lectures.

PETER D. LAX

New York. NY
November 2001



1

LINEAR SPACES

A linear space X over a field F is a mathematical object in
which two operations are defined: addition and
multiplication by scalars.
Addition, denoted by +,as in
(1) x+»
is assumed to be commutative,
(2) X+ y=1y+x,
associative,
(3) x+(y+2)=(+y +z2,
and to form a group, with the neutral element denoted as O:
(4) x+0=rx.
The inverse of addition is denoted by-:
(B)x+(=x)=x-x=0.
The second operation is the multiplication of elements of X
by elements k of the field F:
kx.
The result of this multiplication is again an element of X.

Multiplication by elements of F is assumed to be
associative,

(6) klax) = (ka)x.
and distributive,

(7) klx+y) =kx +ky
as well as

(8) fa+b)x =ax + bx



We assume that multiplication by the unit of F, denoted as
1, acts as the identity:

(9) lx = x.

These are the axioms of linear algebra. From them
proceed to draw some deductions.

Set b = 0in (8). It follows that for all x,

(10) 0x =0.

Seta=1, b=-1in(8). Using (9) and (10), we deduce that
for all x,

(11) (—1x = —x.

The finite-dimensional linear spaces are dealt with in
courses on linear algebra. In this book the emphasis is on
the infinite-dimensional ones—those that are not
finitedimensional. The field F will be either the real numbers
R Oor the complex numbers ¢ Here are some examples.

Example 1. X is the space of all polynomials in a single
variable s, with real coefficients, here F = &

Example 2. X is the space of all polynomials in N variables
s1, -.-, S N, with real coefficients, here F = r
Example 3. G is a domain in the complex plane, and X the
space of all functions complex analytic in G, here F = .
Example 4. X = space of all vectors

x = (a),ap,...)
with infinitely many real components, here F = r
Example 5. Q is a Hausdorff space, X the space of all
continuous real-valued functions on Q, here F = r

Example 6. M is a C* differentiable manifold, X = C® (M),
the space of all differentiable functions on M.

Example 7. Q is a measure space with measure m, X = L1
(Q, m).

Example 8. X = LP(o,m).
Example 9. X = harmonic functions in the upper half-plane.



Example 10. X = all solutions of a linear partial differential
equation in a given domain.

Example 11. All meromorphic functions on a given
Riemann surface; F = .

We start the development of the theory by giving the basic
constructions and concepts. Given two subsets S and T of a
linear space X, we define their sum, denoted as S + T to be
the set of all points x of the form x =y + z yin 5, zin T.
The negative of a set S, denoted as -5, consists of all points
x of the form x = -y, yin S.

Given two linear spaces Z and U over the same field, their
direct sum is a linear space denoted as Z ® U, consisting of
ordered pairs (z,u), zin Z, uin U. Addition and multiplication
by scalars is componentwise.

Definition. A subset Y of a linear space X is called a /inear
subspace of X if sums and scalar multiples of Y belong to Y.
Theorem 1.
(i) The sets {0} and X are linear subspaces of X.
(ii) The sum of any collection of subspaces is a subspace.
(iii) The intersection of any collection of subspaces is a
subspace.
(iv) The union of a collection of subspaces totally ordered
by inclusion is a sub-space.
Exercise 1. Prove theorem 1.

Let S be some subset of the linear space X. Consider the
collection {Yg } of all linear subspaces that contain the
setS. This collection is not empty, since it certainly contains
X.

Definition. The intersection nY of all linear subspaces Yy
containing the set Sis called the /inear span of the set S.
Theorem?2.

(i) The linear span of a set S is the smallest linear
subspace containing S.



(ii) The linear span of S consists of all elements x of the
form

"
X = E & Xi, x; € 85, a; € F, n any natural number.

(12

Proof Part (i) is merely a rephrasing of the definition of
linear span. To prove part (ii), we remark that on the one
hand, the elements of the form (12) form a linear subspace
of X; on the other hand, every x of form (12) is contained in
any subspace Y containing S.
REMARK 1. An element x of form (12) is called a /inear
combination of the points xj, ... ,xp. SO theorem 1 can be

restated as follows:

The linear span of a subset S of a linear space consists of
all linear combinations of elements of S.
Definition. X a linear space, Y a linear subspace of X. Two
points x1 and x2 of X are called equivalent modulo Y,

denoted as x1 = x2 (mod Y), if x] — x2 belongs to Y.

It follows from the properties of addition that equivalence
mod Y is an equivalence relation, meaning that it is
symmetric, reflexive, and transitive. That being the case, we
can divide X into distinct equivalence classes mod Y. We
denote the set of equivalence classes as X/ Y. Theset X/Y
has a natural linear structure; the sum of two equivalence
classes is defined by choosing arbitrary points in each
equivalence class, adding them and forming the
equivalence class of the sum. It is easy to check that the
last equivalence class is independent of the representatives
we picked; put differently, if x1 = z1, x = z2. then x1 + x2
= z1 + z2 mod Y. Similarly we define multiplication by a

scalar by picking arbitrary elements in the equivalence
class. The resulting operation does not depend on the
choice, since, if x] = 27, then kx1 = kz1 mod Y.The quotient

set X/ Y endowed with this natural linear structure is called



the quotient space of X mod Y. We define codim Y= dim X/
Y.
Exercise 2. Verify the assertions made above.

As with all algebraic structures, so with linear structures
we have the concept of isomorphism.
Definition. Two linear spaces X and Z over the same field
are isomorphic if there is a one-to-one correspondence T
carrying one into the other that maps sums into sums,
scalar multiples into scalar multiples; that is,

Tix) 4+ x2) = Tix) 4+ Tixa),

(13) T(kx) = kT(x).
We define similarly homomorphism, called in this context a
linear map.
Definition. X and U are linear spaces over the same field. A
mapping M : X - U is called linear if it carries sums into
sums, and scalar multiples into scalar multiples; that is, if

forall x, yin Xand all kin F
Mix + v) = Mx) + M(yv),

(14) Mikx) = kMx).
X is called the domain of M, U its target.
REMARK 2. An isomorphism of linear spaces is a linear map
that is one-to-one and onto.
Theorem 3.
(i) The image of a linear subspace Y of X under a linear
map M : X—- U is a linear subspace of U.
(ii) The inverse imaRe under M of a linear subspace V of
U is a linear subspace of X.
Exercise 3. Prove theorem 3.
A very important concept in a linear space over the reals is
convexity:
Definition. X is a linear space over the reals; a subset K of
X is called convex if, whenever x and y belong to K, the
whole segment with endpoints x, y, meaning all points of
the form



(15) ax +(1 —a)y, D=a=<l,
also belong to K.

Examples of convex sets in the plane are the circular disk,
triangle, and semicircular disk. The following property of
convex sets is an immediate consequence of the definition:
Theorem 4. Let K be a convex subset of a linear space X
over the reals. Suppose that x1, ... , xn belong to K; then so

does every x of the form

n
X= ZIIJ'"-"‘ a; =0,
Zal = ].
(16) =

Exercise 4. Prove theorem 4.
An x of form (16) is called a convex combination of x1 ,x7,

e Xn-
Theorem 5. Let X be a linear space over the reals.

(i) The empty set is convex.

(ii) A subset consisting of a single point is convex.

(iii) Every linear subspace of X is convex.

(iv) The sum of two convex subsets is convex.

(v) If K is convex, so is -K.

(vi) The intersection of an arbitrary collection of convex
sets is convex.

(vii) Let {Kj} be a collection of convex subsets that is
totally ordered by inclusion. Then their union UKj is
convex.

(viii) The image of a convex set under a linear map is
convex.

(ix) The inverse image of a convex set under a linear
map is convex.

Exercise 5. Prove theorem 5.



Definition. Let S be any subset of a linear space X over the
reals. The convex hull of S is defined as the intersection of
all convex sets containing S. The hull is denoted as 5.
Theorem 6.
(i) The convex hull of S is the smallest convex set
containing S.
(if) The convex hull of S consists of all convex
combinations (16) of points of S.
Exercise 6. Prove theorem 6.

Definition. A subset E of a convex set K is called an
extreme subset of K if:

(i) Eis convex and nonempty.

(ii) whenever a point x of E is expressed as
y+z

X = \ yv,zin K,
'j‘ e

then both y and z belong to E.
An extreme subset consisting of a single point is called an
extreme point of K.

Example 1. K is the interval 0 = x = 1; the two endpoints
are extreme points.
Example 2. Kis the closed disk

4y = 1.

Every point on the circle X2 + y2 = 1 is an extreme point.
Example 3. The open disk

v =1
has no extreme points.
Example 4. K a polyhedron, including faces. Its extreme
subsets are its faces, edges, vertices, and of course K itself.

Theorem 7. Let K be a convex set, E an extreme subset of
K and Fan extreme subset of E. Then F is an extreme subset
of K.

Exercise 7. Prove theorem 7.



Theorem 8. Let M be a linear map of the linear space X
into the linear space U. Let K be a convex subset of U, E an
extreme subset of K. Then the inverse image of E is either
empty or an extreme subset of the inverse image of K.
Exercise 8. Prove theorem 8.
Exercise 9. Give an example to show that the image of an
extreme subset under a linear map need not be an extreme
subset of the image.

Taking U to be one dimensional, we get
Corollary 8. Denote by H a convex subset of a linear space
X, / a linear map of X into &, Hmin and Hmax the subsets of

H, where I achieves its minimum and maximum,
respectively.
Assertion. When nonempty, Hmin and Hmax are extreme

subsets of H.



2

LINEAR MAPS

2.1 ALGEBRA OF LINEAR
MAPS

We recall from chapter 1 that a /inear map from one linear
space X into another, U, both over 1he same field of scalars,
is @ mapping of Xinto U,

M:X — U,
that is an algebraic homomorphism:
M(x + y) = M(x) + M(y).

(1) Mikx) = kMix).

In this section we explore those properties of linear maps
that depend on the purely algebraic properties (1), without
any topological restrictions imposed on the spaces X, U.

The sum of two linear maps M and N of X into U, and the
scalar multiple is defined as

(2) M+ N)(x) = M(x) + N(x),

(3) (kM)(x) = kM(x).

This makes a linear space out of the set of linear maps of
X into U. The space is denoted as (X, U). Given two linear
maps, one, M from X - U, the other, N from U - W, we can
define their product as the composite map

(4) (NM)(x) = N(M(x)).

Since compositon of maps in general is associative, so is in

particular the composition of linear maps. As we will see,
composition is far from being commutative.



From now on we omit the bracket and denote the action of
a linear map on x as

Mix) = Mux.
This notation suggests that the action of M on x is a kind of
multiplication; indeed (1) and (2) give the distributive
property of this kind of multiplication.

Exercise 1. Verify that the composite of two linear maps is

linear, and that the distributive law holds:
M(N + K) = MN + MK,
(M + K)N = MN + KN.

Definition. A mapping is invertible if it maps X one-to-one
and onto U.

If M is invertible, it has an inverse, denoted as M1, that
satisfies

M- M=1, MM~ =1,
where 1 on the left is the identity mapping in X, on the right
on U. If M is linear, so is ML
Definition. The nullspace of M, denoted by N, is the set
of points mapped into zero.

The range of M, denoted by Rpv, is the image of X under M
in U.
Theorem 1. Let M be a linear map of X - U.

(i) The nullspace NM is a linear subspace of X, the range

RM a linear subspace of U.

(ii) M is invertible iff N = {0} and Rm = U.

(ili) M maps the quotient space X/NpM one-to-one onto
RM-

(iv)IfM: X - Uand K: U - W are both invertible, so is
their product, and

(KM)" ' =MTK!.
(v) If KM is invertible, then



My =10}, Rg=W.

Exercise 2. Prove theorem 1.

We remark that when x = U = W are finite dimensional,
then the invertibility of the product NM implies that N and
M separately are invertible. This is not so in the infinite-
dimensional case; take, for instance, X to be the space of
infinite sequences

X ={ay.az,...)
and define R and L to be right and left shift: Rx = (0, a7, ap,
...), Lx = (ap, a3, ...). Clearly, LR is the identity map, but
neither R nor L are invertible; nor is RL the identity.

We formulate now a number of useful notions and results
concerning mappings of a linear space into itself:

M: X — X.

We denote by N;the nullspace of the jth power of M:

(5) Nj = M-
Theorem 2. The subspaces Nj defined in (5) have these
properties:

(6) Ni € Njsr  forall j
and

7) dim (Nf:ril) = dim(ﬁ?;:l) forall j.
Proof. Equation (6) is an immediate consequence of (5). To

show (7), we claim that M maps Nj1/Nj into N/Nj.7 in a

one-to-one fashion. To see this, note that a nonzero element
of Nj+1/Njis represented by a point zin Nj4 1 that does not

lie in Nj. Clearly, Mz lies in Njbut not in Nj_7; this shows the
one-to-oneness. It follows that Njj 1/Nj is isomorphic to a
subspace of Nj/Nj.j, from which the statement (7) about
dimension follows. When Nj, 7/N; is infinite-dimensional, so
is Ni/Nj_1.




