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Preface

This is a textbook for a first course in either topology
beginning in Chapter 1 or geometric topology beginning in
Chapter 3. Our goal is to present the essentials of topology
that underpin mathematics while quickly moving to the
most interesting and useful topics. The framework of this
text is rigorous theorems and proofs. We have the
philosophy that a good proof should be clean and elegant,
and that clear and complete logic elucidates the heart of a
matter more than does a long intuitive discussion. However,
we are generous with exposition outside of the proofs, and
we introduce geometric examples and interesting
applications as early as possible. We hope that the reader
gains intuition early in the text and appreciates the beauty
of topology as well as its importance to mathematics and
science.

The range of topics is distributed among the topological
subfields of point set topology, combinatorial topology,
differential topology, geometric topology, and algebraic
topology, while offering a broad variety of examples and
applications. Choices in subject matter reflect the desire to
present the elegant and complete theory of topology, with
numerous examples and figures, while leaving time in a
course for applications. Applied examples investigate the
use of topology in physics, computer graphics, condensed
matter, economics, chemistry, robotics, cosmology,
dynamical systems, modeling, groups, and other
mathematical and scientific fields. However, our
presentation is planned around the theoretic framework of
topology, and the applications are used to add intuition and
utility to the subject.

Applications of topology are different from applications of
other areas of mathematics. The utility of topology comes



from its ability to categorize and count objects using
qualitative “approximate” information as opposed to exact
values. Our primary criteria in choosing applications is to
look for questions from outside of topology whose solution
involved topology and would have been either significantly
more difficult or impossible without topology. (Farmers might
use calculus to optimize their fence planning, but do not
need the Jordan curve theorem to determine whether their
chickens can escape from a fenced-in area!) This criterion
was suggested informally by Jeff Weeks.

In most applications the topology is employed out of a
need to handle the qualitative information. In condensed-
matter physics, for example, a main goal is to determine the
emergent behavior of a very large number of interacting
molecules. Because the exact positions of all individual
molecules cannot be determined practically, and because of
the nature of the interactions, understanding the topological
qualitative properties of the interactions is an essential part
of determining the properties of materials such as
superconductors (Section 5.7). A primary goal in cosmology
is to determine the topology, or “shape,” of the universe as
a 3–manifold. This shape of the universe determines, among
other things, whether the universe is destined to eventually
collapse in on itself in a “big crunch.” (Section 3.7) A
primary goal in dynamical systems, discussed throughout
this text, is to use qualitative statements about a model to
make qualitative, although certain, predictions about the
resulting behavior. Qualitative properties of interactions in
game theory discussed in Section 4.7 result in Nash
equilibria, which govern many important interactions in
economics. The basic principle in dynamical systems and
much of game theory is that governing laws, especially
those involving social or biological interactions, can be
known only approximately. Moreover, even when precise
laws are known, chaotic interactions can make the resulting



behavior too complicated for precise predictions to be
useful. Topology enables us to handle qualitative laws and
determine qualitative, but provable, resulting behavior.

Most of the applications appear in separate sections. This
provides the reader (or instructor) with flexibility, choosing
the applications that are most relevant. This format also
provides ample room for background exposition with each
application. Instructors may choose to cover any variety of
the applications, or may assign them as reading for the
students. One possible format, which has proved useful, is
to have students read the applied sections and give
presentations on applications, teaching each other.

Every scientific discipline has its own jargon, its own set of
goals, and its own way of viewing the world. Thus, in each
applied section there is a balancing act between presenting
the material from the point of view of the applied field and
presenting it in a manner consistent with the theory of
topology. The result, due mostly to the background of the
author, is a presentation of the applied topology from the
perspective of a mathematician with all possible respect for
the applied field. For a thorough treatment of the applied
field the reader should consult the references cited in the
sections.

One other unique feature of this book is the occasional
“core intuition” segments. These short paragraphs explain
the basic intuition for some of the topics. Hopefully, this will
aid the reader encountering the theory of topology for the
first time. One has to take great care, of course, to avoid
depending too heavily on intuition. Like a magician in front
of an audience, theory can play tricks on us when we look
only for what we want to see.

A good student will learn to read the text with a pencil and
paper in hand. Questions should be asked about all
definitions: Can I think of examples? Can I create an
equivalent formulation of the definition? Can I draw the



picture of an example? What are each of the parts of the
definition there for? Similar questions should be considered
when encountering a theorem: Does the theorem make
intuitive sense? Does it look similar to another theorem I
know? How would I begin to prove it? Do I recall all terms
used in the theorem? Can I think of an example? Can I think
of a counterexample? (Probably not, but trying to beat the
theorem often gives insights as to why it is true!) Can I draw
a picture of it? Is it true if I remove some of the conditions?
Can I generalize it or think of a specific simple case? A proof
should be read not only step by step to see its logical
progression, but as a whole. It is often helpful to try to
summarize the proof in a single sentence.

The most important logical prerequisite is a standard
sequence in calculus. Some of the material, particularly the
sections on topological groups, the fundamental group, and
homology, involves the algebra of groups. Chapter B
provides the basic theory. One recurring theme is the
demonstration of connections between topology and topics
from mathematics and science. In most cases no previous
experience is assumed. For example, Chapter 1 begins with
coverage of the ε, δ definition of continuity and we prove
that the open set definition of continuity is a generalization.
No prior exposure to the ε, δ definition is assumed.

The chapters are organized to be covered in order.
However, Chapter 6 does not rely on Chapter 5, with the
exception of Section 6.7. So it is possible to skip some or all
of Chapter 5. This allows an instructor to cover the basics
both the fundamental group (Chapter 5) and the basics of
Homology (Chapter 4) in a course with limited time.

The author is honored to thank a number of people who
helped create this book. George Thurston was a great help
at every stage of writing, suggesting many of the
applications in quantum physics and thermodynamics.
George also proofread much of the book and made



numerous helpful suggestions about pedagogy. Tamas
Wiandt read the book in its entirety and made too many
good suggestions to count. Glenn R. Hall and Bob Devaney
both assisted with the sections on the history and notions of
chaos (Sections 1.7.1 and 1.7.3). Robert Ghrist provided
guidance in the section on topology of robot coordination
(Section 3.7.1). Jeff Weeks was a great help with the section
of topology in cosmology (Section 3.7.3), as was the NASA
WMAP team. Nicolas Ray was very helpful with the section
on index theory in computer graphics (Section 4.9). James
Sethna greatly improved the section on condensed matter
(Section 5.7.1). Afra Zomorodian assisted with the section of
computational topology (Section 6.9). Denis Blackmore also
provided help with the section on computational topology.
Bernie Brooks, Matthew Coppenbarger, Doug Meadows, and
Joel Zablow each read significant portions of the book and
provided helpful feedback.

The author would like to thank the National Science
Foundation, and John Haddock, for their support for the
project. The Rochester Institute of Technology, especially
Sophia Maggelakis and Ian Gatley, provided abundant
support in both time and encouragement. Everyone at John
Wiley deserves thanks for their efforts in making this work
possible.

I would also like to thank several people on a personal
level. Richard McGovern, my undergraduate advisor, gave
much to introduce me to the beauty and power of math. My
graduate advisor, Glenn R. Hall, showed me the power of
topology in dynamical systems and continues to be a valued
personal mentor. I would also like to thank my parents,
Richard and Carol, who have always believed in me. Most of
all, I am blessed to thank my wife, Amber Basener, whose
friendship and encouragement are invaluable.

Of course, all errors are the responsibility of the author
alone. All comments and suggestions about this work are



encouraged, and can be emailed to the author.
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