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PREFACE

For many years the author has been urged to develop a text

on linear algebra based on material in the second edition of

his two-volume Calculus, which presents calculus of

functions of one or more variables, integrated with

differential equations, infinite series, linear algebra,

probability, and numerical analysis. To some extent this was

done by others when the two Calculus volumes were

translated into Italian and divided into three volumes,* the

second of which contained the material on linear algebra.

The present text is designed to be independent of the

Calculus volumes.

To accommodate a variety of backgrounds and interests,

this text begins with a review of prerequisites (Chapter 0).

The review is divided into two parts: pre-calculus

prerequisites, needed to understand the material in

Chapters 1 through 7, and calculus prerequisites, needed for

Chapters 8 through 10. Chapters 1 and 2 introduce vector

algebra in n-space with applications to analytic geometry.

These two chapters provide motivation and concrete

examples to illustrate the more abstract treatment of linear

algebra presented in Chapters 3 through 7.

Chapter 3 discusses linear spaces, subspaces, linear

independence, bases and dimension, inner products,

orthogonality, and the Gram-Schmidt process. Chapter 4

introduces linear transformations and matrices, with

applications to systems of linear equations. Chapter 5 is

devoted to determinants, which are introduced

axiomatically through their properties. The treatment is

somewhat simpler than that given in the author’s Calculus.

Chapter 6 treats eigenvalues and eigenvectors, and includes

the triangularization theorem, which is used to deduce the



Cayley-Hamilton theorem. There is also a brief section on

the Jordan normal form. Chapter 7 continues the discussion

of eigenvalues and eigenvectors in the setting of Euclidean

spaces, with applications to quadratic forms and conic

sections.

In Chapters 3 through 7, calculus concepts occur only

occasionally in some illustrative examples, or in some of the

exercises; these are clearly identified and can be omitted or

postponed without disrupting the continuity of the text. This

part of the text is suitable for a first course in linear algebra

not requiring a calculus prerequisite. However, the level of

presentation is more appropriate for readers who have

acquired some degree of mathematical sophistication in a

course such as elementary calculus or finite mathematics.

Chapters 8, 9, and 10 definitely require a calculus

background. Chapter 8 applies linear algebra concepts to

linear differential equations of order n, with special

emphasis on equations with constant coefficients. Chapter 9

uses matrix calculus to discuss systems of differential

equations. This chapter focuses on the exponential matrix,

whose properties are derived by an interplay between linear

algebra and matrix calculus. Chapter 10 treats existence

and uniqueness theorems for systems of differential

equations, using Picard’s method of successive

approximations, which is also cast in the language of

contraction operators.

Although most of the material in this book was extracted

from the author’s Calculus, some topics have been revised

or rearranged, and some new material and new exercises

have been added.

This textbook can be used by first- or second-year

students in college, and it can also be of interest to more

mature individuals, who may have studied mathematics

many years ago without learning linear algebra, and who



now wish to learn the basic concepts without undue

emphasis on abstraction or formalization.

TOM M. APOSTOL

California Institute of Technology

*Calcolo, Volume primo: Analisi 1; Volume Secondo:

Geometria; Volume Terzo: Analisi 2. Published by Editore

Boringhieri, 1977.



0

REVIEW OF PREREQUISITES

Part 1 of this chapter summarizes some pre-calculus

prerequisites for this book—facts about real numbers,

rectangular coordinates, complex numbers, and

mathematical induction. Part 2 does the same for calculus

prerequisites. Chapters 1 and 2, which deal with vector

algebra and its applications to analytic geometry, do not

require calculus as a prerequisite. These two chapters

provide motivation and concrete examples to illustrate the

abstract treatment of linear algebra that begins with

Chapter 3. In Chapters 3 through 7, calculus concepts occur

only occasionally in some illustrative examples, or in some

exercises; these are clearly identified and can be omitted or

postponed without disrupting the continuity of the text.

Although calculus and linear algebra are independent

subjects, some of the most striking applications of linear

algebra involve calculus concepts—integrals, derivatives,

and infinite series. Familiarity with one-variable calculus is

essential to understand these applications, especially those

referring to differential equations presented in the last three

chapters. At the same time, the use of linear algebra places

some aspects of differential equations in a natural setting

and helps increase understanding.

Part 1. Pre-calculus Prerequisites



0.1 Real numbers as

points on a line
Real numbers can be represented geometrically as points on

a straight line. A point is selected to represent 0 and

another, to the right of 0, to represent 1, as illustrated in

Figure 0.1. This choice determines the scale, or unit of

measure. If one adopts an appropriate set of axioms for

Euclidean geometry, then each real number corresponds to

exactly one point on this line and, conversely, each point on

the line corresponds to one and only one real number. For

this reason, the line is usually called the real line or the real

axis. We often speak of the point x rather than the point

corresponding to the real number x. The set of all real

numbers is denoted by R.

FIGURE 0.1 Real numbers represented geometrically on a

line.

If x < y, point x lies to the left of y as shown in Figure 0.1.

Each positive real number x lies at a distance x to the right

of zero. A negative real number x is represented by a point

located at a distance |x| to the left of zero.

0.2 Pairs of real numbers

as points in a plane
Points in a plane can be represented by pairs of real

numbers. Two perpendicular reference lines in the plane are

chosen, a horizontal x axis and a vertical y axis. Their point

of intersection, denoted by 0, is called the origin. On the x

axis a convenient point is chosen to the right of 0 to



represent 1; its distance from 0 is called the unit distance.

Vertical distances along the y axis are usually measured

with the same unit distance. Each point in the plane is

assigned a pair of numbers, called its coordinates, which tell

us how to locate the point. Figure 0.2 illustrates some

examples. The point with coordinates (3, 2) lies three units

to the right of the y axis and two units above the x axis. The

number 3 is called the x coordinate or abscissa of the point,

and 2 is its y coordinate or ordinate. Points to the left of the

y axis have a negative abscissa; those below the x axis

have a negative ordinate. The coordinates of a point, as just

defined, are called its Cartesian coordinates in honor of

René Descartes (1596–1650), one of the founders of

analytic geometry.

When a pair of numbers is used to represent a point, we

agree that the abscissa is written first, the ordinate second.

For this reason, the pair (a, b) is referred to as an ordered

pair: the first entry is a, the second is b. Two ordered pairs

(a, b) and (c, d) represent the same point if and only if we

have a = c and b = d. Points (a, b) with both a and b

positive are said to lie in the first quadrant; those with a > 0

and b > 0 are in the second quadrant, those with a > 0 and

b > 0 are in the third quadrant, and those with a > 0 and b

> 0 are in the fourth quadrant. Figure 0.2 shows one point in

each quadrant.

The procedure for locating points in space is analogous.

We take three mutually perpendicular lines in space

intersecting at a point (the origin). These lines determine

three mutually perpendicular planes, and each point in

space can be completely described by specifying, with

appropriate regard for signs, the distances from these

planes. We shall discuss three-dimensional Cartesian

coordinates in a later chapter; for the present we confine

our attention to the two-dimensional case.



FIGURE 0.2 Points in the plane represented by pairs of real

numbers.

FIGURE 0.3 The circle represented by the Cartesian equation

x2 + y2 = r.

A geometric figure, such as a curve in the plane, is a

collection of points satisfying one or more special

conditions. By expressing these conditions in terms of the

coordinates x and y we obtain one or more relations

(equations or inequalitites) that characterize the figure in

question. For example, consider a circle of radius r with its

center at the origin, as shown in Figure 0.3.

Let (x, y) denote the coordinates of an arbitrary point P on

this circle. The line segment OP is the hypotenuse of a right



triangle whose legs have lengths |x| and |y| and, hence, by

the theorem of Pythagoras, we have

This equation, called a Cartesian equation of the circle, is

satisfied by all points (x, y) on the circle and by no others,

so the equation completely characterizes the circle. Points

inside the circle satisfy the inequality x2 + y2 < r2, while

those outside satisfy x2 + y2 > r2. This example illustrates

how analytic geometry is used to reduce geometrical

statements about points to algebraic relations about real

numbers.

0.3 Polar coordinates
Points in a plane can also be located by using polar

coordinates. This is done as follows. Let P be a point distinct

from the origin. Suppose the line segment joining the origin

to P has length r > 0 and makes an angle of θ radians with

the positive x axis, as shown by the example in Figure 0.4.

The two numbers r and θ are called polar coordinates of P.

They are related to the rectangular coordinates x and y by

the equations

(0.1) 

FIGURE 0.4 Polar coordinates.



The positive number r is called the radial distance of P,

and θ is called a polar angle. We say a polar angle rather

than the polar angle because if θ satisfies (0.1) so does θ +

2nπ for any integer n. We agree to call all pairs of real

numbers (r, θ) polar coordinates of P if they satisfy (0.1)

with r > 0.

The radial distance r is uniquely determined by x and y: 

, but the polar angle θ is determined only up to

integer multiples of 2π.

When P is the origin, Eqs. (0.1) are satisfied with r = 0 and

any θ. For this reason, we assign the radial distance r = 0 to

the origin, and we agree that any real θ may be used as a

polar angle.

Some curves are described more simply with polar

coordinates rather than rectangular coordinates. For

example, a circle of radius 2 with center at the origin has

Cartesian equation x2 + y2 = 4. In polar coordinates the

same circle is described by the simpler equation r = 2. The

interior of the circle is described by the inequality r > 2, the

exterior by r > 2.

0.4 Complex numbers

The quadratic equation x2 + 1 = 0 has no solution in the

real-number system because there is no real number whose

square is negative. New types of numbers, called complex

numbers, have been introduced to provide solutions to such

equations.

As early as the 16th century, a symbol  was introduced

to provide solutions of the quadratic equation x2 + 1 = 0.

This symbol, later denoted by the letter i, was regarded as a

fictitious or imaginary number, which could be manipulated

algebraically like an ordinary real number, except that its



square was –1. Thus, for example, the quadratic polynomial

x2 + 1 was factored by writing

and the solutions of the equation x2 + 1 =0 were exhibited

as x = ±i, without any concern regarding the meaning or

validity of such formulas. Expressions such as 2 + 3i were

called complex numbers, and they were used in a purely

formal way for nearly 300 years before they were described

in a manner that would be considered satisfactory by

present-day standards.

Early in the 19th century, Carl Friedrich Gauss (1777–

1855) and William Rowan Hamilton (1805–1865)

independently and almost simultaneously proposed the idea

of defining complex numbers as ordered pairs of real

numbers (a, b) endowed with certain special properties. This

idea is widely accepted today and is described in the next

section.

0.5 Definition and

algebraic properties of

complex numbers
Complex numbers are defined as ordered pairs of real

numbers, in the same way that we described the

rectangular coordinates of points in the plane. The new

feature is that we also define addition and multiplication so

that we can perform algebraic operations on complex

numbers.

DEFINITION. If a and b are real numbers, the pair (a, b) is

called a complex number, provided that equality, addition,

and multiplication of pairs is defined as follows:

(a) Equality: (a, b) = (c, d) means a = c and b = d.



(b) Sum: (a, b) + (c, d) = (a + c, b + d).

(c) Product: (a, b)(c, d) = (ac – bd, ad + bc).

The definition of equality states that (a, b) is to be

regarded as an ordered pair. Thus, the complex number (2,

3) is distinct from the complex number (3, 2). The numbers

a and b are called components of the complex number. The

first component, a, is also called the real part of the

complex number; the second component, b, is called the

imaginary part.

Note that the symbol  does not appear anywhere in this

definition. Presently we shall introduce i as a particular

complex number that has all the algebraic properties

ascribed to the fictitious symbol  introduced by the early

mathematicians. However, before we do this we discuss

basic properties of the operations just defined.

THEOREM 0.1. Addition and multiplication of complex

numbers satisfy the commutative, associative and

distributive laws. That is, if x, y, and z are arbitrary complex

numbers we have the following properties:

Commutative laws: x + y = y + x, xy = yx.

Associative laws: x + (y + z) = (x + y) + z, x(yz) = (xy)z.

Distributive law: x(y + z) = xy + xz.

Proof. All these laws are easily verified directly from the

definition of sum and product. For example, to prove the

associative law for multiplication, we express x, y, z in terms

of their components, say x = (x1, x2), y = (y1, y2), z = (z1,

z2) and note that

The commutative and distributive laws may be similarly

proved.



Further algebraic concepts, such as zero, negative,

reciprocal, and quotient, analogous to those for real

numbers, are defined as follows:

The complex number (0, 0) is called the zero complex

number. It is an identity element for addition because (0, 0)

+ (a, b) = (a, b) for all complex numbers (a, b). Similarly,

the complex number (1, 0) is an identity for multiplication

because

for all (a, b).

Since (–a, –b) + (a, b) = (0, 0) we call the complex number

(–a, –b) the negative of (a, b) and we write –(a, b) for (–a, –

b).

The difference (a, b) – (c,d) of two complex numbers is

defined to be the sum of (a, b) and the negative of (c, d).

Each nonzero complex number (a, b) has a reciprocal

relative to the identity element (1, 0), which we denote by

(a, b)–1. It is given by the ordered pair

(0.2) 

and it has the property that (a, b)(a, b)–1 = (1, 0). Note that

a2 + b2 ≠ 0 because (a, b) ≠ (0, 0).

The quotient (a, b)/(c, d) of two complex numbers with (c,

d) ≠ (0, 0) is defined to be the product (a, b)(c, d)–1.

0.6 Complex numbers as

an extension of real

numbers
Let C denote the set of all complex numbers. Consider the

subset C0 of C consisting of all complex numbers of the



form (a, 0), that is, all complex numbers with zero imaginary

part. The sum or product of two members of C0 is again in

C0. In fact we have

This shows that we can add or multiply two numbers in C0

by adding or multiplying the real parts alone. Or, in other

words, with respect to addition and multiplication, the

numbers in C0 act exactly as though they were real

numbers. The same is true for subtraction and division

because –(a, 0) = (–a, 0), and (b, 0)–1 = (b–1, 0) if b ≠ 0. For

this reason, we make no distinction between the real

number x and the complex number (x, 0) whose real part is

x. We agree to identify x and (x, 0) and we write x = (x, 0).

In particular, we write 0 = (0, 0), 1 = (1, 0), –1 = (–1, 0), and

so on. Thus, we can regard the complex number system as

an extension of the real number system.

This also makes sense geometrically. In a later section we

will represent the complex number (x, y) by a point in the

plane with Cartesian coordinates x and y; the subset C0 is

represented geometrically by the points on the x axis.

0.7 The imaginary unit i
Complex numbers have some algebraic properties not

possessed by real numbers. For example, the quadratic

equation x2 + 1 = 0, which has no solution among the real

numbers, can now be solved with the use of complex

numbers. In fact, the complex number (0, 1) is a solution,

because we have

DEFINITION. The complex number (0, 1) is denoted by the

symbol i and is called the imaginary unit.



The imaginary unit has the property that its square is –1,

i2 = –1. Therefore the quadratic equation x2 + 1 = 0 has

the solution x = i. The reader can easily verify that x = –i is

another solution.

Now we can relate the ordered-pair idea with the notation

used by the early mathematicians. First we note that the

definition of multiplication gives us (b, 0)(0, 1) = (0, b), and

hence we have

Therefore if we write a = (a, 0), b = (b, 0), and i = (0, 1),

we get (a, b) = a + bi. In other words, we have proved the

following:

THEOREM 0.2. Every complex number (a, b) can be

expressed in the form (a, b) = a + bi.

This notation aids us in calculations involving addition and

multiplication. For example, to multiply a + bi by c + di, use

the distributive and associative laws, and replace i2 by –1.

Thus,

which, of course, agrees with the definition of multiplication.

Similarly, to compute the reciprocal of a nonzero complex

number a + bi we write

This formula agrees with that given in (0.2).

With complex numbers we can solve not only the simple

quadratic equation x2 + 1 = 0, but also the more general

quadratic equation ax2 + bx + c = 0, where a, b, c are real

and a ≠ 0. By completing the square, we can write this

quadratic equation in the form


