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PREFACE

For many years the author has been urged to develop a text
on linear algebra based on material in the second edition of
his two-volume Calculus, which presents calculus of
functions of one or more variables, integrated with
differential equations, infinite series, linear algebra,
probability, and numerical analysis. To some extent this was
done by others when the two Calculus volumes were

translated into Italian and divided into three volumes,f the
second of which contained the material on linear algebra.
The present text is designed to be independent of the
Calculus volumes.

To accommodate a variety of backgrounds and interests,
this text begins with a review of prerequisites (Chapter 0).
The review is divided into two parts: pre-calculus
prerequisites, needed to understand the material in
Chapters 1 through 7, and calculus prerequisites, needed for
Chapters 8 through 10. Chapters 1 and 2 introduce vector
algebra in n-space with applications to analytic geometry.
These two chapters provide motivation and concrete
examples to illustrate the more abstract treatment of linear
algebra presented in Chapters 3 through 7.

Chapter 3 discusses linear spaces, subspaces, linear
independence, bases and dimension, inner products,
orthogonality, and the Gram-Schmidt process. Chapter 4
introduces linear transformations and matrices, with
applications to systems of linear equations. Chapter 5 is
devoted to determinants, which are introduced
axiomatically through their properties. The treatment is
somewhat simpler than that given in the author’'s Calculus.
Chapter 6 treats eigenvalues and eigenvectors, and includes
the triangularization theorem, which is used to deduce the



Cayley-Hamilton theorem. There is also a brief section on
the Jordan normal form. Chapter 7 continues the discussion
of eigenvalues and eigenvectors in the setting of Euclidean
spaces, with applications to quadratic forms and conic
sections.

In Chapters 3 through 7, calculus concepts occur only
occasionally in some illustrative examples, or in some of the
exercises; these are clearly identified and can be omitted or
postponed without disrupting the continuity of the text. This
part of the text is suitable for a first course in linear algebra
not requiring a calculus prerequisite. However, the level of
presentation is more appropriate for readers who have
acquired some degree of mathematical sophistication in a
course such as elementary calculus or finite mathematics.

Chapters 8, 9, and 10 definitely require a calculus
background. Chapter 8 applies linear algebra concepts to
linear differential equations of order n, with special
emphasis on equations with constant coefficients. Chapter 9
uses matrix calculus to discuss systems of differential
equations. This chapter focuses on the exponential matrix,
whose properties are derived by an interplay between linear
algebra and matrix calculus. Chapter 10 treats existence
and uniqueness theorems for systems of differential
equations, using Picard’s method of successive
approximations, which is also cast in the language of
contraction operators.

Although most of the material in this book was extracted
from the author’'s Calculus, some topics have been revised
or rearranged, and some new material and new exercises
have been added.

This textbook can be used by first- or second-year
students in college, and it can also be of interest to more
mature individuals, who may have studied mathematics
many years ago without learning linear algebra, and who



now wish to learn the basic concepts without undue
emphasis on abstraction or formalization.

TOM M. APOSTOL

California Institute of Technology

*Calcolo, Volume primo: Analisi 1; Volume Secondo:
Geometria; Volume Terzo: Analisi 2. Published by Editore
Boringhieri, 1977.



0

REVIEW OF PREREQUISITES

Part 1 of this chapter summarizes some pre-calculus
prerequisites for this book—facts about real numbers,
rectangular coordinates, complex numbers, and
mathematical induction. Part 2 does the same for calculus
prerequisites. Chapters 1 and 2, which deal with vector
algebra and its applications to analytic geometry, do not
require calculus as a prerequisite. These two chapters
provide motivation and concrete examples to illustrate the
abstract treatment of linear algebra that begins with
Chapter 3. In Chapters 3 through 7, calculus concepts occur
only occasionally in some illustrative examples, or in some
exercises; these are clearly identified and can be omitted or
postponed without disrupting the continuity of the text.

Although calculus and linear algebra are independent
subjects, some of the most striking applications of linear
algebra involve calculus concepts—integrals, derivatives,
and infinite series. Familiarity with one-variable calculus is
essential to understand these applications, especially those
referring to differential equations presented in the last three
chapters. At the same time, the use of linear algebra places
some aspects of differential equations in a natural setting
and helps increase understanding.

Part 1. Pre-calculus Prerequisites



0.1 Real numbers as
points on a line

Real numbers can be represented geometrically as points on
a straight line. A point is selected to represent 0 and
another, to the right of 0, to represent 1, as illustrated in
Figure 0.1. This choice determines the scale, or unit of
measure. If one adopts an appropriate set of axioms for
Euclidean geometry, then each real number corresponds to
exactly one point on this line and, conversely, each point on
the line corresponds to one and only one real number. For
this reason, the line is usually called the real line or the real
axis. We often speak of the point x rather than the point
corresponding to the real number x. The set of all real
numbers is denoted by R.

FIGURE 0.1 Real numbers represented geometrically on a
line.

0 i X .
If x < y, point x lies to the left of y as shown in Figure 0.1.
Each positive real number x lies at a distance x to the right

of zero. A negative real number x is represented by a point
located at a distance |x| to the left of zero.

0.2 Pairs of real numbers
as points in a plane

Points in a plane can be represented by pairs of real
numbers. Two perpendicular reference lines in the plane are
chosen, a horizontal x axis and a vertical y axis. Their point
of intersection, denoted by O, is called the origin. On the x
axis a convenient point is chosen to the right of 0 to



represent 1; its distance from 0 is called the unit distance.
Vertical distances along the y axis are usually measured
with the same unit distance. Each point in the plane is
assigned a pair of numbers, called its coordinates, which tell
us how to locate the point. Figure 0.2 illustrates some
examples. The point with coordinates (3, 2) lies three units
to the right of the y axis and two units above the x axis. The
number 3 is called the x coordinate or abscissa of the point,
and 2 is its y coordinate or ordinate. Points to the left of the
y axis have a negative abscissa; those below the x axis
have a negative ordinate. The coordinates of a point, as just
defined, are called its Cartesian coordinates in honor of
René Descartes (1596-1650), one of the founders of
analytic geometry.

When a pair of numbers is used to represent a point, we
agree that the abscissa is written first, the ordinate second.
For this reason, the pair (a, b) is referred to as an ordered
pair: the first entry is a, the second is b. Two ordered pairs
(a, b) and (c, d) represent the same point if and only if we
have @ = ¢ and b = d. Points (a, b) with both a and b
positive are said to lie in the first quadrant; those with a > 0
and b > 0 are in the second quadrant, those with a > 0 and
b > 0 are in the third quadrant, and those with a > 0 and b
> 0 are in the fourth quadrant. Figure 0.2 shows one point in
each quadrant.

The procedure for locating points in space is analogous.
We take three mutually perpendicular lines in space
intersecting at a point (the origin). These lines determine
three mutually perpendicular planes, and each point in
space can be completely described by specifying, with
appropriate regard for signs, the distances from these
planes. We shall discuss three-dimensional Cartesian
coordinates in a later chapter; for the present we confine
our attention to the two-dimensional case.



FIGURE 0.2 Points in the plane represented by pairs of real
numbers.

p-axis
43
J-m
Ipemmmmaaa- TU,E}
(~2,1)gmmmmnnt |
! | ! x-axis
P
-5 -4 -3 -2 -1 0 I 2 3 4 5
i |
E T !
' -2¢ |
[] 1
[] i
! B e o 4(4,-3)
| —4
(=3, -4y L

FIGURE 0.3 The circle represented by the Cartesian equation
X2 +y2=r

A geometric figure, such as a curve in the plane, is a
collection of points satisfying one or more special
conditions. By expressing these conditions in terms of the
coordinates x and y we obtain one or more relations
(equations or inequalitites) that characterize the figure in
question. For example, consider a circle of radius r with its
center at the origin, as shown in Figure 0.3.

Let (x, y) denote the coordinates of an arbitrary point P on
this circle. The line segment OP is the hypotenuse of a right



triangle whose legs have lengths |x| and |y/ and, hence, by
the theorem of Pythagoras, we have

©+ _1.'2 =rl

This equation, called a Cartesian equation of the circle, is

satisfied by all points (x, y) on the circle and by no others,
so the equation completely characterizes the circle. Points

inside the circle satisfy the inequality X2 + y2 < r2, while

those outside satisfy X2 + y2 > 2. This example illustrates
how analytic geometry is used to reduce geometrical
statements about points to algebraic relations about real
numbers.

0.3 Polar coordinates

Points in a plane can also be located by using polar
coordinates. This is done as follows. Let P be a point distinct
from the origin. Suppose the line segment joining the origin
to P has length r > 0 and makes an angle of 8 radians with
the positive x axis, as shown by the example in Figure 0.4.
The two numbers rand 6 are called polar coordinates of P.
They are related to the rectangular coordinates x and y by
the equations

(u) X =rcosh, ¥ = rsin#,

FIGURE 0.4 Polar coordinates.
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The positive number r is called the radial distance of P,
and 0 is called a polar angle. We say a polar angle rather
than the polar angle because if 8 satisfies (0.1) so does 6 +
2nmr for any integer n. We agree to call all pairs of real
numbers (r, 6) polar coordinates of P if they satisfy (0.1)
with r > 0.

The radial distance r is uniquely determined by x and y:
r=+2Z+y?, but the polar angle 6 is determined only up to
integer multiples of 2m.

When P is the origin, Egs. (0.1) are satisfied with r= 0 and
any 6. For this reason, we assign the radial distance r= 0 to
the origin, and we agree that any real 8 may be used as a
polar angle.

Some curves are described more simply with polar
coordinates rather than rectangular coordinates. For
example, a circle of radius 2 with center at the origin has

Cartesian equation X2 + y2 = 4. In polar coordinates the
same circle is described by the simpler equation r = 2. The
interior of the circle is described by the inequality r > 2, the
exterior by r > 2.

0.4 Complex numbers

The quadratic equation x2 + 1 = 0 has no solution in the
real-number system because there is no real number whose
square is negative. New types of numbers, called complex
numbers, have been introduced to provide solutions to such
equations.

As early as the 16th century, a symbol /=1 was introduced

to provide solutions of the quadratic equation X2 +1=0.
This symbol, later denoted by the letter /, was regarded as a
fictitious or imaginary number, which could be manipulated
algebraically like an ordinary real number, except that its



square was -1. Thus, for example, the quadratic polynomial
x? + 1 was factored by writing

P2+rl=x-i= (x —i}x + 1),

and the solutions of the equation x2 + 1 =0 were exhibited
as x = =i, without any concern regarding the meaning or
validity of such formulas. Expressions such as 2 + 3/ were
called complex numbers, and they were used in a purely
formal way for nearly 300 years before they were described
in @ manner that would be considered satisfactory by
present-day standards.

Early in the 19th century, Carl Friedrich Gauss (1777-
1855) and William Rowan Hamilton (1805-1865)
independently and almost simultaneously proposed the idea
of defining complex numbers as ordered pairs of real
numbers (a, b) endowed with certain special properties. This
idea is widely accepted today and is described in the next
section.

0.5 Definition and
algebraic properties of
complex numbers

Complex numbers are defined as ordered pairs of real
numbers, in the same way that we described the
rectangular coordinates of points in the plane. The new
feature is that we also define addition and multiplication so
that we can perform algebraic operations on complex
numbers.

DEFINITION. /f a and b are real numbers, the pair (a, b) is
called a complex number, provided that equality, addition,
and multiplication of pairs is defined as follows:

(a) Equality: (a, b) = (¢, d) means a = cand b = d.



(b) Sum: (a, b) + (¢, d) = (a + ¢, b + 4d).
(c) Product: (a, b)(c, d) = (ac - bd, ad + bc).

The definition of equality states that (a, b) is to be
regarded as an ordered pair. Thus, the complex number (2,
3) is distinct from the complex number (3, 2). The numbers
a and b are called components of the complex number. The
first component, a, is also called the real part of the
complex number; the second component, b, is called the
imaginary part.

Note that the symbol /=1 does not appear anywhere in this
definition. Presently we shall introduce / as a particular
complex number that has all the algebraic properties
ascribed to the fictitious symbol /=1 introduced by the early
mathematicians. However, before we do this we discuss
basic properties of the operations just defined.

THEOREM 0.1. Addition and multiplication of complex
numbers satisfy the commutative, associative and
distributive laws. That is, if x, y, and z are arbitrary complex
numbers we have the following properties:

Commutative laws: X+ y = y + X, Xy = yx.

Associative laws: x + (y + 2) = (x+ y) + z, x(y2) = (xy)z.

Distributive law: x(y + z) = xy + xz.

Proof. All these laws are easily verified directly from the
definition of sum and product. For example, to prove the
associative law for multiplication, we express x, y, zin terms
of their components, say x = (x1, x2), vy = (y1, ¥2), z= (21,
z2) and note that

xlyz) = (xpoedviz) — vz iz + yad)

= (x)(y121 = mz) = vz + ymahxnmz + )+ xinng = o))
= ((xiy1 — x¥2)z — (xiy2 + xpy)zz (xyz + xay)n + gy — x¥a)
= (xny —nynay oyl = k.

The commutative and distributive laws may be similarly

proved.



Further algebraic concepts, such as zero, negative,
reciprocal, and quotient, analogous to those for real
numbers, are defined as follows:

The complex number (0, 0) is called the zero complex
number. It is an identity element for addition because (0, 0)
+ (a, b) = (a, b) for all complex numbers (a, b). Similarly,
the complex number (1, 0) is an identity for multiplication
because

(a, bW 1,00 = {a, )
for all (a, b).

Since (-a, -b) + (a, b) = (0, 0) we call the complex number
(-a, -b) the negative of (a, b) and we write -(a, b) for (-a, -
b).

The difference (a, b) - (c¢,d) of two complex numbers is
defined to be the sum of (a, b) and the negative of (¢, d).

Each nonzero complex number (a, b) has a reciprocal
relative to the identity element (1, 0), which we denote by

(a, b)‘l. It is given by the ordered pair

—b
= ) if (@, b) # (0,0),

(02) B (m'a-’ + b7
and it has the property that (a, b)(a, b)‘l = (1, 0). Note that

a2 + b% = 0 because (a, b) = (0, 0).
The quotient (a, b)/c, d) of two complex numbers with (c,

d) # (0, 0) is defined to be the product (a, b)(c, d)‘l.

0.6 Complex numbers as
an extension of real
numbers

Let C denote the set of all complex numbers. Consider the
subset Cp of C consisting of all complex numbers of the



form (a, 0), that is, all complex numbers with zero imaginary
part. The sum or product of two members of Cq is again in

Cp. In fact we have

[, 0) + (b, 0) = (g + b D and (e, Dk, ) = (ah, 0,
This shows that we can add or multiply two numbers in Cg

by adding or multiplying the real parts alone. Or, in other
words, with respect to addition and multiplication, the
numbers in Cg act exactly as though they were real

numbers. The same is true for subtraction and division

because ~(a, 0) = (-a, 0), and (b, 0)~1 = (b71, 0) if b = 0. For
this reason, we make no distinction between the real
number x and the complex number (x, 0) whose real part is
x. We agree to identify x and (x, 0) and we write x = (x, 0).
In particular, we write 0 = (0, 0), 1 = (1, 0), -1 = (-1, 0), and
so on. Thus, we can regard the complex number system as
an extension of the real number system.

This also makes sense geometrically. In a later section we
will represent the complex number (x, y) by a point in the
plane with Cartesian coordinates x and y; the subset Cq is

represented geometrically by the points on the x axis.

0.7 The imaginary unit J/

Complex numbers have some algebraic properties not
possessed by real numbers. For example, the quadratic

equation x2 + 1 = 0, which has no solution among the real
numbers, can now be solved with the use of complex
numbers. In fact, the complex number (0, 1) is a solution,
because we have

O 1P =010, =0 0—1-1,0:14+1-0)=(=1,0)=—1.

DEFINITION. The complex number (0, 1) is denoted by the
symbol i and is called the imaginary unit.



The imaginary unit has the property that its square is -1,

2 = -1. Therefore the quadratic equation x2 + 1 =0 has
the solution x = /. The reader can easily verify that x = -/ is
another solution.

Now we can relate the ordered-pair idea with the notation
used by the early mathematicians. First we note that the
definition of multiplication gives us (b, 0)(0, 1) = (0, b), and
hence we have

(e, B = (o, 0 + (0, 5) = (e, 0 + (B, 000, 1),

Therefore if we write a = (a, 0), b= (b, 0), and / = (0, 1),
we get (a, b) = a + bi. In other words, we have proved the
following:

THEOREM 0.2. Every complex number (a, b) can be
expressed in the form (a, b) = a + bi.

This notation aids us in calculations involving addition and
multiplication. For example, to multiply @ + bi by ¢ + di, use

the distributive and associative laws, and replace 2 by -1.
Thus,

{a + bilc + di) = ac — bd + (ad + bei,
which, of course, agrees with the definition of multiplication.
Similarly, to compute the reciprocal of a nonzero complex
number a + b/ we write

1 _ a— bi _a bi _ a bi
a+bi (gt biMa— b)) a4+ B al + b g+ B

This formula agrees with that given in (0.2).
With complex numbers we can solve not only the simple
quadratic equation X2 + 1= 0, but also the more general

quadratic equation ax® + bx + ¢ = 0, where a, b, c are real
and a # 0. By completing the square, we can write this
quadratic equation in the form

+£ E+4t’4‘6'—b2 -0
*7 2a 4 '




