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Preface

The world energy use grew by 39% from 1990 to 2008. It is estimated that the global demand
for energy will increase by at least 50% over the next 20 years. Energy consumption growth
of several developing nations remains vigorous. Hydrocarbons, petroleum, coal, and natural
gas are now the chief sources of energy. All are finite resources and their natural reserves are
depleting every day. In addition, during their conversion and use several greenhouse gases are
emitted with a potential for climatic warming.

Bioenergy, both biofuels and biopower, produced from renewable sources are sustainable
alternatives to hydrocarbons. Bioenergy use has the potential to lower greenhouse gas emis-
sions, boost rural economy, and ensure energy security. Interest in bioenergy began in early
20th century but it was reinforced in the recent decades. Biopower includes co-firing bioen-
ergy feedstocks with coal to reduce problem emissions. Due to government incentives during
1995–2005, commercial scale biofuels, mainly ethanol, became available in the European
Union, UK, USA, Brazil, and many other countries around the world. Most of the biofuels are
derived from corn grain, sugarcane, and vegetable oil feedstocks thus creating a food versus
fuel controversy. Second-generation biofuels are now being made from nonfood, lignocellu-
losic materials such as municipal waste and wood chips, along with dedicated crops such as
switchgrass and Miscanthus.

Plant breeding is critical for crop improvement. Due to intensive breeding efforts in both
public and private sectors average maize grain yield has increased by 745% since 1930. Several
of the dedicated feedstock crops, for example, switchgrass and Miscanthus, are only recently
removed from the wild and need serious breeding efforts for improvement. Increased biomass
yield and improved quality through breeding efforts can make feedstock more economical
and attractive. This book on Bioenergy Feedstocks: Breeding and Genetics should greatly
contribute to these breeding efforts.

We are grateful to John Wiley & Sons, Inc. for their prudence and supporting us in publishing
this book. Contribution from many prominent scientists on bioenergy research has greatly
enhanced this publication. We extend our sincere appreciation to all the chapter contributors
for their invaluable contribution. We also appreciate the efforts of all who directly or indirectly
supported our endeavor. We sincerely believe that this book will be a useful reference for
cultivar improvement of lignocellulosic biomass feedstock crops.

Malay C. Saha
Hem S. Bhandari
Joseph H. Bouton

xix





Chapter 1

Introduction
Joseph H. Bouton1, Hem S. Bhandari2, and Malay C. Saha3

1Former Director and Senior Vice President, Forage Improvement Division, The Samuel Roberts Noble
Foundation, Ardmore, OK 73401 and Emeritus Professor, Crop and Soil Sciences, University of
Georgia, Athens, GA 30602, USA
2Department of Plant Sciences, University of Tennessee, Knoxville, TN37996, USA
3Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA

By most estimates, world population growth has more than tripled during the past 100 years,
going from approximately 2–7 billion persons (Anonymous, 2012). To sustain the economies
needed to support this type of unprecedented population growth, readily available, cheap,
scalable, and efficient energy sources were required. These sources turned out to be hydrocar-
bons, both oil and coal, and after the Second World War, nuclear power. Heavy hydrocarbon
use resulted in their depletion and increased cost and a concurrent increase in environmental
problems due to gas emissions. Although “clean” as far as gas emissions, nuclear power has its
own problems associated with safety and disposal of its highly toxic waste products. Therefore,
alternative energy sources such as wind, solar, and bioenergy that are capable of offsetting
some of the hydrocarbons and nuclear use and mitigating their environmental problems are
now being investigated and, in some cases, implemented on a commercial scale.

Lignocellulosic feedstocks derived from plant biomass emerged as a sustainable and renew-
able energy source that underpins the bioenergy industry (McLaughlin, 1992; Sanderson et al.,
2006). Bioenergy, both biopower and biofuels, could contribute significantly to meet growing
energy demand while mitigating the environmental problems. The Energy Independence and
Security Act RFS2 in the United States mandates that annual biofuels’ use increase to 36 bil-
lion gallons per year by 2022, of which 21 billion gallons should come from advanced biofuels
(EISA, 2007). Waste products, both agricultural and forest residues, are obvious choices as
base feedstocks; however, it is the use of “dedicated” energy crops where the ability to achieve
the billion tons of biomass USA goals will be realized (Perlack et al., 2005). Several plant
species such as switchgrass, Miscanthus, corn fodder, sorghum, energy canes, and other grass
and legume species have demonstrated tremendous potential for use as dedicated bioenergy
feedstocks especially for the production of advanced biofuels. Their adaptation patterns along
most agro-ecological gradients also offer options for optimizing a crop species mix for any
bioenergy feedstock production system.

Bioenergy Feedstocks: Breeding and Genetics, First Edition. Edited by Malay C. Saha, Hem S. Bhandari, and Joseph H. Bouton.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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2 Bioenergy Feedstocks: Breeding and Genetics

1.1 Historical Development

The concept of bioenergy is not new. Early human civilization witnessed energy potential
of plant biomass and used it in cooking and as a source of light. By 1912, Rudolf Diesel
demonstrated that diesel obtained from plant biomass can be used in automobile operation
(Korbitz, 1999). The shortage of crude oil during the 1970s reinforced the world’s motivation
toward plant biomass as alternative energy source. In Brazil, use of ethanol to power automobile
dates back to the late 1920s. Brazil’s National Alcohol Program under government funding
was launched in 1975 to promote ethanol production from sugarcane. In 2007, Brazil produced
more than 16 billion liters of ethanol (Goldemberg, 2007).

In the United States, during the past decade, billions of dollars were invested annually by
the federal and state governments, venture capitalists, and major private companies for the
development of new technology to convert feedstock species into renewable biofuels. Major
breakthroughs have happened during the past few years and the biofuel production increased
significantly. Significant improvements have also noticed on conversion technologies thus
moving the biofuel from pilot scale to near-commercial scale.

At present, biofuels are produced from corn grain, sugar cane, and vegetable oil. In the
United States, corn is the main feedstock used to produce ethanol. In 2010, corn-based ethanol
production was about 50 billion liters (USDOE, 2011). With the increasing world’s food
demand there is serious economic (animal feed costs are rising) and even ethical concern with
using corn grain in ethanol production. In the mid-1985s, U.S. Department of Energy (DOE)
Herbaceous Energy Crops Program (HECP), coordinated by Oakridge National Laboratory
(ORNL), funded research to identify potential herbaceous species as potential bioenergy
feedstock. Over 30 plant herbaceous crop species including grasses and legumes were studied,
and consequently switchgrass was chosen as the “model bioenergy species” (McLaughlin and
Kszos, 2005). Under optimum conditions, switchgrass demonstrated annual biomass yield as
high as 24 Mg ha−1, and each ton of biomass can produce about 380 L of ethanol (Schmer
et al., 2008). Carbon sequestration by 5-year-old switchgrass stand can add 2.4 Mg C ha−1

year−1 for 10,000 Mg ha−1 of soil mass (Schmer et al., 2011). Other plant species with high
bioenergy potential include Miscanthus, corn fodder, sorghum, sugarcane, prairie cordgrass,
bluestems, eastern gamagrass, and alfalfa. Miscanthus hybrids have the potential to produce
high biomass and can make a significant contribution to biofuel production and to the mitigation
of climate change. Plant breeding will play an important role in improving the genetic potential
of these species, as well as other potential species, and make them suitable as bioenergy
feedstock.

1.2 Cultivar Development

Genetic improvement of plant species targeting biomass feedstock production, particularly the
dedicated energy crops such as switchgrass and Miscanthus, is in a very early stage, posing both
challenges and opportunities for genetic improvement. The current emphasis of most biomass
feedstock cultivar development research is based on biomass yield. Due to extensive breeding
efforts, maize grain yield has increased 745% from 1930 to the present (USDA-NASS, 2011).
Biomass yield per unit of land is a function of many traits; thus plant breeders also have
to address problems related to establishment, seed shattering, and resistance to abiotic/biotic
stresses. Equally important is improvement in feedstock quality for sustainable bioeconomy.
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Research is still evolving on processes to convert biomass to bioenergy/biofuel that will dictate
the quality targets of dedicated bioenergy crops. One likely scenario is that both enzymatic and
thermochemical conversion technologies will be required depending on the biomass feedstock
availability and the targeted bioenergy end product.

1.3 Breeding Approach

The fundamentals of feedstock cultivar development will be the same as ones that have been
successfully employed in several agricultural crops for thousands of years. Most of the potential
bioenergy crops are outcrossing polyploids and great genetic diversity exists both within and
among populations. This reinforces the potential for genetic improvement of these crops. Most
of the named switchgrass cultivars were developed only by seed increases of desirable plants
identified from the wild or selected through two or three generations under cultivation (Casler
et al., 2007). The improvement of quantitative traits will require several cycles of selection
(Bouton, 2008). The traits that are qualitatively inherited can be improved rapidly. Exploitation
of heterosis would require identification of genes involved in heterosis and development of
heterotic pools, similar to the one that was followed in hybrid breeding in maize. Different
crop species would need different plant breeding methodologies depending on their mode
of reproduction, ploidy systems, and germplasm availability. For example, corn has a well-
developed hybrid production system using inbred lines, which may not be directly applicable to
crops like switchgrass that has nearly 100% self-incompatibility. Some species of Miscanthus
and sugarcane that do not produce seeds require a different approach. The hundreds of years
of experience gained in the development of modern cultivars of food and other agricultural
crops can directly benefit the cultivar development research of bioenergy crops.

1.4 Molecular Tools

Rapid development in high-throughput genotyping, genotyping based on sequencing, and
computational biology continues to shape modern plant breeding into a new approach called
“molecular breeding.” Rapid discoveries of DNA-based markers at significantly reduced cost
have impacted cultivar development methodologies in the recent years. Advances in molecular
biological research have uncovered several plant biological functions and enhanced the under-
standing of gene function at the molecular level (Bouton, 2008). Rapidly growing genome,
transcriptome, proteome, and metabolom resources of several important biofuel crops can
speed the process of feedstock development which can lead to improved economics of renew-
able bioenergy production. Lignin polymer is found to be interfering with enzymatic digestion
of lignocellulosic biomass necessitating the pretreatment of biomass feedstock, making biofuel
production an economic challenge (Dien et al., 2011). However, plant biologists have been
able to characterize and modify lignin pathway and produce low lignin plants by silencing
genes involved in lignin pathway (Dien et al., 2011; Fu et al., 2011). Transgenic technologies
have also enabled plant breeders to look beyond target species for genes conferring desirable
traits, but current regulatory aspects could curtail gains from transgenics, especially for bioen-
ergy crops, without deregulation reforms that better balance both risk and benefit (Strauss
et al., 2010).
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1.5 Future Outlook

Changing climates as seen by frequent unprecedented drought cycles have become a serious
challenge in the recent decades. This will require an “adjustment philosophy” in that breeding
strategies will need to continually adjust trait targets for greater stress extremes with pro-
grams concentrating on stress tolerances growing in importance (Bouton, 2010). As biomass
feedstock production scales up to a commercial level, there will also be a significant shift
in agricultural landscapes, leading to occurrence of new pest and diseases specific to the
feedstock species. Exploration and exploitation of microbial endophytes implicated in protec-
tion of plants from a broad range of biotic and abiotic stresses are important areas for future
research (Ghimire et al., 2011). Bioenergy crop breeders should therefore take proactive action
to integrate all conventional and modern tools into their cultivar development research.

There are government policy issues that may assist the growth of bioenergy industry. How-
ever, these are political issues not within the scope of this book and will need to be hashed out
at that level. But one thing is certain, bioenergy cultivar development research will benefit by
always striving for a cost-effective product that competes in the free market with hydrocarbons
and nuclear power. This should become more possible by leveraging facilities/resources estab-
lished for traditional agricultural crops and implementation of regional/national/international
collaborations between institutions involved in bioenergy feedstock research. Finally, shar-
ing germplasms between participating institutes would help maintain genetic diversity of the
breeding pools needed for long-term use.
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2.1 Introduction

Liquid biofuel production from biomass has the potential to reduce greenhouse gas emis-
sions from transportation and dependence on fossil fuels extracted from politically volatile
regions (Somerville, 2007; Bartley and Ronald, 2009; Vega-Sanchez and Ronald, 2010). Cul-
tivated grasses are the most abundant sustainable class of biomass that can be produced in the
United States (∼57%, Perlack et al., 2005). Switchgrass (Panicum virgatum L.), in particular,
is an attractive native species for development as a bioenergy crop given that largely unim-
proved varieties exhibit large biomass yield (up to 36.7 Mg ha−1) and marked stress tolerance
(Figure 2.1; Thomason et al., 2004; McLaughlin and Adams Kszos, 2005; Bouton, 2007). Even
with typical, lower-yielding marginal land (5–11 Mg ha−1), energy and emission measurements
for switchgrass production give an approximately 5-fold net energy yield (output:input) and an
approximately 10-fold reduction in greenhouse gas emissions compared with gasoline (Schmer
et al., 2008). In order to realize greater benefits from the production of lignocellulosic fuels,
there is an enormous need to apply various breeding methods and tools toward switchgrass
improvement. Below, we outline switchgrass energy crop breeding goals and, in subsequent
sections, provide an overview of the basic biology and genetic characteristics of switchgrass.
We then discuss experiences and challenges related to switchgrass conventional and molecular
breeding.

Biomass yield and quality are the two general classes of targets for genetic improve-
ment of bioenergy crops. Selection of switchgrass for high biomass production is ongoing
(Vogel et al., 2010). Recently released cultivars “BoMaster,” “Cimarron,” and “Colony” pro-
duce higher biomass yields than the current best commercial cultivar “Alamo” and are pri-
marily targeted for cellulosic feedstock production (Burns et al., 2008a, 2008b, 2010; Wu
and Taliaferro, 2009). Similarly, high-performing replacement proprietary cultivars for old
standards such as Alamo, “Kanlow,” and “Cave-in-Rock” are currently sold in commercial
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Figure 2.1. A seed production field of the lowland switchgrass cultivar “Cimarron” in September,
toward the end of the growing season, near Perkins, OK.

bioenergy seed trade as EG1101, EG1102, and EG2101, respectively (http://www.bladeenergy.
com/SwitchProducts.aspx).

Abiotic and biotic stress tolerance and improved agronomic characteristics, such as reduced
seed dormancy (Burson et al., 2009), are important for establishing and obtaining consis-
tent biomass production. In terms of biomass quality, the goals for the two current biomass
to biofuel conversion platforms, biochemical and thermochemical, are roughly opposite
(Figure 2.2). For biochemical conversion methods that mostly produce alcohol fuels, the
quality goal is to optimize the quantity of sugar that can be obtained from the biomass. For

Switchgrass biomass

Higher CHO

Higher lignin

Liquid fuels
Ethanol
Butanol

Lower lignin
Lower fitness
Lower winter survival

Co-firing
Biochar
Synfuels
Pyrolysis oils

Figure 2.2. Potential applications and consequences of changing switchgrass biomass quality. CHO,
carbohydrate.
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