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PREFACE

This book is about the application of scientific principles and

engineering experience to chemical processing. Major

chemical engineering operations are organized under the

principles of analysis in order to facilitate the consideration

of new technologies from a chemical engineering point of

view.

New applications have emerged in chemical engineer-

ing practice. Microchemical systems, for example,

require attention to design parameters not important at

larger scales. The shift from commodity chemicals to

chemical products by many smaller companies is creating

a demand for chemical engineers with a broader view of

design than the traditional capstone design experience

(Cussler and Moggridge, 2001). Biocatalysis and the

chiral technology industry call for the support of under-

graduate curricula. Opportunities for the chemical engi-

neering graduate in the development of medical devices

and drug manufacture call for more emphasis on the life

sciences and physiology.

There is therefore a call to introduce a degree of flexibility

into traditional undergraduate chemical engineering

curricula for those who wish to serve a broader industrial

base. An alternative is to concentrate the basic chemical

engineering training in a minimal core designed to secure

the distinguishing technical character of the chemical engi-

neer and to provide the ground both for further specialization

in traditional chemical engineering and for coherent studies

in other areas. The minimization decisions regarding the

required topics and the depth of coverage are local decisions

that reflect the mission of the program.

This text can support such a local decision process as a

consolidation of normally separate courses in material and

energy balances, transport phenomena, reactor design, and

separations. While not a replacement for these courses, it is

a functional treatment of the underlying skills that charac-

terize them. The selection of major operations reflects the

intention of establishing a minimum competency level

required to be differentiated as a chemical engineer in an

undergraduate engineering curriculum.

Although the book is primarily meant for chemical

engineering undergraduates, it may be appropriate for con-

version programs designed to prepare graduates of other

engineering and science programs for matriculation in

chemical engineering master’s programs.

Graduate engineers in both academic and industrial posi-

tions may find it convenient to have a single resource with

wide coverage.

CONTENT

The principles referred to above consist of the conservation

of mass, energy, and momentum at the macroscopic and

microscopic levels as well as the principle of the increase of

entropy and characterization of equilibrium states by equi-

librium thermodynamics. The production of entropy pro-

vides an important measure of process efficiency and

underpins the conservation laws by providing a theoretical

foundation for the nonconvective flows. In addition, the

balance equations and equilibrium relations are used to

develop models of the chemical process operations from

the rate or equilibrium stage point of view, respectively.

Efficiency is a link between the two.

The chemical engineering operations that are discussed in

the text are as follows:

� Separators

� Heat exchangers.
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A process flow diagram for the manufacture of acrylic

acid is presented at the outset and used for an introduction

to chemical processing and equipment. Reference to the

acrylic acid process is continued thereafter for presentation

of new material in a process context. Example calculations

in the text are compared with simulator results pertaining to

equipment sizes and operating conditions in the acrylic acid

plant.

Heuristics are regarded as fundamental tools and are

stated extensively. They are used in calculations and are

compared with some independent calculations. Degrees of

freedom are employed throughout the earlier sections of the

book.

Process control, economics, and safety are not included.

ORGANIZATION

Two major divisions of the subject matter in the text are

made on the basis of a macroscopic and a microscopic view:

The balance equations for mass, energy, momentum, and

entropy are applied at the macroscopic level confined to the

equipment ports, through completely mixed and staged

systems to the continuous variations within equipment

(see Organization).

The “macroscopic view” ensures the conservation of

mass, energy, and momentum at the equipment and process

levels with consideration only of the conditions at the

entrances and exits of the process equipment. The exception

is completely mixed systems where the uniform interior

conditions appear at the outlet. The macroscopic view is

taken at the level of process synthesis where the conditions

are consistently set for each processing step to establish the

overall process design and economics. The microscopic

view is subsequently adopted to arrive at the detailed design

of the processing equipment and the final economics. This

viewpoint can provide conditions at every location within

the equipment boundaries. For multistaged systems consist-

ing of completely mixed subsystems, the conditions vary

stepwise throughout the equipment. The microscopic view

ensures the local conservation of mass, energy, and momen-

tum. The macroscopic view is therefore the net effect of this

local role, which can be seen by integration over the system

volume, thereby “closing the circle.”

CALCULATIONS

Many examples are provided within the chapters throughout

the text to elucidate the discussion. Two process-related

threads are carried through the examples (see Tables 1.7 and

1.8) in order to provide a broad process perspective for the

calculations. Questions for discussion and encouragement to

complete the argument or calculation appear periodically. A

variety of problems are suggested at the end of chapters in

order to initiate the problem-solving activity as a learning

tool and to provide experience with scientific and engineer-

ing databases. The collection can be augmented to meet

specific course objectives or a desired orientation without

modifications to the chapters.

Scientific Notebook (MacKichan Software) and Micro-

soft Excel are primarily used in the example calculations.

Scientific Notebook was chosen because the students who

used the notes had prior experience with this software in

their mathematics courses and they preferred this software

over others that were available to them. Moreover, this

Part I:
Macroscopic view

Part II
Microscopic view

Completely 
mixed

Chapters 5–6
Multi-staged
 Chapter 7

Continuous
Chapters 8–14

Arbitrary
Chapters 2–4

Integration over system
Chapter 15

System of differential 
dimensions

Chapters 2–4

Organization.
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software is particularly compatible with the notation used

throughout this book.

Excel was used because the ease with which objects could

be moved on graphs, the magnification options, and the

ability to construct multifunctional plots greatly facilitated

stepping off stages and other graphical constructions. The

tabular formulation of recursive calculations is readily

accomplished in Excel.

Some experience with the use of this software in an

introductory course is available in DeLancey (1999).

GEORGE DELANCEY
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MACROSCOPIC VIEW





1
CHEMICAL PROCESS PERSPECTIVE

The objective of this chapter is to provide an introduction to

chemical processing and chemical processing equipment

and to establish a realistic context for much of the more

quantitative developments of the same topics appearing in

the remaining chapters. A preliminary design of an acrylic

acid process (Turton et al., 2003) with a complete flow sheet

and stream table provides this context. A connected set of

examples and exercises concerned with equipment sizing,

material and energy balances, or stream and operating

conditions threaded throughout the text are related to the

acrylic acid process. The location and nature of these

examples are summarized in Table 1.7.

Catalytic aspects of chemical processing are raised in the

acrylic acid process and in biocatalytic systems with an

introduction to enzyme catalysis. Industrial biotransforma-

tions are discussed and the production of hexyl glucoside is

selected to provide the context for a second connected thread

of examples and exercises throughout the text. In contrast to

the acrylic acid thread, this selection is based on a proposed

new process with much less information. The examples are

therefore in the categories of scale up and process develop-

ment. The location and nature of the examples in the

subsequent chapters are summarized in Table 1.8.

1.1 SOME BASIC CONCEPTS IN CHEMICAL
PROCESSING

It will be useful in the following discussion to have in mind

what is meant by equilibrium, the steady state, and driving

force. These ideas primarily underpin the steps in chemical

processing and fall into the three thermodynamic categories:

thermal, chemical, and mechanical. The first two categories

are discussed below. The third is left to the reader (see

Problem 1.1).

Thermal Refer to Figure 1.1a. Here we imagine that two

fluids not necessarily of the same phase are introduced into

the two chambers of a rigid insulated container with

impermeable walls. The two chambers are separated by

a rigid dimensionless barrier (to allow the transfer of heat

without mass transfer) and the fluids fill the two mixed

chambers. The temperature of the hot fluid (A) will

decrease and the temperature of the cold fluid (B) will

increase, each approaching the same temperature at the

equilibrium state.

If, on the other hand, the fluids are drawn at the same rate

they are fed, they will reach a steady-state temperature that

is constant throughout each phase except for a narrow region

near the dimensionless diathermal wall where the tempera-

ture decreases continuously from the high to the low value.

The same equilibrium temperature is approached from either

side of the interface. The two phases are prevented from

reaching the intermediate state by the continual replacement

and removal of the transferred energy.

If the flows are stopped, the system will equilibrate as in

Figure 1.1a. We therefore think of the steady state being

subjected to a driving force proportional to the distance

from equilibrium as in Figure 1.1c where the flux of thermal

energy is the response to the force. Since each approaches

zero together, we take the linear approximation that the flux

is proportional to the force.
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We can focus on one phase and think of the driving force

as the distance from the equilibrium value or we can think of

the overall driving force as the difference between the

phase temperatures. Both driving forces refer to the same

flow of energy at steady state and each approaches zero at

equilibrium.

Chemical—Unreactive Reaction Refer to Figure 1.2a.

We again consider an insulated container with rigid

impermeable walls. Here we charge the container with

two immiscible liquid phases containing components that

are partially soluble in both phases. We will assume for

simplicity that the dissolution process of any one of the

components in either phase involves no heat effect. Other-

wise we would need to repeat the “thermal” discussion. We

also assume that no reactions take place. Chemical reactions

will be discussed separately.

Similar to the temperature in thermal phenomena, the

concentration of each species will increase or decrease

until a steady value is reached in each phase. This is a

state of interphase chemical equilibrium. A fundamental

difference from the thermal case is that the values are not the

same in each phase. Whereas the potential for the transfer of

thermal energy is the temperature, thermodynamics tells us

that the chemical potential is a function of the temperature,

pressure, and composition in each phase.

If, as above, the fluids are withdrawn at the same rate they

are fed, the concentrations will reach steady-state values that

are constant throughout each phase, except for a narrow

region near the dimensionless open barrier where the con-

centrations change stepwise to the vales in the companion

phase.

If the flows are stopped, the system will equilibrate as in

Figure 1.2a. We therefore think of the steady state being

subjected to a driving force proportional to the distance

from equilibrium as in Figure 1.2c where the flux of mass is

the response to the force. Since each approaches zero

together, we take the linear approximation that the flux of

mass is proportional to the driving force.

We can focus on one phase and think of the driving force

as the distance from the equilibrium value for that phase or

we can think of the overall driving force as the difference

Teq
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TB TB
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TAss

TBss
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TBss
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FIGURE 1.1 Rate and equilibrium in thermal processes.
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FIGURE 1.2 Rates and equilibrium in chemical processes—interphase phenomena.
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between the phase compositions. Since the interphase equi-

librium compositions are not the same, the overall driving

force will need to be modified slightly to assure that the rate

is the same as that calculated in either phase.

Chemical—Single Ideal Gas-Phase Reaction The case of

chemical reaction equilibrium is a bit more complicated in

that reaction equilibrium is characterized by the chemical

affinity, a linear combination of the chemical potentials

mentioned in the preceding paragraph. We can, however,

arrive at reaction kinetics, which are at least qualitatively

correct and sufficient to understand some basic behavior of

chemical reactors. We will consider a single ideal gas-phase

reaction for which thermodynamics tells us that the ratio K

in Figure 1.3a has a specific value at equilibrium Keq(T).

We again consider a container with rigid impermeable

walls. Here we take the walls to be diathermal in order to

begin and end the reaction process at the same temperature.

We charge the container with a reactive ideal gas mixture.

The value of K will increase as shown in Figure 1.3a until the

equilibrium value is attained after which no further change

will take place. This is the intraphase chemical equili-

brium condition. For irreversible reactions, the value of K is

extraordinarily large.

If gases are withdrawn at the same rate they are fed as

illustrated in Figure 1.3b, the products will be prevented

from accumulating and therefore the value of Keq will be

prevented from being reached. The concentrations T and P

will reach steady-state values that are constant throughout.

If the flows are stopped, the system will equilibrate as in

Figure 1.3a. We therefore think of the steady state being

subjected to a driving force proportional to the distance

from equilibrium as in Figure 1.3c where the rate of reaction

is the response to the force. Since each approaches zero

together, we take the linear approximation that the flux of

mass is proportional to the driving force. The result shown in

Figure 1.3c is the law of mass action.

1.2 ACRYLIC ACID PRODUCTION

Figure 1.4 is a process flow diagram of a continuous process

for the manufacture of 50,000 metric ton/year of 99.9 mol%

acrylic acid from a one-step oxidation of propylene. One

reactor is therefore used, which stands in contrast to the

commonly used dual reactor system. The process is based

upon the 1986 AIChE Student Contest Problem. The process

conditions and equipment sizes are reported by Turton et al.

(2003).

There are a number of commercial software packages

that are known to produce accurate designs of chemical

processes in the hands of experienced engineers (Aspen

Plus, Aspen Hysys, Chemcad, etc.). Turton et al. (2003)

used Chemcad and expected the results to represent a

preliminary process design. We will use the calculated

results as if they were actual plant data. Actual plant data at

this level of detail are neither available nor needed in light

of the sophistication of the software to gain a familiarity

with process concepts as well as equipment and basic ideas

in chemical engineering analysis and design. However, any

comparisons of approximate calculations with these cal-

culations are comparisons with more rigorous calculation

procedures, not actual data.

Continuous processes are common in the chemical indus-

try where such products as organic chemicals, plastics, and

solvents are produced in large quantities to meet market

demands. These products are referred to as bulk or com-

modity chemicals. Batch processes on the other hand are

commonly used by the pharmaceutical industry to produce

a wide variety, but small amounts, of pharmaceuticals.

These products fall under the category of fine chemicals.

Semicontinuous process is the combination of batch and

continuous processing, in which the chemical state of one or

more chemical compounds is altered stepwise toward a well-

defined target. A process flow diagram (PFD) is a schematic

representation of the process.
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yiyi yiss
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FIGURE 1.3 Reaction rates and equilibrium.
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In a chemical process, material is moved in streams by

mechanical devices such as pumps and compressors from

one process unit to another. A summary of the schematic

representations of these items is given in Figure 1.4.

The streams are connected to the process units by pipes

and ducts for fluids and by screw or belt conveyors in the

case of solids, for example. The process units perform

operations on the content of the streams to change their

temperature, pressure, phase, and/or composition. These

units are often referred to as unit operations and are carefully

configured by the chemical engineer to transform raw

materials into the desired products, economically and safely.

Some units are combinations of unit operations.

All of these processes consist of a sequence of operations

in which the process streams begin at raw material storage

and end with product storage. There are other streams called

utilities, which are employed by the process units as sources

or sinks of thermal energy. The supply and regeneration of

the utility streams may be part of the process or these

services may be supplied by a separate facility. In the latter

case, the utility streams arrive and are returned after use to

the utility site for regeneration.

We will look more carefully into each of these aspects of

chemical processing for the production of 50,000 metric ton/

year of acrylic acid via the process given in the flow diagram

(Figure 1.4). Normally, the adopted chemical route is the

result of an intensive search involving technical, economic,

and safety considerations. More than one route may be

simulated to better evaluate the economics of the final

competitors. A two-step process comprised of the oxidation

of propylene to acrolein followed by the oxidation of

acrolein to acrylic acid (Speight, 2002) is the common

industrial choice. In the present case, the partial oxidation

of propylene has been selected from other alternative routes

to acrylic acid, which may be viewed as an alternative

proposition for a single-step process over a new catalyst.

C3H6 þ 3

2
O2 ! C3H4O2 þ H2O (1.1)

An economic view can be initiated at the outset of process

development by considering only the raw material costs and

product sales price. The net change for the chemical reaction

must, of course, be positive or “economically endothermic”

before the reaction is even considered to be a possibility for

adoption. Some chemical prices are available in the Chemi-

cal Market Reporter, available online by subscription.

Professional publications such as Chemical and Engineering

News and Chemical Engineering Progress publish limited

pricing information. In general, there is a cost associated

FIGURE 1.4 Process flow diagram for acrylic acid production plant (Turton et al., 2003). Reprinted

with permission of Pearson.
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