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PREFACE

This book is about the application of scientific principles and
engineering experience to chemical processing. Major
chemical engineering operations are organized under the
principles of analysis in order to facilitate the consideration
of new technologies from a chemical engineering point of
view.

New applications have emerged in chemical engineer-
ing practice. Microchemical systems, for example,
require attention to design parameters not important at
larger scales. The shift from commodity chemicals to
chemical products by many smaller companies is creating
a demand for chemical engineers with a broader view of
design than the traditional capstone design experience
(Cussler and Moggridge, 2001). Biocatalysis and the
chiral technology industry call for the support of under-
graduate curricula. Opportunities for the chemical engi-
neering graduate in the development of medical devices
and drug manufacture call for more emphasis on the life
sciences and physiology.

There is therefore a call to introduce a degree of flexibility
into traditional undergraduate chemical engineering
curricula for those who wish to serve a broader industrial
base. An alternative is to concentrate the basic chemical
engineering training in a minimal core designed to secure
the distinguishing technical character of the chemical engi-
neer and to provide the ground both for further specialization
in traditional chemical engineering and for coherent studies
in other areas. The minimization decisions regarding the
required topics and the depth of coverage are local decisions
that reflect the mission of the program.

This text can support such a local decision process as a
consolidation of normally separate courses in material and
energy balances, transport phenomena, reactor design, and
separations. While not a replacement for these courses, it is

a functional treatment of the underlying skills that charac-
terize them. The selection of major operations reflects the
intention of establishing a minimum competency level
required to be differentiated as a chemical engineer in an
undergraduate engineering curriculum.

Although the book is primarily meant for chemical
engineering undergraduates, it may be appropriate for con-
version programs designed to prepare graduates of other
engineering and science programs for matriculation in
chemical engineering master’s programs.

Graduate engineers in both academic and industrial posi-
tions may find it convenient to have a single resource with
wide coverage.

CONTENT

The principles referred to above consist of the conservation
of mass, energy, and momentum at the macroscopic and
microscopic levels as well as the principle of the increase of
entropy and characterization of equilibrium states by equi-
librium thermodynamics. The production of entropy pro-
vides an important measure of process efficiency and
underpins the conservation laws by providing a theoretical
foundation for the nonconvective flows. In addition, the
balance equations and equilibrium relations are used to
develop models of the chemical process operations from
the rate or equilibrium stage point of view, respectively.
Efficiency is a link between the two.

The chemical engineering operations that are discussed in
the text are as follows:

® Separators
® Heat exchangers.
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Organization.

A process flow diagram for the manufacture of acrylic
acid is presented at the outset and used for an introduction
to chemical processing and equipment. Reference to the
acrylic acid process is continued thereafter for presentation
of new material in a process context. Example calculations
in the text are compared with simulator results pertaining to
equipment sizes and operating conditions in the acrylic acid
plant.

Heuristics are regarded as fundamental tools and are
stated extensively. They are used in calculations and are
compared with some independent calculations. Degrees of
freedom are employed throughout the earlier sections of the
book.

Process control, economics, and safety are not included.

ORGANIZATION

Two major divisions of the subject matter in the text are
made on the basis of a macroscopic and a microscopic view:
The balance equations for mass, energy, momentum, and
entropy are applied at the macroscopic level confined to the
equipment ports, through completely mixed and staged
systems to the continuous variations within equipment
(see Organization).

The “macroscopic view” ensures the conservation of
mass, energy, and momentum at the equipment and process
levels with consideration only of the conditions at the
entrances and exits of the process equipment. The exception
is completely mixed systems where the uniform interior
conditions appear at the outlet. The macroscopic view is
taken at the level of process synthesis where the conditions
are consistently set for each processing step to establish the

overall process design and economics. The microscopic
view is subsequently adopted to arrive at the detailed design
of the processing equipment and the final economics. This
viewpoint can provide conditions at every location within
the equipment boundaries. For multistaged systems consist-
ing of completely mixed subsystems, the conditions vary
stepwise throughout the equipment. The microscopic view
ensures the local conservation of mass, energy, and momen-
tum. The macroscopic view is therefore the net effect of this
local role, which can be seen by integration over the system
volume, thereby “closing the circle.”

CALCULATIONS

Many examples are provided within the chapters throughout
the text to elucidate the discussion. Two process-related
threads are carried through the examples (see Tables 1.7 and
1.8) in order to provide a broad process perspective for the
calculations. Questions for discussion and encouragement to
complete the argument or calculation appear periodically. A
variety of problems are suggested at the end of chapters in
order to initiate the problem-solving activity as a learning
tool and to provide experience with scientific and engineer-
ing databases. The collection can be augmented to meet
specific course objectives or a desired orientation without
modifications to the chapters.

Scientific Notebook (MacKichan Software) and Micro-
soft Excel are primarily used in the example calculations.
Scientific Notebook was chosen because the students who
used the notes had prior experience with this software in
their mathematics courses and they preferred this software
over others that were available to them. Moreover, this



software is particularly compatible with the notation used
throughout this book.

Excel was used because the ease with which objects could
be moved on graphs, the magnification options, and the
ability to construct multifunctional plots greatly facilitated
stepping off stages and other graphical constructions. The

PREFACE xxi

tabular formulation of recursive calculations is readily
accomplished in Excel.

Some experience with the use of this software in an
introductory course is available in DeLancey (1999).

GEORGE DELANCEY






PART1

MACROSCOPIC VIEW






CHEMICAL PROCESS PERSPECTIVE

The objective of this chapter is to provide an introduction to
chemical processing and chemical processing equipment
and to establish a realistic context for much of the more
quantitative developments of the same topics appearing in
the remaining chapters. A preliminary design of an acrylic
acid process (Turton et al., 2003) with a complete flow sheet
and stream table provides this context. A connected set of
examples and exercises concerned with equipment sizing,
material and energy balances, or stream and operating
conditions threaded throughout the text are related to the
acrylic acid process. The location and nature of these
examples are summarized in Table 1.7.

Catalytic aspects of chemical processing are raised in the
acrylic acid process and in biocatalytic systems with an
introduction to enzyme catalysis. Industrial biotransforma-
tions are discussed and the production of hexyl glucoside is
selected to provide the context for a second connected thread
of examples and exercises throughout the text. In contrast to
the acrylic acid thread, this selection is based on a proposed
new process with much less information. The examples are
therefore in the categories of scale up and process develop-
ment. The location and nature of the examples in the
subsequent chapters are summarized in Table 1.8.

1.1 SOME BASIC CONCEPTS IN CHEMICAL
PROCESSING

It will be useful in the following discussion to have in mind
what is meant by equilibrium, the steady state, and driving
force. These ideas primarily underpin the steps in chemical

Principles of Chemical Engineering Practice, First Edition. George DeLancey.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

processing and fall into the three thermodynamic categories:
thermal, chemical, and mechanical. The first two categories
are discussed below. The third is left to the reader (see
Problem 1.1).

Thermal Refer to Figure 1.1a. Here we imagine that two
fluids not necessarily of the same phase are introduced into
the two chambers of a rigid insulated container with
impermeable walls. The two chambers are separated by
a rigid dimensionless barrier (to allow the transfer of heat
without mass transfer) and the fluids fill the two mixed
chambers. The temperature of the hot fluid (A) will
decrease and the temperature of the cold fluid (B) will
increase, each approaching the same temperature at the
equilibrium state.

If, on the other hand, the fluids are drawn at the same rate
they are fed, they will reach a steady-state temperature that
is constant throughout each phase except for a narrow region
near the dimensionless diathermal wall where the tempera-
ture decreases continuously from the high to the low value.
The same equilibrium temperature is approached from either
side of the interface. The two phases are prevented from
reaching the intermediate state by the continual replacement
and removal of the transferred energy.

If the flows are stopped, the system will equilibrate as in
Figure 1.1a. We therefore think of the steady state being
subjected to a driving force proportional to the distance
from equilibrium as in Figure 1.1c where the flux of thermal
energy is the response to the force. Since each approaches
zero together, we take the linear approximation that the flux
is proportional to the force.
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FIGURE 1.1 Rate and equilibrium in thermal processes.

We can focus on one phase and think of the driving force
as the distance from the equilibrium value or we can think of
the overall driving force as the difference between the
phase temperatures. Both driving forces refer to the same
flow of energy at steady state and each approaches zero at
equilibrium.

Chemical—Unreactive Reaction Refer to Figure 1.2a.
We again consider an insulated container with rigid
impermeable walls. Here we charge the container with
two immiscible liquid phases containing components that
are partially soluble in both phases. We will assume for
simplicity that the dissolution process of any one of the
components in either phase involves no heat effect. Other-
wise we would need to repeat the “thermal” discussion. We
also assume that no reactions take place. Chemical reactions
will be discussed separately.

Similar to the temperature in thermal phenomena, the
concentration of each species will increase or decrease
until a steady value is reached in each phase. This is a
state of interphase chemical equilibrium. A fundamental

difference from the thermal case is that the values are not the
same in each phase. Whereas the potential for the transfer of
thermal energy is the temperature, thermodynamics tells us
that the chemical potential is a function of the temperature,
pressure, and composition in each phase.

If, as above, the fluids are withdrawn at the same rate they
are fed, the concentrations will reach steady-state values that
are constant throughout each phase, except for a narrow
region near the dimensionless open barrier where the con-
centrations change stepwise to the vales in the companion
phase.

If the flows are stopped, the system will equilibrate as in
Figure 1.2a. We therefore think of the steady state being
subjected to a driving force proportional to the distance
from equilibrium as in Figure 1.2c where the flux of mass is
the response to the force. Since each approaches zero
together, we take the linear approximation that the flux of
mass is proportional to the driving force.

We can focus on one phase and think of the driving force
as the distance from the equilibrium value for that phase or
we can think of the overall driving force as the difference
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between the phase compositions. Since the interphase equi-
librium compositions are not the same, the overall driving
force will need to be modified slightly to assure that the rate
is the same as that calculated in either phase.

Chemical—Single Ideal Gas-Phase Reaction The case of
chemical reaction equilibrium is a bit more complicated in
that reaction equilibrium is characterized by the chemical
affinity, a linear combination of the chemical potentials
mentioned in the preceding paragraph. We can, however,
arrive at reaction kinetics, which are at least qualitatively
correct and sufficient to understand some basic behavior of
chemical reactors. We will consider a single ideal gas-phase
reaction for which thermodynamics tells us that the ratio K
in Figure 1.3a has a specific value at equilibrium K.q(7).

We again consider a container with rigid impermeable
walls. Here we take the walls to be diathermal in order to
begin and end the reaction process at the same temperature.
We charge the container with a reactive ideal gas mixture.
The value of K will increase as shown in Figure 1.3a until the
equilibrium value is attained after which no further change
will take place. This is the intraphase chemical equili-
brium condition. For irreversible reactions, the value of K is
extraordinarily large.

If gases are withdrawn at the same rate they are fed as
illustrated in Figure 1.3b, the products will be prevented
from accumulating and therefore the value of K., will be
prevented from being reached. The concentrations 7 and P
will reach steady-state values that are constant throughout.
If the flows are stopped, the system will equilibrate as in
Figure 1.3a. We therefore think of the steady state being
subjected to a driving force proportional to the distance
from equilibrium as in Figure 1.3¢ where the rate of reaction
is the response to the force. Since each approaches zero
together, we take the linear approximation that the flux of
mass is proportional to the driving force. The result shown in
Figure 1.3c is the law of mass action.

1.2 ACRYLIC ACID PRODUCTION

Figure 1.4 is a process flow diagram of a continuous process
for the manufacture of 50,000 metric ton/year of 99.9 mol%
acrylic acid from a one-step oxidation of propylene. One
reactor is therefore used, which stands in contrast to the
commonly used dual reactor system. The process is based
upon the 1986 AIChE Student Contest Problem. The process
conditions and equipment sizes are reported by Turton et al.
(2003).

There are a number of commercial software packages
that are known to produce accurate designs of chemical
processes in the hands of experienced engineers (Aspen
Plus, Aspen Hysys, Chemcad, etc.). Turton et al. (2003)
used Chemcad and expected the results to represent a
preliminary process design. We will use the calculated
results as if they were actual plant data. Actual plant data at
this level of detail are neither available nor needed in light
of the sophistication of the software to gain a familiarity
with process concepts as well as equipment and basic ideas
in chemical engineering analysis and design. However, any
comparisons of approximate calculations with these cal-
culations are comparisons with more rigorous calculation
procedures, not actual data.

Continuous processes are common in the chemical indus-
try where such products as organic chemicals, plastics, and
solvents are produced in large quantities to meet market
demands. These products are referred to as bulk or com-
modity chemicals. Batch processes on the other hand are
commonly used by the pharmaceutical industry to produce
a wide variety, but small amounts, of pharmaceuticals.
These products fall under the category of fine chemicals.
Semicontinuous process is the combination of batch and
continuous processing, in which the chemical state of one or
more chemical compounds is altered stepwise toward a well-
defined target. A process flow diagram (PFD) is a schematic
representation of the process.



6 CHEMICAL PROCESS PERSPECTIVE

P303AB P-3MA/B V301 T-305 E-305 E-306 P-305AB V-302 T-306 E-307
Solvent Schent Sohent Sobd

Inlet Air
Blower

Molten Saft Molten Salt Reactor Quench Of-Gas Quench Quench Acd
Coclor  Circ. Pumps Towar Absciber Pumps Cocler Exmctor Exchgr

Towar Faboiler Cored  Flefux
mps  Pumps

E-a0@ P-30AB V303 PO0TAE E310
Sohvent Acd Acd  Ackd  Acid Acd  Waste Waste Waste Waske Waste Product  Product
Refux  Towsr Reboder Condsr Refux el Tower FRaboiler Condsr Refux FAeflux  Pumps Cocler
Drum Pumps  Drum Pumps  Orum

Scheent

Dalonized Water

Off-Gas to mmrmr_o

O

B0,

-
Swam  CHOIAB “
¢

— o

Key for process icons

Stream 4 _<E~,>_.
Compressor I_/‘l_

9

Pump

Stream conditions
T over P

Heat exchanger _@

Control valve

4

To Wastewaler Teatment

= N

[78WS Designs - Acrykc Ackd Process

] Temperature, "G
Prassurs, bar

E310

P-307 A/B

£ 43 N

)
Tray tower

k-

Packed tower

FIGURE 1.4 Process flow diagram for acrylic acid production plant (Turton et al., 2003). Reprinted

with permission of Pearson.

In a chemical process, material is moved in streams by
mechanical devices such as pumps and compressors from
one process unit to another. A summary of the schematic
representations of these items is given in Figure 1.4.

The streams are connected to the process units by pipes
and ducts for fluids and by screw or belt conveyors in the
case of solids, for example. The process units perform
operations on the content of the streams to change their
temperature, pressure, phase, and/or composition. These
units are often referred to as unit operations and are carefully
configured by the chemical engineer to transform raw
materials into the desired products, economically and safely.
Some units are combinations of unit operations.

All of these processes consist of a sequence of operations
in which the process streams begin at raw material storage
and end with product storage. There are other streams called
utilities, which are employed by the process units as sources
or sinks of thermal energy. The supply and regeneration of
the utility streams may be part of the process or these
services may be supplied by a separate facility. In the latter
case, the utility streams arrive and are returned after use to
the utility site for regeneration.

We will look more carefully into each of these aspects of
chemical processing for the production of 50,000 metric ton/
year of acrylic acid via the process given in the flow diagram

(Figure 1.4). Normally, the adopted chemical route is the
result of an intensive search involving technical, economic,
and safety considerations. More than one route may be
simulated to better evaluate the economics of the final
competitors. A two-step process comprised of the oxidation
of propylene to acrolein followed by the oxidation of
acrolein to acrylic acid (Speight, 2002) is the common
industrial choice. In the present case, the partial oxidation
of propylene has been selected from other alternative routes
to acrylic acid, which may be viewed as an alternative
proposition for a single-step process over a new catalyst.

3
C3Hg + 502 — C3H40, + H,O (1.1)

An economic view can be initiated at the outset of process
development by considering only the raw material costs and
product sales price. The net change for the chemical reaction
must, of course, be positive or “economically endothermic”
before the reaction is even considered to be a possibility for
adoption. Some chemical prices are available in the Chemi-
cal Market Reporter, available online by subscription.
Professional publications such as Chemical and Engineering
News and Chemical Engineering Progress publish limited
pricing information. In general, there is a cost associated



