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Preface

This volume of the SEMA SIMAI Springer Series brings together selected contribu-
tions presented at the international conference “eXtended Discretization MethodS”
(X-DMS), held during September 2015 in Ferrara, Italy. The conference was one of
the thematic conferences supported by the European Community in Computational
Methods in Applied Sciences (ECCOMAS) and also one of the special interest
conferences sponsored by the International Association for Computational Mechan-
ics (IACM). Twelve minisymposia, more than one hundred oral presentations, and
plenary lectures given by eminent personalities in the computational mechanics
research field contributed to the scientific value of the event.

In gathering some of the most interesting contributions at the X-DMS 2015
Conference, the book aims to disseminate ideas and to promote discussion among
researchers with an interest in the development and application of computational
methods in science and technology. In line with this objective, the volume addresses
some of the most advanced discretization methods for the numerical analysis of a
variety of physical problems. In recent years, the efforts of the scientific community
in computational mechanics have especially focused on improving both the overall
computational efficiency and the versatility of the methods, including the addition of
special features of the solution directly in the approximation and/or discretization
space. The results of these efforts can be found in a wide range of computational
methodologies, including partition of unity finite element methods (meshfree,
XFEM, GFEM), virtual element and fictitious domain methods, special techniques
for static and evolving interfaces, multiscale discretization, strong discontinuity
approaches. The selected contributions in this volume recall the main aspects of
some of these methodologies, demonstrating their potentialities and possibilities for
application.

The book is organized into four parts. Part I focuses on the proposals of numerical
schemes for simulations in porous and fractured media; here the challenge is to
handle effectively complex geometries coupled with complex physical problems.
Part II deals with some of the most advanced recent techniques, based on hybrid
and extended discretization methods, for fracture and interface problems. Evolving
fractures in polycrystalline materials, crack lip contact modelling, and procedures
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vi Preface

for the computation of stress intensity factors are some of the addressed topics.
Part III is devoted to contributions on polygonal and polyhedral methods: these
methods consist in using general polytopes, as opposed to more standard tetrahedra
and hexahedra, for the discretization of partial differential equations. Specialized
forms of the discontinuous Galerkin method and the virtual element method
represent the core of this section. In Part IV, recent advances involving extended
finite element methods and fictitious domain methods are introduced; the goals
are especially to overcome some fundamental problems relating to these methods,
which are basically integration at the element level and ill-conditioning of the
resulting system of equations.

A common feature of all the selected contributions is the direct link between
computational methodologies and their application to different engineering topics.
This mix of theory and application reveals an underlying cooperation between
mathematicians and engineers and highlights the way in which the scientific world
is reacting to the increasing demand for simulations to contribute to the development
of sustainable future technologies in engineering, biomedicine, and environmental
sciences.

The Editors of this volume wish to express their sincere gratitude to all the actors
involved in the X-DMS 2015 Conference, from the Institutions and Sponsors to the
Scientific Committee, the organizers of the minisymposia, the plenary speakers, and
all the participants.

Finally, special acknowledgments are due to Prof. Luca Formaggia, Editor-in-
Chief of the SEMA SIMAI Springer Series, and to the Springer Milan editorial
office for offering the opportunity to compile this volume.

Torino, Italy Giulio Ventura
Ferrara, Italy Elena Benvenuti
May 2016
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Part I
Enriched Methods for Flow and Mechanics

in Heterogeneous Media



A Mixed Finite Element Method for Modeling
the Fluid Exchange Between Microcirculation
and Tissue Interstitium

Domenico Notaro, Laura Cattaneo, Luca Formaggia, Anna Scotti,
and Paolo Zunino

Abstract Thanks to dimensional (or topological) model reduction techniques,
small inclusions in a three-dimensional (3D) continuum can be described as one-
dimensional (1D) concentrated sources, in order to reduce the computational cost
of simulations. However, concentrated sources lead to singular solutions that still
require computationally expensive graded meshes to guarantee accurate approxi-
mation. The main computational barrier consists in the ill-posedness of restriction
operators (such as the trace operator) applied on manifolds with co-dimension
larger than one. We overcome the computational challenges of approximating
PDEs on manifolds with high dimensionality gap by means of nonlocal restriction
operators that combine standard traces with mean values of the solution on low
dimensional manifolds. This new approach has the fundamental advantage of
enabling the approximation of the problem using Galerkin projections on Hilbert
spaces, which could not be otherwise applied because of regularity issues. This
approach, previously applied to second order PDEs, is extended here to the mixed
formulation of flow problems with applications to microcirculation. In this way we
calculate, in the bulk and on the 1D manifold simultaneously, the approximation
of velocity and pressure fields that guarantees good accuracy with respect to mass
conservation.

1 Introduction

The ultimate objective of the project is to perform large scale simulations of
microcirculation. In the context of blood flow, the application of geometrical model
reduction techniques plays an essential role, see for example [10, 18]. In particular,
small vessels embedded into a continuum can be described as one-dimensional (1D)
concentrated sources, in order to reduce the computational cost of simulations.
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4 D. Notaro et al.

Although the coupling of three-dimensional (3D) continua with embedded (1D)
networks arises in applications of paramount importance such as microcirculation,
flow through perforated media and the study of reinforced materials, it has not been
well investigated yet.

Two remarkable examples of methods that were previously proposed to over-
come the challenges of simulating small objects into a continuum are the immersed
boundary methods [15, 17, 22] and the fictitious domain methods [11, 12, 21].
Although they share some similarities with the approach that we pursue here,
they have never been applied for solving coupled partial differential equations on
embedded domains.

In the particular case of microcirculation, many ad-hoc approaches have been
proposed. Since capillaries can be modelled as long and narrow cylindrical vessels,
asymptotic expansions that exploit the large aspect ratio of the channel can be
derived to approximate the fluid exchange from one capillary to the surrounding
tissue. This idea has been successfully exploited to study the microvascular flow in
simple arrays of capillaries [1, 8, 9]. However, vascular networks are characterized
by a complex, possibly irregular geometry. The previous semi-analytic methods may
be hardly applied to realistic configurations. We believe that numerical methods
may override this obstacle. For example, the method of Green’s functions, has been
extensively applied to the study complex vascular networks of tumors [13, 19, 20].

In this work we aim to move away from ad-hoc approaches and cast the micro-
circulation problem into a new unified framework to formulate and approximate
coupled partial differential equations (PDEs) on manifolds with heterogeneous
dimensionality. The main computational barrier consists in the ill-posedness of
restriction operators (such as the trace operator) applied on manifolds with co-
dimension larger than one. Following the approach introduced in [6, 7, 14], we will
overcome the computational challenges of approximating PDEs on manifolds with
high dimensionality gap. The main idea consists of introducing nonlocal restriction
operators that combine standard traces with mean values of the solution on low
dimensional manifolds, in order to couple the problem solution in 3D with the one in
1D. This new approach has the fundamental advantage to enable the approximation
of the problem using Galerkin projections on Hilbert spaces, which could not be
otherwise applied, because of regularity issues.

Within this general framework, the specific objective of this work is to formulate
the microcirculation problem as a system of coupled 1D and 3D partial differential
equations governing the flow through the capillary network and the interstitial
volume, respectively. In order to obtain a good approximation of pressure and
velocity fields, and in particular to satisfy mass conservation, we formulate the
problem in mixed form. Then, we derive a discretization method based on mixed
finite elements. Before moving forward to address applications of the method to
study pathologies related to microcirculation, such as cancer [3, 4, 16], we address
here a thorough validation of the solver based on two benchmark problems.
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2 Model Set Up

We study a mathematical model for fluid transport in a permeable biological
tissue perfused by a capillary network. The domain where the model is defined is
composed by two parts, ˝ and �, denoting the interstitial volume and the capillary
bed respectively. We assume that the capillaries can be described as cylindrical
vessels and � denotes the centerline of the capillary network. The capillary radius,
R, is for simplicity considered to be constant. We decompose the network � into
individual branches �i. Branches are parametrized by the arc length si; a tangent
unit vector �i is also defined over each branch, defining in this way an arbitrary
branch orientation. Differentiation over the branches is defined using the tangent
unit vector as @si :D r � �i on �i, i.e. @si represents the projection of r along �i.
The blood flow along each branch is described by Poiseuille’s law for conservation
of momentum and mass:

ui
v D �

R2

8�

@pv;i
@si

�i; ��R2
@ui

v

@si
D gi on �i; (1)

where gi is the transmural flux leaving the vessel. As a consequence of the
geometrical assumptions, the vessel velocity has fixed direction and unknown scalar
component along the branches, namely ui

v D ui
v�i. We shall hence formulate the

vessel problem using the scalar unknown uv . The governing flow equations for the
whole network� are obtained by summing (1) over the index i.

We consider the interstitial volume ˝ as an isotropic porous medium, described
by the Darcy’s law, namely

ut D � 1
�

IKrpt; (2)

where ut is the average velocity vector in the tissue, IK D kI is the isotropic
permeability tensor, � is the viscosity of the fluid and pt is the fluid pressure.

The coupled problem for microcirculation and interstitial flow reads as follows

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�

k
ut Crpt D 0 in ˝;

r � ut � f . pt; pv/ı� D 0 in ˝;

8�

R2
uv C @pv

@s
D 0 in �;

@uv
@s
C 1

�R2
f . pt; pv/ D 0 in �:

(3)

For brevity, we avoid to number each equation of systems. In the remainder, we
will refer to single sub-equations within a system using letter numbering from top
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to bottom (which does not explicitly appear in the expression of the equation, this
notation will be adopted throughout the entire manuscript), e.g. (3) a to d.

The constitutive law for blood leakage from the capillaries to the tissue is
provided by means of Starling’s law of filtration,

f . pt; pv/ D 2�RLp. pv � Npt/; (4)

with

Npt.s/ D 1

2�R

Z 2�

0

pt.s; �/Rd�: (5)

Before proceeding, we write the equations in dimensionless form. We choose
length, velocity and pressure as primary variables for the analysis. The correspond-
ing characteristic values are: (1) the average spacing between capillary vessels d,
(2) the average velocity in the capillary bed U, and (3) the average pressure in the
interstitial space P. The dimensionless groups affecting our equations are:

– R0 D R

d
, non-dimensional radius;

– �t D k

�

P

Ud
, hydraulic conductivity of the tissue;

– Q D 2�R0Lp
P

U
, hydraulic conductivity of the capillary walls;

– �v D �R04

8�

Pd

U
, hydraulic conductivity of the capillary bed,

and the corresponding dimensionless equations read as follows

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1

�t
ut Crpt D 0 in ˝;

r � ut � Q . pv � Npt/ ı� D 0 in ˝;

�R02

�v
uv C @pv

@s
D 0 in �;

@uv
@s
C 1

�R02 Q . pv � Npt/ D 0 in �:

(6)

For simplicity of notation, we used the same symbols for the dimensionless
variables, i.e velocities and pressure scaled by U and P, respectively.

Remark 1 Equations (6) b and d, counting from the top, can be combined up to
obtain a more meaningful formulation of the mass conservation law, namely

r � ut C �R02 @uv
@s
ı� D 0 in ˝; (7)

meaning that the total amount of fluid in the domain˝ [� must be preserved.
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Fig. 1 On the left, a simple network made by a single Y-shaped bifurcation. Arrows show the flow
orientation of one inflow branch on the left of the bifurcation point and two outflow branches on the
right. On the right, the discretization of vessels network is shown. The domain has been split into
branches, the flow problem is defined over each branch and compatibility conditions are enforced
at the junction point

Boundary conditions will be specified further on for both the tissue and vessel
problems. The imposition of suitable compatibility conditions at the bifurcations
or branching points of the capillary tree is also necessary to guarantee well
posedness of (6). Specifically, we shall enforce conservation of mass and continuity
of total pressure at junctions. Let us introduce these conditions in a simple Y-
shaped bifurcation network (Fig. 1). Since in the reduced 1D model of the capillary
network the cross-section is supposed to be constant over the whole network, the
conservation of flow rate is equivalent to require that in correspondence of the
junction point xM the inflow velocity u0v is equal the sum of the outflow velocities
u1v; u2v , namely u0v .xM/ D u1v .xM/Cu2v .xM/. Similarly, we require the pressure over
each branch to be the same at the junction, namely p0v .xM/ D p1v .xM/ D p2v .xM/.
The general case of an arbitrary number of critical points, possibly with different
number of inflow and outflow branches, will be described in Sect. 3. Indeed, it is
important to emphasize that such compatibility conditions will be enforced in a
natural way, at the level of the variational formulation.

3 Variational Formulation

In order to obtain the weak formulation of the tissue interstitium problem, we
multiply Eqs. (6) a and b, counting from the top with sufficiently smooth functions
and integrate over the volume ˝ , namely

Z

˝

1

�t
ut � vt dx C

Z

˝

rpt � vt dx D 0; (8)

Z

˝

.r � ut/ qt dx �
Z

˝

Q . pv � Npt/ ı� qt dx D 0: (9)
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We now apply the Green’s theorem to (8) to obtain an anti-symmetric formulation
of the Darcy’s problem in the tissue:

Z

˝

1

�t
ut � vt dx �

Z

˝

pt .r � vt/ dx C
Z

@˝

pt vt � n d�.x/ D 0; (10)

Z

˝

.r � ut/ qt dx �
Z

˝

Q . pv � Npt/ ı� qt dx D 0: (11)

As concerns the choice of boundary conditions, for simplicity, we enforce a given
pressure distribution over @˝ , namely

pt D gt on @˝; (12)

where gt 2 L2.@˝/. The weak formulation of the problem in ˝ reads

Z

˝

1

�t
ut � vt dx �

Z

˝

pt .r � vt/ dx D �
Z

@˝

gt vt � n d�.x/

Z

˝

.r � ut/ qt dx �
Z

˝

Q . pv � Npt/ ı� qt dx D 0 :

For the vessel problem we start giving a general functional framework. At this
point, we only require regularity for vessel velocity and pressure over each branch
separately:

Vv D
N[

iD1
H1.�i/ Qv D

N[

iD1
L2.�i/:

The definition of trial and test spaces will be revised in the sequel, in the light of
the particular junction conditions we will chose, while no boundary conditions are
enforced in the definition of the spaces. As for the tissue problem, we multiply
Eqs. (6.c),(6.d) by sufficiently smooth test functions and integrate over�:

Z

�

�R02

�v
uv vv ds C

Z

�

@pv
@s

vv ds D 0; (13)

Z

�

@uv
@s

qv ds C 1

�R02

Z

�

Q . pv � Npt/ qv ds D 0: (14)

The integration by parts is not trivial in this case because the vessel variables pv and
uv may be discontinuous at multiple junctions. Let us treat separately the second
integral of (13) and decompose it over the individual branches�i:

Z

�

@pv
@s

vv ds D
NX

iD1

Z

�i

@pv
@s

vv ds D �
Z

�

pv
@vv

@s
ds C

NX

iD1
Œ pv vv 	

�
C
i

��
i
; (15)
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where ��
i and �C

i represent the inflow and outflow boundaries of �i, according to
the orientation �i. Let us define the set of the indexes of junction points:

J :D ˚ j 2 N W sj 2 �; #.Psj/ � 2
�
;

where Psj is the patch of the j-th junction node, i.e. the collection of all branches
joining at the node, and # indicates the counting measure. We also need the
following disjoint partition of the indexes in Psj . According to the orientation unit
vector �i, for any branching point sj we distinguish branches that are entering the
node, whose contribution to mass conservation is positive, from branches who are
leaving the node, whose contribution is negative. The former are branches whose
outflow region coincides with the point sj, while for the latter it is the inflow region:

Pout
j :D ˚ i 2 f1; : : : ;Ng W �C

i � fsjg
�
;

P in
j :D ˚ i 2 f1; : : : ;Ng W ��

i � fsjg
�
;

for all j 2 J . At this point, the fluid mass conservation at each node can be
expressed as follows

X

i 2Pout
j

uv j�C
i
�
X

i 2Pin
j

uv j��
i
D 0; 8j 2J ; (16)

where �in; �out indicate the collection of inflow and outflow boundaries of the
vessel network, i.e. non junction points where the tangent unit vector is inward-
pointing and outward-pointing, respectively. This collection contains the boundary
points, i.e. the extrema that also belong to @˝ , but the inclusion may be strict.
However, in this contribution we do not address the issue of network extrema
belonging to V̋ , i.e. we do not consider immersed tips.

In order to enforce such conditions, we proceed as follows. First, we reformulate
the last term in (15) by isolating the terms relative to inflow junction nodes from
those relative to outflow nodes, namely

NX

iD1
Œ pv vv 	

�
C
i

��
i
D
X

j 2J

2

6
4

X

i 2Pout
j

pv vv j�C
i
�
X

i 2Pin
j

pv vv j��
i

3

7
5 C Œ pv vv 	

�out

�in :

Here, we have implicitly assumed the trace of . pv vv/ over �i exists for vv smooth
enough, i.e. the evaluation of the product at the extrema of �i makes sense.
Furthermore, we write . pv vv/ .sj/ D pv.sj/ vv.sj/ for some point sj 2 �. This
is feasible if the trace of the pressure exists. Obviously, a general L2 function is not
sufficient, the natural choice is pv 2 C 0. N�/, that in particular implies compatibility
of pressure values at the junctions. Indeed, if the pressure is continuous at the
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junction, we have

pv j��
i
� pv.sj/ � pv j�C

k
8i 2P in

j ; k 2Pout
j 8j 2J : (17)

Under that hypothesis, we finally factorize out the pressure and isolate a term that
corresponds to the junction conditions for the velocity test functions, that is

X

j 2J

pv.sj/

2

6
4
X

i 2Pout
j

vv j�C
i
�
X

i 2Pin
j

vv j��
i

3

7
5 :

Then, we weakly enforce mass conservation into the variational formulation by
multiplying (16) by the pressure test functions qv, which act as a Lagrange multiplier
for this constraint, namely

X

j 2J

qv.sj/

2

6
4
X

i 2Pout
j

uv j�C
i
�
X

i 2Pin
j

uv j��
i

3

7
5 :

Finally, after adding the previous term to Eq. (14), the weak formulation of the vessel
problem reads

Z

�

�R02

�v
uv vv ds �

Z

�

pv
@vv

@s
ds C Œ pv vv 	

�out

�in

C
X

j 2J

pv.sj/

2

6
4
X

i 2Pout
j

vv j�C
i
�
X

i 2Pin
j

vv j��
i

3

7
5 D 0;

(18)

Z

�

@uv
@s

qv ds C 1

�R02

Z

�

Q .pv � Npt/ qv ds

�
X

j 2J

qv.sj/

2

6
4
X

i 2Pout
j

uv j�C
i
�
X

i 2Pin
j

uv j��
i

3

7
5 D 0:

(19)

Concerning the boundary conditions for the vessels network, the natural choice is
to enforce a given pressure distributions at the inflow and the outflow of the network,
pv D gv on�in[�out. The generic regularity requirements for the Dirichlet’s datum
are measurability and square-summability, namely gv 2 L2.�in[�out/. In practice,
we consider a constant pressure drop
Pv D Pout

v � Pin
v :

gv.s/ D
(

Pin
v s 2 �in

Pout
v s 2 �out:

(20)
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Since we are considering the mixed formulation of the problem, we enforce such
condition in a weak natural way.

At this point, we combine (10), (11), (18), (19) to obtain the whole weak formu-
lation of our 3D-1D coupled model of fluid exchange between microcirculation and
tissue interstitium. The variational formulation of problem (6) consists of finding
ut 2 Vt ; pt 2 Qt ; uv 2 Vv ; pv 2 Qv s.t.

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

1

�t

�
ut ; vt

�

˝
� �

pt ; r � vt
�

˝
D � �

gt ; vt � n
�

@˝
8vt 2 Vt;

�r � ut ; qt
�

˝
� Q

�
. pv � Npt/ ı� ; qt

�

˝
D 0 8qt 2 Qt;

�R02

�v

�
uv ; vv

�

�
� �

pv ; @svv
�

�

C P
j pv.sj/

hP
i vv j�C

i
�Pi vv j��

i

i
D � Œ gv vv 	�out

�in 8vv 2 Vv;

�
@suv ; qv

�

�
C 1

�R02 Q
�

pv � Npt ; qv
�

�

� P
j qv.sj/

hP
i uv j�C

i
� P

i uv j��
i

i
D 0 8qv 2 Qv:

(21)

4 Numerical Approximation

The discretization of problem (6) is achieved by means of the finite element method
that arises from the variational formulation (21) combined with a discretization
of the domain. In particular, one of the advantage of our formulation is that the
partitions of ˝ and � are completely independent. Let us now analyze the two
approximations separately.

We denote with T h
t an admissible family of partitions of N̋ into tetrahedrons K

N̋ D
[

K2T h
t

K;

that satisfies the usual conditions of a conforming triangulation of ˝ . Here, h
denotes the mesh characteristic size, i.e. h D maxK2T h

t
kK , being hK the diameter

of simplex K. Moreover, we are implicitly assuming that ˝ is a polygonal
domain. The solutions of (21) a and b, counting from the top are approxi-
mated using discontinuous piecewise-polynomial finite elements for pressure and
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Hdiv-conforming Raviart-Thomas finite elements [2] for velocity, namely

Y
k
h :D ˚ wh 2 L2 .˝/ W whjK 2Pk�1.K/ 8K 2 T h

t

�
;

RT
k
h :D ˚ wh 2 H ..div;˝/ W whjK 2Pk�1.KI Rd/˚ xPk�1.K/ 8K 2 T h

t

�
;

for every integer k � 0, where Pk indicates the standard space of polynomials of
degree� k in the variables x D .x1; : : : ; xd/. For the simulations presented later on,
the lowest order Raviart-Thomas approximation has been adopted, corresponding to
k D 1 above. In numerical experiments performed on the 3D problem alone (the test
case is not reported here), we have observed quadratic convergence of the pressure
field and linear convergence of the velocity field.

Concerning the capillary network, we adopt the same domain splitting technique
described at the continuous level, obtaining the following discrete domain:

�h D
N[

iD1
�h

i ;

where �h
i is a finite element mesh on the one-dimensional manifold �i, i.e. a

partition of the i-th network branch made by a sufficiently large number of segments.
The solution of sub-equations (21) c and (21) d, counting from the top, over

a given branch �i is approximated using continuous piecewise-polynomial finite
element spaces for both pressure and velocity. Since we want the vessel velocity to
be discontinuous at multiple junctions, we define the related finite element space
over the whole network as the collection of the local spaces of the single branches.
Conversely, the pressure has been assumed to be continuous over the network. We
will use the following families of finite element spaces for pressure and velocity,
respectively:

X
kC1
h .�/ :D ˚ wh 2 C 0. N�/ W whjS 2Pk .S/ 8S 2 �h

�
;

W
kC2
h .�/ :D

N[

iD1
X

kC1
h .�i/ ;

for every integer k � 0. As a result, we use generalized Taylor-Hood elements
on each network branch, satisfying in this way the local stability of the mixed
finite element pair for the network. At the same time, we guarantee that the
pressure approximation is continuous over the entire network �. In particular, for
the numerical experiments shown later on we have used the lowest order, that is
k D 1.
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The discrete formulation arising from (21) is hence easily obtained by adding the
subscript h to the weak continuous formulation: find ut;h 2 Vh

t ; pt;h 2 Qh
t ; uv;h 2

Vh
v ; pv;h 2 Qh

v s.t.

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1

�t

�
ut;h ; vt;h

�

˝
� �

pt;h ; r � vt;h
�

˝
D � �

gt;h ; vt;h � n
�

@˝
8vt;h 2 Vh

t ;

�r � ut;h ; qt;h
�

˝
� Q

�
. pv;h � Npt;h/ ı� ; qt;h

�

˝
D 0 8qt;h 2 Qh

t ;

�R02

�v

�
uv;h ; vv;h

�

�
� �

pv;h ; @svv;h
�

�

C P
j pv;h.sj/

hP
i vv;h j�C

i
�Pi vv;h j��

i

i
D � Œ gv;h vv;h 	�out

�in 8vv;h 2 Vh
v

�
@suv;h ; qv;h

�

�
C 1

�R02 Q
�

pv;h � Npt;h ; qv;h
�

�

� P
j qv;h.sj/

hP
i uv;h j�C

i
� P

i uv;h j��
i

i
D 0 8qv;h 2 Qh

v;

(22)

where gt;h, gv;h indicate the discrete counterparts of continuous boundary data.
We observe that (22) is a generalized saddle-point problem arising from the

combination of local problems with mass conservation constraints (see also (23)),
such as the mixed formulation of Darcy equation and the incompressible flow
on each network branch with junction conditions. Although, we guarantee local
stability of each block, the global well-posedness is an still an open problem, which
is under investigation.

4.1 Algebraic Formulation

Let us now derive the algebraic form of our discrete problem. We define the number
of degrees of freedom of our discrete (finite) spaces as:

Nh
t :D dim

�
Vh

t

�
; Mh

t :D dim
�
Qh

t

�
;

Nh
v :D dim

�
Vh
v

�
; Mh

v :D dim
�
Qh
v

�
:

We denote with f'i
tgN

h
t

iD1 � f i
t gM

h
t

iD1 and f'i
vgN

h
v

iD1 � f i
vgM

h
v

iD1 the finite element basis
for Vh

t � Qh
t and Vh

v � Qh
v respectively. These two sets are completely independent,
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since the 3D and 1D meshes do not conform. We set:

uh
t .x/ D

Nh
tX

jD1
Uj

t '
j
t .x/ ; ph

t .x/ D
Mh

tX

jD1
P j

t  
j

t .x/ 8x 2 ˝t;

uh
v .s/ D

Nh
vX

jD1
Uj
v '

j
v .s/ ; ph

v .s/ D
Mh
vX

jD1
Pj
v  

j
v .s/ 8s 2 �;

being Ut D fUj
t gN

h
t

jD1; Pt D fP j
t gM

h
t

jD1; Uv D fUj
v gN

h
v

jD1 and Pv D fP j
v gM

h
v

jD1; the
degrees of freedom of the finite element approximation. Then, by replacing the
linear combinations within the discrete weak form (22) and using the linearity of
the inner product, from (22) we deduce the following linear system:

2

6
6
6
6
6
6
4

Mtt �DT
tt O O

Dtt Btt O �Btv

O O Mvv �DT
vv � J

T
vv

O � Bvt Dvv C Jvv Bvv

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

Ut

Pt

Uv

Pv

3

7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
4

Ft

0

Fv
0

3

7
7
7
7
7
7
5

: (23)

Standard finite element matrices and right hand sides are defined as follows

ŒMtt	i;j :D 1

�t

�
'

j
t ; 'i

t

�

˝
Mtt 2 R

Nh
t �Nh

t ;

ŒDtt	i;j :D �r � 'j
t ;  

i
t

�

˝
Dtt 2 R

Nh
t �Mh

t ;

ŒDvv	i;j :D � @s'
j
v ;  

i
v

�

�
Dvv 2 R

Nh
v�Mh

v ;

ŒMvv	i;j :D �R02=�v
�
' j
v ; '

i
v

�

�
Mvv 2 R

Nh
v�Nh

v ;

ŒFt	i :D �� gt;h ; 'i
t � n

�

@˝
Ft 2 R

Nh
t ;

ŒFv	i :D �Œ gv;h ' i
v 	
�out

�in Fv 2 R
Nh
v :

For the implementation of exchange matrices, namely Btt;Btv;Bvt;Bvv , we
define two discrete operators: the first one extracts the mean value of a generic
basis function of Qh

t , while the second interpolates between Qh
t and Qh

v . For every
node sk 2 �h we define T� .sk/ as the discretization of the perimeter of the vessel
�.sk/, see Fig. 2 for an illustration. For simplicity, we assume that �.sk/ is a circle
of radius R defined on the orthogonal plane to �h at point sk. The set of points
of T� .sk/ is used to interpolate the basis functions  i

t . Let us introduce a local
discrete interpolation matrix ˘ � .sk/ which returns the values of each test function
 i

t on the set of points belonging to T� .sk/. Then, we consider the average operator
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Fig. 2 Illustration of the vessel with its centerline �h, a cross section, its perimeter �.sk/ and
its discretization T� .sk/ used for the definition of the interface operators N�vt W Qh

t �! Qh
v and

�tv W Qh
v �! Qh

t

N�vt W Qh
t �! Qh

v such that Nqt D N�vtqt. The matrix N̆ vt that corresponds to this
operator belongs to R

Mh
v�Mh

t and it is constructed such that each row is defined as,

N̆
vtjk D wT.sk/˘ � .sk/ k D 1; : : : ;Mh

v (24)

where w are the weights of the quadrature formula used to approximate the integral

Nqt.s/ D 1

2�R

Z 2�

0

qt.s; �/R d�

on the nodes belonging to T� .sk/. The discrete interpolation operator �tv W Qh
v �!

Qh
t returns the value of each basis function belonging to Qh

t in correspondence of
nodes of Qh

v . In algebraic form it is expressed as an interpolation matrix ˘ tv 2
R

Mh
v�Mh

t . Using these tools we obtain:

Btt D Q ˘ T
vt M

P
vv
N̆
vt; (25)

Btv D Q ˘ T
vt M

P
vv; (26)

Bvt D Q=�R02
M

P
vv
N̆
vt; (27)

Bvv D Q=�R02
M

P
vv ; (28)

being M
P
vv the pressure mass matrix for the vessel problem defined by

�
M

P
vv

�

i;j
:D � j

v ;  
i
v

�

�
:

Concerning the implementation of junction compatibility conditions, we intro-
duce a linear operator giving the restriction with sign of a basis function of Vh

v over
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a given junction node. For a given k 2J , we define Rk W Vh
v �! R such that:

Rk. '
j
v / :D

(
C' j

v.sk/ j in �h
l ^ l 2Pout

k

�' j
v.sk/ j in �h

l ^ l 2P in
k

(29)

for all j D 1; : : : ; Nh
v , where the expression “j in �h

l ” means that the j-th dof is
linked to some vertex of the l-th branch. Note that we are implicitly using the usual
property of Lagrangian finite element basis functions, i.e. that they vanish on all
nodes except the related one. As a consequence, our definition is consistent for all
junction vertexes. Indeed, Rk may only assume values �1; 0;C1 and in particular
Rk. '

j
v / D 0 for all couples of indexes .k; j/ that are uncorrelated. Furthermore,

the definition of Rk can be trivially extended to all network vertexes. Using this
operator, the generic .i; j/ element of Jvv may be computed as follows

ŒJvv	i;j D �
X

k 2J

Rk. '
j
v /  

i
v.sk/ : (30)

5 Numerical Experiments

We validate the mixed-finite element solver through the following test cases,
illustrated in Fig. 3, which have been designed to obtain sufficient generality with a
straightforward interpretation of the results:

Fig. 3 (Left) Computational domain for test-case I. The discrete network �h is made by a single
capillary vessel immersed in a unitary slab of tissue interstitium,˝h. We have used a discretization
step h D 0:05 for both the 1D and 3D problems. (Right) Computational domain for test-case II. The
discrete vessels network�h is made by three capillaries joined junction point xM D .0:5; 0:5; 0:5/:
�0

h entering branch, �1
h and �2

h exiting branches. The tissue interstitium domain˝h is a unit cube.
Again, we have used a discretization step h D 0:05 for both the 1D and 3D problems
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(1) Coupled 3D-1D problem on a single branch;
(2) Coupled 3D-1D problem on a Y-shaped bifurcation.

In this way, we address the two main modeling issues: (1) first, we test the ability
of the computational model to approximate the coupling between 3D and 1D
equations; (2) second, we verify that the assembly of junction conditions works
properly.

5.1 Coupled 3D-1D Problem on a Single Branch

For such a simple setting, we can easily isolate the exchange terms. The 3D-1D
coupled problem is given by (6). In this case, the integration by parts in (6)(iii)
is standard since there are not any junction points. As a consequence, we replace
condition (15) with the following:

Z

�

@pv
@s

vv ds D �
Z

�

pv
@vv

@s
ds C Œ pv vv 	

�out

�in

D �
Z 1

0

pv
@vv

@s
ds C pv.1/ vv.1/� pv.0/ vv.0/ :

Therefore, we obtain the following linear system:

2

6
6
6
6
6
6
4

Mtt �DT
tt O O

Dtt Btt O �Btv

O O Mvv �DT
vv

O � Bvt Dvv Bvv

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

Ut

Pt

Uv

Pv

3

7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
4

Ft

0

Fv
0

3

7
7
7
7
7
7
5

: (31)

We recall that submatrices in (31) have been defined in Sect. 4.1. Nevertheless,
according to the above expression of vessel boundary term it is possible to specify
the right hand side, namely

Fv D �Œ gv;h ' i
v 	
1

0 �

2

6
6
6
6
6
6
6
4

gv;h.0/

0
:::

0

�gv;h.1/

3

7
7
7
7
7
7
7
5

(32)

being gv;h the discrete counterpart of the vessel boundary datum. In the last equality
we used the fundamental property of finite element basis functions. Note that (31)
equals the generic linear system (23) in the special case Jvv D O.
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5.1.1 Numerical Results

For the tissue sample ˝h we use a tetrahedral structured mesh, Th, with charac-
teristic size h D 1=20; the same step has been used for the network discretization
�h, resulting in 48,000 elements for the approximation of interstitial volume and 60
elements for the discrete network. We prescribe the following boundary conditions:

ptj@˝ D 0 ; pv.0/ D 1:0 ; pv.1/ D 0:5 : (33)

For the solution of the linear system (31) we developed a C++ code based
on GetFEM++ (see https://home.gna.org/getfem), an open-source general purpose
finite element library. Specifically, we applied the direct solver SuperLU 3.0 (see
http://crd.lbl.gov/verb~xiaoye/SuperLU). Numerical solutions are shown in Fig. 4.
These plots show qualitatively that the definition and implementation of the method
works properly. In order to find a quantitative way to validate our numerical method
we exploit the exact solution proposed by Chapman and Shipley [5] for the single

Fig. 4 Coupling between the vessel and tissue interstitium. Numerical solutions obtained with
mesh size h D 0:05 and parameters �t D �v D 1, R0 D 1, Q D 1. On the left a double-check for
pressure exchange: (top-left) visualization of tissue and vessel pressures at the transversal medium
plane, (bottom-left) a 3D qualitative representation. On the right the velocity exchange: (top-right)
visualization of tissue and vessel velocities at the axial medium plane, (bottom-right) a 2D view of
the vector field

https://home.gna.org/getfem
http://crd.lbl.gov/verb~xiaoye/SuperLU
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Fig. 5 Capillary pressure as function of arclength s for different vascular permeabilities OLp D
10�4; 2� 10�6; 10�6; 5� 10�7; 10�7; 10�8. To be compared with Fig. 7 in [5]

branch problem. In that work the authors model a fluid flow through the leaky
neovasculature and porous interstitium of a solid tumor, in particular they consider
the simplest case of an isolated capillary immersed in a tumor tissue, giving rise to
the same problem addressed here.

Finally, in order to reproduce numerical results of [5] we choose the non-
dimensional parameters of the problem as follows

R0 D 10�2 ; �t D 4 ; �v D � R03=8 OLp ; Q D 2� ; (34)

where OLp 2
˚
10�4; 2 � 10�6; 10�6; 5 � 10�7; 10�7; 10�8� is an array of non-

dimensional vascular permeabilities used in the numerical tests of [5]. In Fig. 5 we
represent the capillary pressure as a function of arc-length for different vascular
permeabilities. We can observe perfect agreement with the plots shown in [5]
(not reported here). Moreover, we notice that for the lowest value of the vascular
permeability OLp, corresponding to an almost impermeable vessel, the computational
model predicts a linearly decreasing pressure, in agreement with the Poiseuille
equation that governs the flow. Conversely, for high permeability values there is
a substantial deviation from the linear trend because the leakage dominates over the
axial flow component.

In addition, a sensitivity analysis has been performed to investigate the influence
of the relative position of the 3D and 1D grids. To this purpose, we simulated
three different configurations in which the network vertexes coincide with particular
points of the 3D mesh, as shown in Fig. 6. Numerical results of similar test cases,
where the 1D mesh is slightly shifted to coincide with the location of Fig. 6 (top),
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Fig. 6 (Top panel) Proposed configurations for 1D/3D mesh correlation analysis. The red dots
A;B;C indicate three meaningful configurations w.r.t. the distribution of Raviart-Thomas dof
(arrows). We show below the sensitivity analysis for the 1D/3D mesh coupling. Numerical
solutions have been obtained with mesh size h D 0:1 and parameters �t D �v D 1, R0 D 1,
Q D 10�4. For each of the three configurations A;B;C, we extract the smallest patch of elements
intersected by the 1D mesh (truncated along the axial direction for visualization purposes). The
local velocity field is also displayed together with its magnitude (color scale)


