


Contents

Cover

Half Title page

Title page

Copyright page

Contributors

Preface

Chapter 1: Application Fields and

Fundamental Merits of Complex-

Valued Neural Networks

1.1 Introduction

1.2 Applications of Complex-Valued Neural

Networks

1.3 What is a complex Number?

1.4 Complex Numbers in Feedforward Neural

Networks

1.5 Metric in Complex Domain

1.6 Experiments to Elucidate the Generalization

Characteristics

1.7 Conclusions

References

file:///tmp/calibre_5.41.0_tmp_9_a_58u6/dnk3_a7z_pdf_out/OEBPS/cvi.htm


Chapter 2: Neural System Learning

on Complex-Valued Manifolds

2.1 Introduction

2.2 Learning Averages over the Lie Group of

Unitary Matrices

2.3 Riemannian-Gradient-Based Learning on the

Complex Matrix-Hypersphere

2.4 Complex ICA Applied to Telecommunications

2.5 Conclusion

References

Chapter 3: N-Dimensional Vector

Neuron and Its Application to the N-

Bit Parity Problem

3.1 Introduction

3.2 Neuron Models with High-Dimensional

Parameters

3.3 N-Dimensional Vector Neuron

3.4 Discussion

3.5 Conclusion

References

Chapter 4: Learning Algorithms in

Complex-Valued Neural Networks

using Wirtinger Calculus

4.1 Introduction

4.2 Derivatives in Wirtinger Calculus

4.3 Complex Gradient



4.4 Learning Algorithms for Feedforward CVNNs

4.5 Learning Algorithms for Recurrent CVNNs

4.6 Conclusion

References

Chapter 5: Quaternionic Neural

Networks for Associative Memories

5.1 Introduction

5.2 Quaternionic Algebra

5.3 Stability of Quaternionic Neural Networks

5.4 Learning Schemes for Embedding Patterns

5.5 Conclusion

References

Chapter 6: Models of Recurrent

Clifford Neural Networks and Their

Dynamics

6.1 Introduction

6.2 Clifford Algebra

6.3 Hopfield-Type Neural Networks and Their

Energy Functions

6.4 Models of Hopfield-Type Clifford Neural

Networks

6.5 Definition of Energy Functions

6.6 Existence Conditions of Energy Functions

6.7 Conclusion

References



Chapter 7: Meta-Cognitive Complex-

Valued Relaxation Network and its

Sequential Learning Algorithm

7.1 Meta-Cognition in Machine Learning

7.2 Meta-Cognition in Complex-Valued Neural

Networks

7.3 Meta-Cognitive Fully Complex-Valued

Relaxation Network

7.4 Performance Evaluation of McFCRN: Synthetic

Complex-Valued Function Approximation Problem

7.5 Performance Evaluation of McFCRN: Real-

Valued Classification Problems

7.6 Conclusion

Acknowledgment

References

Chapter 8: Multilayer Feedforward

Neural Network with Multi-Valued

Neurons for Brain–Computer

Interfacing

8.1 Brain–Computer Interface (BCI)

8.2 BCI Based on Steady-State Visual Evoked

Potentials

8.3 EEG Signal Preprocessing

8.4 Decoding Based on MLMVN for Phase-Coded

SSVEP BCI

8.5 System Validation

8.6 Discussion

Appendix: Decoding Methods



A.1 Method of Jia and Co-Workers

A.2 Method of Lee and Co-Workers

References

Chapter 9: Complex-Valued B-Spline

Neural Networks for Modeling and

Inverse of Wiener Systems

9.1 Introduction

9.2 Identification and Inverse of Complex-Valued

Wiener Systems

9.3 Application to Digital Predistorter Design

9.4 Conclusions

References

Chapter 10: Quaternionic Fuzzy

Neural Network for View-Invariant

Color Face Image Recognition

10.1 Introduction

10.2 Face Recognition System

10.3 Quaternion-Based View-Invariant Color Face

Image Recognition

10.4 Enrollment Stage and Recognition Stage for

Quaternion-Based Color Face Image Correlator

10.5 Max-Product Fuzzy Neural Network Classifier

10.6 Experimental Results

10.7 Conclusion and Future Research Directions

References

Index



Complex-Valued Neural

Networks



IEEE Press

445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board 2013

John Anderson, Editor in Chief

Linda Shafer

George W. Arnold

Ekram Hossain

Om P. Malik

Saeid Nahavandi

David Jacobson

Mary Lanzerotti

George Zobrist

Tariq Samad

Dmitry Goldgof

Kenneth Moore, Director of IEEE Book and Information

Services (BIS)

Technical Reviewers

George M. Georgiou

Gouhei Tanaka





Copyright © 2013 by The Institue of Electrical and

Electronics Engineers. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a

retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording,

scanning or otherwise, except as permitted under Section

107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or

authorization through payment of the appropriate per-copy

fee to the Copyright Clearance Center, Inc., 222 Rosewood

Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-

4470, or on the web at www.copyright.com. Requests to the

Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River

Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-

6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher

and author have used their best efforts in preparing this

book, they make no representation or warranties with

respect to the accuracy or completeness of the contents of

this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No

warranty may be created or extended by sales

representatives or written sales materials. The advice and

strategies contained herein may not be suitable for your

situation. You should consult with a professional where

appropriate. Neither the publisher nor author shall be liable

for any loss of profit or any other commercial damages,

including but not limited to special, incidental,

consequential, or other damages.

For general information on our other products and services

please contact our Customer Care Department within the

http://www.copyright.com/
http://www.wiley.com/go/permission


United States at (800) 762-2974, outside the United States

at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic

formats. Some content that appears in print, however, may

not be available in electronic formats. For more information

about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is

available.

ISBN 9781118344606

http://www.wiley.com/


CONTRIBUTORS

CHAPTER 1

AKIRA HIROSE, The University of Tokyo, Tokyo, Japan

CHAPTER 2

SIMONE FIORI, Università Politecnica delle Marche, Ancona,

Italy

CHAPTER 3

TOHRU NITTA, National Institute of Advanced Industrial

Science and Technology (AIST), Tsukuba, Japan

CHAPTER 4

MD. FAIJUL AMIN, University of Fukui, Fukui, Japan; Khulna

University of Engineering and Technology, Khulna,

Bangladesh

KAZUYUKI MURASE, University of Fukui, Fukui, Japan

CHAPTER 5

TEIJIRO ISOKAWA, University of Hyogo, Hyogo, Japan

HARUHIKO NISHIMURA, University of Hyogo, Hyogo, Japan

NOBUYUKI MATSUI, University of Hyogo, Hyogo, Japan

CHAPTER 6

YASUAKI KUROE, Kyoto Institute of Technology, Kyoto, Japan

CHAPTER 7

RAMASAMY SAVITHA, Nanyang Technological University,

Singapore

SUNDARAM SURESH, Nanyang Technological University,

Singapore

NARASIMHAN SUNDARARAJAN, Sri Jaya Chamarajendra



College of Engineering (SJCE), Mysore, India

CHAPTER 8

NIKOLAY MANYAKOV, KU Leuven, Leuven, Belgium

IGOR AIZENBERG, Texas A&M University–Texarkana,

Texarkana, Texas, U.S.A.

NILOLAY CHUMERIN, KU Leuven, Leuven, Belgium

MARK M. VAN HULLE, KU Leuven, Leuven, Belgium

CHAPTER 9

XIA HONG, University of Reading, Reading, U.K.

SHENG CHEN, University of Southampton, Southampton,

U.K.; King Abdulaziz University, Jeddah, Saudi Arabia

CHRIS J. HARRIS, University of Southampton, Southampton,

U.K.

CHAPTER 10

WAI KIT WONG, Multimedia University, Melaka, Malaysia

GIN CHONG LEE, Multimedia University, Melaka, Malaysia

CHU KIONG LOO, University of Malaya, Kuala Lumpur,

Malaysia

WAY SOONG LIM, Multimedia University, Melaka, Malaysia

RAYMOND LOCK, Multimedia University, Melaka, Malaysia



PREFACE

Complex-valued neural networks (CVNNs) have continued to

open doors to various new applications. The CVNNs are the

neural networks that deal with complex amplitude, i.e.

signal having phase and amplitude, which is one of the most

core concepts in science and technology, in particular in

electrical and electronic engineering. A CVNN is not

equivalent to a double-dimensional real-valued neural

network. It has different dynamics and characteristics such

as generalization, which is significantly useful in treatment

of complex-amplitude information and wave-related

phenomena. This is a critical point in applications in

engineering fields. It is also crucial for developing new

devices in the future. That is, the CVNN framework will play

an important role in introduction of learning and self-

organization into future quantum devices dealing with

electron waves and photonic waves.

We can further expect that broad-sense CVNNs such as

quaternion neural networks break ground in unique

directions respectively. Quaternion has been essential in

computer graphics to render three-dimensional moving

objects. When we introduce learning and self-organization in

virtual realities and computer-aided amenities, quaternion

neural networks will surely bring an important fundamental

basis. CVNNs may be useful even in physiological analysis

and modeling where the researchers suggest, for example,

that the phase information of neuron firing timing against

the theta wave in electroencephalography possesses a close

relationship to short-term position memory in the brain.

This book includes recent advances and applications of

CVNNs in the following ten chapters. Chapter 1 presents

historical and latest advances in applications of CVNNs first.

Then it illustrates one of the most important merits of



CVNNs, namely, the suitability for adaptive processing of

coherent signals. Chapter 2 deals with complex-valued

parameter manifolds and with applications of CVNNs in

which the connection parameters work in complex-valued

manifolds. Successful applications are also shown, such as

blind source separation of complex-valued sources,

multichannel blind deconvolution of signals in

telecommunications, nondestructive evaluation of materials

in industrial metallic slab production, and a purely

algorithmic problem of averaging the parameters of a pool

of cooperative CVNNs. Chapter 3 describes the N-

dimensional vector neuron, which can deal with N signals as

one cluster, by extending the three-dimensional vector

neuron to N dimensions. The N-bit parity problem is solved

with a signal N-dimensional vector neuron with an

orthogonal decision boundary. It is shown that the extension

of the dimensionality of neural networks to N dimensions

originates the enhancement of computational power in

neural networks. Chapter 4 discusses the Wirtinger calculus

and derives several algorithms for feedforward and

recurrent CVNNs. A functional dependence diagram is

shown for visual understanding of respective derivatives.

For feedforward networks, two algorithms are considered,

namely, the gradient descent (backpropagation) and the

Levenberg–Marquardt (LM) algorithms. Simultaneously, for

recurrent networks, the authors discuss the complex

versions of the real-time recurrent learning (RTRL) and the

extended Kalman filter (EKF) algorithms.

Chapter 5 presents quaternion associative memories.

Quaternion is a four-dimensional hypercomplex number

system and has been extensively employed in the fields of

robotics, control of satellites, computer graphics, and so on.

One of its benefits lies in the fact that affine transforms in

three-dimensional space can be compactly and consistently

represented. Thus neural networks based on quaternion are



expected to process three-dimensional data with learning or

self-organization more successfully. Several schemes to

embed patterns into a network are presented. In addition to

the quaternion version of the Hebbian learning scheme, the

projection rule for embedding nonorthogonal patterns and

local iterative learning are described. Chapter 6 extends

neural networks into the Clifford algebraic domain. Since

geometric product is non-commutative, some types of

models are considered possible. In this chapter three

models of fully connected recurrent networks are i

nvestigated, in particular from the viewpoint of existence

conditions of an energy function, for two classes of the

Hopfield-type Clifford neural networks.

Chapter 7 presents a meta-cognitive learning algorithm for

a single hidden layer CVNN called Meta-cognitive Fully

Complex-valued Relaxation Network (McFCRN). McFCRN has

two components, that is, cognitive and meta-cognitive

components. The meta-cognitive component possesses a

self-regulatory learning mechanism which controls the

learning stability of FCRN by deciding what to learn, when to

learn, and how to learn from a sequence of training data.

They deal with the problem of explicit minimization of

magnitude and phase errors in logarithmic error function.

Chapter 8 describes a multilayer feedforward neural

network equipped with multi-valued neurons and its

application to the domain of brain–computer interface (BCI).

A new methodology for electroencephalogram (EEG)-based

BCI is developed with which subjects can issue commands

by looking at corresponding targets that are flickering at the

same frequency but with different initial phase. Chapter 9

develops a complex-valued (CV) B-spline (basis-spline)

neural network approach for efficient identification of the CV

Wiener system as well as the effective inverse of the

estimated CV Wiener model. Specifically, the CV nonlinear

static function in the Wiener system is represented using



the tensor product from two univariate B-spline neural

networks. The effectiveness is demonstrated using the

application of digital predistorter for high-power amplifiers

with memory. Chapter 10 presents an effective color image

processing system for persons’ face image recognition. The

system carries out the recognition with a quaternion

correlator and a max-product fuzzy neural network classifier.

The performance is evaluated in terms of accuracy,

calculation cost, and noise and/or scale tolerance.

This is the first book planned and published by the

Complex-Valued Neural Networks Task Force (CVNN TF) of

the IEEE Computational Intelligence Society (CIS) Neural

Networks Technical Committee (NNTC). The CVNN TF has

been established to promote research in this developing

field. The authors expect readers to get more interested in

this area, to send feedback in any form, and to join us.

Please visit our website http://www.eis.t.u-

tokyo.ac.jp/news/NNTC_CVNN/.

AKIRA HIROSE

Tokyo

January 2013

http://www.eis.t.u-tokyo.ac.jp/news/NNTC_CVNN/


CHAPTER 1

APPLICATION FIELDS AND

FUNDAMENTAL MERITS OF

COMPLEX-VALUED NEURAL

NETWORKS

AKIRA HIROSE

The University of Tokyo, Tokyo, Japan

This chapter presents historical and latest advances in

applications of complex-valued neural networks (CVNNs)

first. Then it also shows one of the most important merits

of CVNNs, namely, the suitability for adaptive processing

of coherent signals.

1.1 INTRODUCTION
This chapter presents historical and latest advances in

applications of complex-valued neural networks (CVNNs)

first. Then it also shows one of the most important merits of

CVNNs, namely, the suitability for adaptive processing of

coherent signals.

CVNNs are effective and powerful in particular to deal with

wave phenomena such as electromagnetic and sonic waves,

as well as to process wave-related information. Regarding

the history of CVNNs, we can trace back to the middle of the

20th century. The first introduction of phase information in



computation was made by Eiichi Goto in 1954 in his

invention of ”Parametron” [17, 18, 61]. He utilized the phase

of a high-frequency carrier to represent binary or

multivalued information. However, the computational

principle employed there was ”logic” of Turing type, or von

Neumann type, based on symbol processing, so that he

could not make further extensive use of the phase. In the

present CVNN researches, contrarily, the researchers extend

the world of computation to pattern processing fields based

on a novel use of the structure of complex-amplitude (phase

and amplitude) information.

We notice that the above feature is significantly important

when we give thought to the fact that various modern

technologies centered on electronics orient toward coherent

systems and devices rather than something incoherent. The

feature will lead to future general probability statistics,

stochastic methods, and statistical learning and self-

organization framework in coherent signal processing and

information analysis. The fundamental idea is applicable

also to hypercomplex processing based on quaternion,

octonion, and Clifford algebraic networks.

Some parts of the following contents of this chapter were

published in detail in the Journal of Society of Instrument

and Control Engineers [29], the Frontiers in Electrical and

Electronic Engineering in China [28], and IEEE Transactions

in Neural Networks and Learning Systems [35].

1.2 APPLICATIONS OF

COMPLEX-VALUED NEURAL

NETWORKS
Complex-valued neural networks (CVNNs) have become

widely used in various fields. The basic ideas and



fundamental principles have been published in several

books in recent years [27, 22, 26, 41, 53, 2]. The following

subsections present major application fields.

1.2.1 Antenna Design

The most notable feature of CVNNs is the compatibility with

wave phenomena and wave information related to, for

example, electromagnetic wave, lightwave, electron wave,

and sonic wave [28]. Application fields include adaptive

design of antennas such as patch antennas for microwave

and millimeter wave. Many researches have been reported

on how to determine patch-antenna shape and sub-element

arrangement, as well as on the switching patterns of the

sub-elements [46, 10, 47]. A designer assigns desired

frequency-domain characteristics of complex amplitude, or

simply amplitude, such as transmission characteristics,

return loss, and radiation patterns. A CVNN mostly realizes a

more suitable design than a real-valued network does even

when he/she presents only simple amplitude. The reason

lies in the elemental dynamics consisting of phase rotation

(or time delay × carrier frequency) and amplitude increase

or decrease, based on which dynamics the CVNN learning or

self-organization works. As a result, the generalization

characteristics (error magnitude at nonlearning points in

supervised learning) and the classification manner often

become quite different from those of real-valued neural

networks [28, 35]. The feature plays the most important role

also in other applications referred to below.

1.2.2 Estimation of Direction of

Arrival and Beamforming

The estimation of direction of arrival (DoA) of

electromagnetic wave using CVNNs has also been



investigated for decades [67, 6]. A similar application field is

the beamforming. When a signal has a narrow band, we can

simply employ Huygens’ principle. However, in an ultra-

wideband (UWB) system, where the wavelength is

distributed over a wide range, we cannot assume a single

wavelength, resulting in unavailability of Huygens’ principle.

To overcome this difficulty, an adaptive method based on a

CVNN has been proposed [60] where a unit module consists

of a tapped-delay-line (TDL) network.

1.2.3 Radar Imaging

CVNNs are widely applied in coherent electromagnetic-wave

signal processing. An area is adaptive processing of

interferometric synthetic aperture radar (InSAR) images

captured by satellite or airplane to observe land surface [59,

65]. There they aim at solving one of the most serious

problems in InSAR imaging that there exist many rotational

points (singular points) in the observed data so that the

height cannot be determined in a straightforward way.

Ground penetrating radar (GPR) is another field [21, 66,

43, 44, 49, 34]. GPR systems usually suffer from serious

clutter (scattering and reflection from non-target objects).

Land surface as well as stones and clods generate such

heavy clutter that we cannot observe what are underground

if we pay attention only to the intensity. Complex-amplitude

texture often provides us with highly informative features

that can be processed adaptively in such a manner that we

do in our early vision.

1.2.4 Acoustic Signal Processing

and Ultrasonic Imaging

Another important application field is sonic and ultrasonic

processing. Pioneering works were done into various



directions [69, 58]. The problem of singular points exists

also in ultrasonic imaging. They appear as speckles. A

technique similar to that used in InSAR imaging was

successfully applied to ultrasonic imaging [51].

1.2.5 Communications Signal

Processing

In communication systems, we can regard CVNNs as an

extension of adaptive complex filters, i.e., modular multiple-

stage and nonlinear version. From this viewpoint, several

groups work hard on time-sequential signal processing [15,

16], blind separation [68], channel prediction [12],

equalization [63, 36, 55, 40, 33, 7, 8], and channel

separation in multiple-input multiple-output (MIMO) systems

[37]. Relevant circuit realization [13] is highly inspiring not

only as working hardware but also for understanding of

neural dynamics.

1.2.6 Image Processing

There are many ideas based on CVNNs also in image

processing. An example is the adaptive processing for blur

compensation by identifying point scattering function in the

frequency domain [3]. In such a frequency-domain

processing of images, we often utilize the fact that the

phase information in frequency domain corresponds to

position information in spatial domain. On the other hand,

CVNN spatial-domain processing is also unique and

powerful. A highly practical proposal was made for quick

gesture recognition in smart phones by dealing with finger

angle information adaptively by a CVNN [19]. Biological

imaging is another expanding field. There we can find, for

example, a classification of gene-expression stages in gene

images [1], along with adaptive segmentation of magnetic



resonance image (MRI) by placing a dynamic boundary

curve (so-called ”snake”) in the obtained complex-

amplitude MRI image for segmentation of blood vessels and

other organs [20]. Since there are various types of active

and coherent imaging systems in medicine, we can expect

further applications of CVNNs to deal with complex-

amplitude images.

1.2.7 Social Systems Such as

Traffic and Power Systems

Recent applications expand more multi-directionally even to

social systems. In traffic systems, a CVNN will be effectively

used for controlling mutual switching timing of traffic lights

in complicatedly connected driving roads [50]. Since traffic

lights have periodic operation, some CVNN dynamics is

suitable for their adaptive control. Green energy and smart

grid are also the fields. A CVNN-based prediction of wind

strength and direction has been demonstrated for efficient

electric power generation [14] in which amplitude and

phase in the complex plane represent the strength and the

direction, respectively.

1.2.8 Quantum Devices Such as

Superconductive Devices

Applications to quantum computation using quantum

devices such as superconductivity have also been

investigated in many groups [57, 39, 48]. Their results

suggest the future realization of intrinsically non-von

Neumann computers including pattern-information

representing devices. Conventional quantum computation is

strictly limited in its treatable problems. Contrarily, CVNN-

based quantum computation can deal with more general



problems, which leads to wider applications of quantum

computation.

1.2.9 Optical/Lightwave

Information Processing

Including Carrier-Frequency

Multiplexing

Learning optical and lightwave computer is another field of

CVNN applications. There are researches such as frequency-

domain multiplexed learning [38] and real-time generation

of a three-dimensional holographic movie for interactively

controllable optical tweezers [32, 62]. In these networks, a

signal has its carrier frequency, equivalent to a band signal

in communications, and therefore the learning and

processing dynamics is controllable by modulating the

carrier frequency. The idea can be adapted to complex

filters. It led to a novel developmental learning of motion

control combined with reinforcement learning [30]. The

success suggests further a possible influence of frequency

modulation of brain wave on biological brain activity,

indicating a new door to CVNN-related physiology.

1.2.10 Hypercomplex-Valued

Neural Networks

Hypercomplex-valued neural networks have also been

actively investigated [5]. An example is the adaptive

learning in three-dimensional color space by using

quaternion [45]. An adaptive super-high-sensitive color

camera (so-called night vision) has been produced that

realizes a compensation of nonlinear human color-vision

characteristics in extremely dark environment. More



generalized hypercomplex networks, namely, Clifford

algebraic neural networks, are also discussed very actively

in, e.g., special sessions in conferences [54].

1.3 WHAT IS A COMPLEX

NUMBER?
In this section, we look back the history of complex numbers

to extract the essence influential in neural dynamics.

1.3.1 Geometric and Intuitive

Definition

Throughout history, the definition of the complex number

has changed gradually [11]. In the 16th century, Cardano

tried to work with imaginary roots in dealing with quadratic

equations. Afterward, Euler used complex numbers in his

calculations intuitively and correctly. It is said that by 1728

he knew the transcendental relationship i log i = −π/2. The

Euler formulae appear in his book as

(1.1) 

In 1798, Wessel described representation of the points of a

plane by complex numbers to deal with directed line

segments. Argand also interpreted  as a rotation through

a right angle in the plane, and he justified this idea on the

ground that two  rotations yields a reflection, i.e., −1. It

is also believed that, in early 1749, Euler already had a

visual concept of complex numbers as points of a plane. He

described a number x on a unit circle as x = cos g + i sin g,

where g is an arc of the circle. Gauss was in full possession

of the geometrical theory by 1815. He proposed to refer to

+1, −1, and  as direct, inverse, and lateral unity, instead



of positive, negative, and imaginary or ”impossible”

elements.

1.3.2 Definition as Ordered Pair

of Real Numbers

The geometrical representation is intuitively simple and

visually understandable, but may be weak in strictness. In

1835, Hamilton presented the formal definition of the

complex number as an ”ordered pair of real numbers,”

which also led to the discovery of quaternions, in his article

entitled ”Theory of conjugate functions, or algebra as the

science of pure time.” He defined addition and

multiplication in such a manner that the distributive,

associative, and commutative laws hold. The definition as

the ordered pair of real numbers is algebraic, and it can be

stricter than the intuitive rotation interpretation.

At the same time, the fact that a complex number is

defined by two real numbers may lead present-day neural-

network researchers to consider a complex network

equivalent to just a doubled-dimension real-number network

effectively. However, in this paper, the authors would like to

clarify the merit by focusing on the rotational function even

with this definition.

Based on the definition of the complex number as an

ordered pair of real numbers, we represent a complex

number z as

(1.2) 

where x and y are real numbers. Then the addition and

multiplication of z1 and z2 are defined in complex domain

as

(1.3) 

(1.4) 



As a reference, the addition and multiplication (as a step in

correlation calculation, for example) of two-dimensional real

values is expressed as

(1.5) 

(1.6) 

In the comparison, the addition process is identical.

Contrarily, the complex multiplication seems quite artificial,

but this definition (1.4) brings the complex number with its

unique function, that is, the angle rotation, as well as

amplitude amplification/attenuation, which are the result of

the intermixture of the real and imaginary components.

It is easily verified that the commutative, associative, and

distributive laws hold. We have the unit element (1, 0) and

the inverse of z (≠ 0), which is

(1.7) 

where .

1.3.3 Real 2 × 2 Matrix

Representation

We can also use real 2 × 2 matrices, instead of the ordered

pairs of real numbers, to represent complex numbers [11,

9]. With every complex number c = a + ib, we associate the

C-linear transformation

(1.8) 

which includes a special case of z → iz that maps 1 into i, i

into −1, …, with a rotation with right angle each. In this

sense, this definition is a more precise and general version

of Argand’s interpretation of complex numbers. If we

identify C with R2 by



(1.9) 

it follows that

(1.10) 

In other words, the linear transformation Tc determined by c

= a + ib is described by the matrix . Generally, a

mapping represented by a 2 × 2 matrix is noncommutative.

However, in the present case, it becomes commutative. By

this real matrix representation, the imaginary unit i in C is

given as

(1.11) 

In the days of Hamilton, we did not have matrices yet.

Even after the advent of matrices, it is very rare to define

complex numbers in terms of real 2×2 matrices [11]

(Chapter 3, §2, 5.), [9]. The introduction of complex

numbers through 2×2 matrices has the advantage, over

introducing them through ordered pairs of real numbers,

that it is unnecessary to define an ad hoc multiplication.

What is most important is that this matrix representation

clearly expresses the function specific to the complex

numbers—that is, the rotation and amplification or

attenuation as

(1.12) 

where r and θ denote amplification/attenuation of amplitude

and rotation angle applied to signals, respectively, in the

multiplication calculation. On the other hand, addition is

rather plain. The complex addition function is identical to

that in the case of doubled-dimension real numbers.



In summary, the phase rotation and amplitude

amplification/attenuation are the most important features of

complex numbers.

1.4 COMPLEX NUMBERS IN

FEEDFORWARD NEURAL

NETWORKS
We consider intuitively what feature emerges in the

dynamics of complex-valued neural networks. Here we first

take a layered feedforward neural network. Then we

consider metrics in correlation learning.

1.4.1 Synapse and Network

Function in Layered

Feedforward Neural Networks

In wave-related adaptive processing, we often obtain

excellent performance with learning or self-organization

based on the CVNNs. As already mentioned, the reason

depends on situations. However, the discussion in Section

1.3 suggests that the origin lies in the complex rule of

arithmetic. That is to say, the merit arises from the

functions of the four fundamental rules of arithmetic of

complex numbers, in particular the multiplication, rather

than the representation of the complex numbers, which can

be geometric, algebraic, or in matrices. Moreover, the

essence of the complex numbers also lies in the

characteristic multiplication function, the phase rotation, as

overviewed in Section 1.3 [27].

Let us consider a very simple case shown in Fig. 1.1(a),

where we have a single-layer 2-input 2-output feedforward



neural network in real number. For simplicity, we omit the

possible nonlinearity at the neurons, i.e., the activation

function is the identity function, where the neurons have no

threshold. We assume that the network should realize a

mapping that transforms an input xIN to an output xOUT in

Fig. 1.1(b) through supervised learning that adjusts the

synaptic weights wji. Simply, we have only a single teacher

pair of input and output signals. Then we can describe a

general input-output relationship as

Figure 1.1 (a) A simple real-valued single-layered two-input

two-output feedforward network to learn (b) a mapping that

maps xIN to xOUT and (c) a possible but degenerate

solution that is often unuseful [28].


