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PREFACE

Readers who have been with us since the first edition may have noticed that each edition

added several new topics while few were dropped. By the third edition, a limit had been

reached and it was time to rethink how the material was presented. With the encouragement

of our publisher, we decided to produce two books. The first, published in 2012, is the

fourth edition, continuing to be called Loss Models: From Data to Decisions [58]. In

that book we included all the topics currently covered on the examinations of the Casualty

Actuarial Society and the Society of Actuaries (with some updates to specific topics). We

also included a few topics we think may be worth adding in the future (and that we like to

teach). When designing this companion book, we wanted to do two things. The first was

to cover the topics from the third edition that had been excluded from the fourth edition.

These are:

Extreme value distributions (with expanded material on tail calculations)

Computational methods for aggregate models [including an (a, b, m) recursion]

Counting processes

Copula models

Continuous-time ruin models

Interpolation and smoothing

The second was to add new material, particularly with regard to expanding the number of

models presented and demonstrating how they apply to actuarial problems. The new topics

are (though some include material that was in the third edition):

xi



xii PREFACE

Coxian and related distributions

Mixed Erlang distributions

Analytic methods for aggregate claim models

More discrete claim count models

Compound distributions with time dependent claim amounts

We have viewed this companion book as more of a practitioner’s and researcher’s resource

than a textbook and thus have only created exercises where additional concepts are intro-

duced. However, for material brought over from the third edition, those exercises have

been retained. Solutions to all exercises are in an Appendix. Together with the fourth

edition, we believe the two books present a comprehensive look at the current state of this

aspect of actuarial work. We are thankful for the continued support and encouragement

from John Wiley & Sons and the Society of Actuaries. We also thank Joan Hatton for her

expert typing and Mirabelle Huynh who did a thorough job of proofreading our writing.

S. A. KLUGMAN, H. H. PANJER, G. E. WILLMOT

Schaumburg, IL and Waterloo, Ontario



CHAPTER 1

INTRODUCTION

As noted in the preface, the purpose of this book is to provide information on topics not

covered in the fourth edition of Loss Models: From Data to Decisions [59]. In general,

the emphasis here is less on data and decisions and more on what is in between, namely

the vast array of models available for actuarial work. In this introduction we give a brief

overview of the models covered. The material can be broken up into six sets of topics.

Univariate models for loss amounts

Three chapters are devoted to classes of univariate models. The first is the class of

Coxian distributions (Chapter 2). These distributions have the desirable property that their

Laplace transform (or, equivalently, their moment generating function) is a ratio of polyno-

mials. Thus, when used as a claim size distribution, convenient explicit expressions for the

associated aggregate or compound distribution may sometimes be derived. The second is

the class of mixed Erlang distributions (Chapter 3). These distributions are notable because

they can approximate any positive continuous distribution to an arbitrary degree of accu-

racy. Moreover, the mixed Erlang class contains a large number of distributions, including

some whose mixed Erlang structure is not obvious. Also, calculations of most quantities of

interest in an insurance loss context are computationally straightforward. The third chapter

(Chapter 4) covers the two classes of extreme value distributions. This material is largely

reproduced from the third edition [58] with some additional material on tail calculations.

Loss Models: Further Topics.
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2 INTRODUCTION

As the name implies, these models are especially useful for management of risks that may

produce large losses.

Calculation of aggregate losses

The basic methods for these calculations are covered in the fourth edition. This book

contains two enhancements. Some of the univariate models introduced in the early chapters

allow for exact calculation of aggregate loss probabilities. The formulas are developed in

Chapter 5 along with asymptotic formulas for the right tail. Computational methods left

out of the fourth edition are provided in Chapter 6. These include inversion methods,

calculating with approximate distributions, and calculating from the individual risk model

(which was in the second edition, but not the third). A new item is a presentation of the

recursive formula when the frequency distribution is a member of the (a, b, m) class of

distributions.

Loss model applications of discrete counting models

The next three chapters focus on various issues that are of interest in the loss modeling

context. The first chapter (Chapter 7) introduces counting processes and, as in the third

edition, deals with nonhomogeneous birth processes and mixed Poisson processes, which

are useful for modeling the development of claim counts over time. Chapter 8 is new and

considers properties of discrete counting distributions that are of interest in connection with

loss model concepts such as deductibles and limits, recursions for compound distributions,

evaluation of stop-loss moments, and computation of the risk measures VaR and TVaR in a

discrete setting. The third chapter (Chapter 9) deals with models where the claim amounts

depend on the time of incurral of the claim. Examples include inflation and claim payment

delays.

Multivariate models

Chapter 10 covers the analysis of multivariate models based on copula functions. The

material is taken from the third edition. Methods for simulation that were in a later chapter

of the third edition were moved to this chapter.

Continuous-time ruin models

The material in Chapter 11 is taken directly from the third edition. It contains the classic

analysis of the infinite-time ruin problem.

Interpolation and smoothing

While this material was covered in the third edition, two changes have been made for

Chapter 12. First, some of the earlier material has been eliminated or streamlined. The

goal is to efficiently arrive at the smoothing spline, the method most suitable for actuarial

problems. More emphasis is placed on the most common application, the smoothing of

data from experience studies. A traditional actuarial method, Whittaker–Henderson, has

been added along with discussion of its similarity to smoothing splines.



CHAPTER 2

COXIAN AND RELATED DISTRIBUTIONS

2.1 Introduction

For the analysis of aggregate claims, the typical models involve compound distributions,

which result in analytical complexities. A useful feature of compound distributions is the

simplicity of the probability generating function (for discrete cases) and the Laplace trans-

form (for continuous cases). This characteristic can be exploited to obtain useful results

from either a mathematical or computational viewpoint. Because the class of Coxian dis-

tributions is defined through its Laplace transform, members of the class are well suited for

use as claim amount distributions in aggregate claims models. In this chapter we briefly

discuss two fairly broad classes of models that have been used in applications involving

loss models. Both are subclasses of the class of Coxian distributions, which we now de-

fine.

Definition 2.1 A distribution is from the Coxian-n class if its Laplace transform f̃(s) =∫∞
0

e−sxf(x)dx may be expressed as

f̃(s) =
a(s)

m∏
i=1

(λi + s)
ni

, (2.1)

where λi > 0 for i = 1, 2, . . . , m and (without loss of generality) we assume that λi �= λj

for i �= j. We further assume that ni is a nonnegative integer for i = 1, 2, . . . , m and that

n =
∑m

i=1 ni > 0. Also, a(s) is a polynomial of degree n− 1 or less.

Loss Models: Further Topics.
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4 COXIAN AND RELATED DISTRIBUTIONS

As f̃(0) = 1, it follows that a(0) =
∏m

i=1 λni

i . Furthermore, a partial fraction expan-

sion of (2.1) yields

f̃(s) =

m∑
i=1

ni∑
j=1

pij

(
λi

λi + s

)j

, (2.2)

where

pij =
λ−j

i

(ni − j)!

dni−j

dsni−j

⎧⎪⎪⎨⎪⎪⎩
m∏

k=1
k �=i

a(s)

(λk + s)nk

⎫⎪⎪⎬⎪⎪⎭
∣∣∣∣∣∣∣∣
s=−λi

. (2.3)

Note that (
λi

λi + s

)j

=

∫ ∞

0

e−sxeλi,j(x)dx, (2.4)

where

eλi,j(x) =
λj

i x
j−1e−λix

(j − 1)!
, x ≥ 0, (2.5)

is the probability density function (pdf) of an Erlang-j random variable with scale param-

eter λi. Then, from (2.2) and also (2.4), the Coxian-n class has pdf of the form

f(x) =

m∑
i=1

ni∑
j=1

pijeλi,j(x)

with eλi,j(x) given by (2.5), which is a finite combination of Erlang pdfs. We now discuss

the special case when ni = 1 for i = 1, 2, . . . , m.

2.2 Combinations of exponentials

Suppose that X has pdf of the form

f(x) =

n∑
i=1

qiλie
−λix, x ≥ 0, (2.6)

where λi ≥ 0 for i = 1, 2, . . . , n. The condition that
∫∞
0 f(x)dx = 1 implies that∑n

i=1 qi = 1, and if 0 ≤ qi ≤ 1 for i = 1, 2, . . . , n then (2.6) may be interpreted as a

mixture of exponential pdfs.

But (2.6) is a pdf in many cases even if some of the qi are negative, in which case

(2.6) may be referred to as a combination (or a generalized mixture) of exponentials. Two

examples where this occurs are now given.

EXAMPLE 2.1 Generalized Erlang distribution

Suppose that Xi has the exponential distribution with mean 1/λi for i = 1, 2, . . . , n,

where λi �= λj . Let Sn = X1 + · · · + Xn. Then Sn is said to have a generalized

Erlang pdf where it is further assumed that X1, X2, . . . , Xn are independent. Clearly,

E
(
e−sSn

)
=

n∏
i=1

(
λi

λi + s

)
,
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which is of the form (2.1) with ni = 1 for i = 1, 2, . . . , m. Then a partial fraction

expansion yields immediately that

n∏
j=1

(
λj

λj + s

)
=

n∑
j=1

qj
λj

λj + s
. (2.7)

Thus, for i = 1, 2, . . . , n ,

qiλi +

n∑
j=1
j �=i

qjλj
λi + s

λj + s
= λi

n∏
j=1
j �=i

λj

λj + s
,

and substitution of s = −λi yields

qi =

n∏
j=1
j �=i

λj

λj − λi
, i = 1, 2, . . . , n. (2.8)

We remark that (2.7) and (2.8) also follow directly from (2.2) and (2.3), respec-

tively. Thus, from (2.7), Sn has pdf

fSn(x) =

n∑
i=1

qiλie
−λix, (2.9)

where qi is given by (2.8) and (2.9) is of the form (2.6). �

The use of the partial fraction expansion in the previous example is essentially equiva-

lent to Lagrange’s polynomial representation. That is, if x1, x2, . . . , xn are distinct num-

bers and g(x) is a polynomial of degree n−1 or less, then g(x) may be expressed in terms

of the functional values g(xi) for i = 1, 2, . . . , n as

g(x) =

n∑
i=1

g (xi)

n∏
j=1
j �=i

x− xj

xi − xj
. (2.10)

An important special case of (2.10) is when g(x) = 1, yielding the identity

n∑
i=1

n∏
j=1
j �=i

x− xj

xi − xj
= 1. (2.11)

If x = 0 in (2.11) and xj = λj , it follows immediately that
∑n

i=1 qi = 1, where qi is

given by (2.8), a condition necessary for (2.9) to be a pdf. Also, (2.11) may be viewed as

a polynomial identity in x. The left-hand side is a polynomial of degree n − 1 in x, with

coefficient of xn−1 satisfying

n∑
i=1

⎧⎪⎪⎨⎪⎪⎩
n∏

j=1
j �=i

(xi − xj)

⎫⎪⎪⎬⎪⎪⎭
−1

=

n∑
i=1

⎧⎪⎪⎨⎪⎪⎩
n∏

j=1
j �=i

(xj − xi)

⎫⎪⎪⎬⎪⎪⎭
−1

= 0, (2.12)
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because the coefficient of xn−1 on the right-hand side of (2.11) is 0. This proves the

outer equality in (2.12), and the left-hand equality in (2.12) follows by multiplication by

(−1)n−1. It is clear from (2.8) and (2.9) that

fSn (0) =

n∑
i=1

qiλi =

⎧⎨⎩
n∏

j=1

λj

⎫⎬⎭
n∑

i=1

⎧⎪⎪⎨⎪⎪⎩
n∏

j=1
j �=i

(λj − λi)

⎫⎪⎪⎬⎪⎪⎭
−1

,

and thus (2.12) with xj = λj implies that fSn(0) = 0 if n = 2, 3, . . ..
We now consider a second example of a combination of exponentials.

EXAMPLE 2.2 A logbeta distribution

Suppose that Y has the beta pdf

fY (y) =
Γ(n+ α+ 1)

Γ(α+ 1)(n− 1)!
yα(1 − y)n−1, 0 < y < 1,

where α > −1 and n is a positive integer. Now consider the random variable X
defined by Y = e−λX , so that X = − 1

λ lnY . Thus the cdf of X is

FX(x) = Pr

(
− 1

λ
lnY ≤ x

)
= Pr (−λx ≤ lnY ) = Pr

(
Y > e−λx

)
,

and differentiation yields the pdf

fX(x) = λe−λxfY

(
e−λx

)
= λe−λx Γ(n + α+ 1)

Γ(α+ 1)(n− 1)!

(
e−λx

)α (
1− e−λx

)n−1
.

Noting that Γ(n+α+1)/Γ(α+1) =
∏n

j=1(α+j) and applying a binomial expansion

to (1 − e−λx)n−1 yield

fX(x) =

⎧⎨⎩
n∏

j=1

(α+ j)

⎫⎬⎭λe−λ(α+1)x
n−1∑
k=0

(−1)k
k!(n− 1− k)!

e−λkx.

A change in the index of summation from k to i = k + 1 yields

fX(x) =

⎧⎨⎩
n∏

j=1

(α+ j)

⎫⎬⎭ λe−λαx
n∑

i=1

(−1)i−1

(i− 1)!(n− i)!
e−λix

=

n∑
i=1

(−1)i−1

(i− 1)!(n− i)!

⎧⎪⎪⎨⎪⎪⎩
n∏

j=1
j �=i

(α+ j)

⎫⎪⎪⎬⎪⎪⎭ λ(α+ i)e−λ(α+i)x,

that is,

fX(x) =

n∑
i=1

qiλie
−λix, (2.13)
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where λi = λ(α+ i) and

qi =
(−1)i−1

(i− 1)!(n− i)!

n∏
j=1
j �=i

(α+ j), i = 1, 2, . . . , n. (2.14)

It is useful to note that if i = 1, 2, . . . , n,

n∏
j=1
j �=i

(j − i) = {(1− i)(2 − i) . . . (i− 1− i)} {(i+ 1− i)(i+ 2− i) · · · (n− i)}

=
{
(−1)i−1(i− 1)!

} {(n − i)!}
= (i− 1)!(n− i)!/(−1)i−1,

and thus (2.14) may also be expressed as

qi =

n∏
j=1
j �=i

(
j + α

j − i

)
. (2.15)

Now, with xi = −i, (2.10) becomes

g(x) =

n∑
i=1

g(−i)

n∏
j=1
j �=i

(
x+ j

j − i

)
,

implying from (2.15) that g(α) =
∑n

i=1 qig(−i) for any polynomial g(x) of degree

n− 1 or less. Thus, with g(x) = 1, it follows that
∑n

i=1 qi = 1, a condition that again

must hold for (2.13) to be a pdf. �

The class of combinations of exponentials is an important class of distributions as it

is dense in the set of probability distributions on [0,∞), implying that any such proba-

bility distribution may be approximated by a combination of exponentials. Dufresne [19]

considers this approximation problem and uses logbeta pdfs of the type considered in Ex-

ample 2.2 in this context. Interestingly, the terminology “logbeta” is also due to Dufresne

[19] and is more appropriate than the use of the term “lognormal” in that the log (not the

exponential) of a lognormal random variable is normally distributed.

Assuming without loss of generality that λ1 < λ2 < · · · < λn, necessary conditions

for (2.6) to be a valid pdf are that q1 > 0 and
∑n

i=1 qiλi ≥ 0, and these conditions are

also sufficient if there is not more than one sign change in the sequence {q1, q2, . . . , qn},
obviously the case if n = 2. See Steutel and van Harn [89, pp. 338–339] for further

details. Again assuming that λ1 < λ2 < · · · < λn, Bartholomew [7] shows that alternative

sufficient conditions for (2.6) to be a valid pdf are that
∑k

i=1 qiλi ≥ 0 for k = 1, 2, . . . , n.

2.3 Coxian-2 distributions

In the Coxian-n case with n = 2, a(s) is a linear function of s, and thus (2.1) may be

expressed as

f̃(s) =
λ1(1− p)s+ λ1λ2

(λ1 + s)(λ2 + s)
, (2.16)
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where λ1 > 0, λ2 > 0, and λ1 = λ2 is possible. We wish to consider values of p for which

(2.16) is the Laplace transform of a pdf. First, note that if p = 0 then f̃(s) = λ1/(λ1 + s),
which is the Laplace transform of an exponential (with mean 1/λ1) pdf. Similarly, if

p = 1 − λ2/λ1, that is, λ2 = λ1(1 − p), then f̃(s) = λ2/(λ2 + s), again of exponential

form. Thus we exclude the cases with p = 0 and p = 1− λ2/λ1 in what follows.

It is clear from (2.16) that

f̃(s) = (1 − p)
λ1

s+ λ1
+ p

λ1λ2

(s+ λ1)(s+ λ2)
, (2.17)

which implies that

f(x) = λ1(1− p)e−λ1x + λ1λ2pe−λ1xh(x), (2.18)

where

h(x) =

∫ x

0

e(λ1−λ2)ydy. (2.19)

Clearly, h(x) is easy to evaluate, but its form depends on whether λ1 = λ2 or not. In any

event, h(0) = 0 from (2.19), implying from (2.18) that f(0) = λ1(1 − p), and so the

condition p ≤ 1 is required for f(x) to be a valid pdf. The Laplace transform of the tail

F (x) =
∫∞
x

f(y)dy is, from (2.17),

1− f̃(s)

s
=
(1− p)

s

{
1− λ1

λ1 + s

}
+

p

s

{
1− λ1λ2

(λ1 + s)(λ2 + s)

}
= (1− p)

{
1− λ1

λ1+s

s

}
+ p

{
1− λ1

λ1+s

s
+

λ1

λ1 + s

1− λ2

λ2+s

s

}
,

from which it follows that

F (x) = (1 − p)e−λ1x + p

⎧⎨⎩e−λ1x + λ1

x∫
0

e−λ1(x−y)−λ2ydy

⎫⎬⎭ .

Thus, again using (2.19),

F (x) = e−λ1x {1 + pλ1h(x)} , x ≥ 0. (2.20)

If λ1 ≥ λ2 then from (2.19) limx→∞ h(x) = ∞, and thus from (2.20) it is clear that

p ≥ 0 because if p < 0 then eλ1xF (x) would become negative for large x. But it was

assumed that p �= 0, and thus if λ1 ≥ λ2 it follows that 0 < p ≤ 1. Thus if λ1 = λ2 = λ,

(2.18) and (2.19) yield

f(x) = (1− p)λe−λx + pλ2xe−λx, (2.21)

which is the pdf of the mixture of two Erlang pdfs, both with the same scale parameter λ.

We remark that pdfs of the form (2.21) will be discussed in much detail later.

If λ1 < λ2 then from (2.19)

h(x) =
1− e−(λ2−λ1)x

λ2 − λ1
,
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and thus from (2.20)

lim
x→∞

eλ1xF (x) = 1 + pλ1 lim
x→∞

h(x) = 1 + p
λ1

λ2 − λ1
.

This limit obviously cannot be negative, and it follows that λ2 − λ1 + pλ1 ≥ 0, i.e.,

p ≥ 1 − λ2/λ1, which is equivalent to λ2 ≥ λ1(1 − p). But again it is assumed that

p �= 1− λ2/λ1, and therefore if λ1 < λ2 then 1− λ2/λ1 < p ≤ 1 but p �= 0.

If λ1 �= λ2 then

λ1λ2

(s+ λ1)(s+ λ2)
=

λ2

λ2 − λ1

λ1

s+ λ1
+

λ1

λ1 − λ2

λ2

s+ λ2
, (2.22)

which follows directly or from (2.7) and (2.8). Substitution of (2.22) into (2.17) yields

f̃(s) =

(
1− p+ p

λ2

λ2 − λ1

)
λ1

s+ λ1
+

(
p

λ1

λ1 − λ2

)
λ2

s+ λ2

=

(
1− p

λ1

λ1 − λ2

)
λ1

s+ λ1
+

(
p

λ1

λ1 − λ2

)
λ2

s+ λ2
.

That is, if λ1 �= λ2 ,

f(x) = (1− α)λ1e
−λ1x + αλ2e

−λ2x, (2.23)

where

α = p
λ1

λ1 − λ2
. (2.24)

If 0 < p ≤ 1 then (2.23) is either a mixture or a combination of two exponential pdfs.

However, if p < 0 then one must have λ1 < λ2, and α > 0 from (2.24). But if p is

negative, one must have 1 − λ2/λ1 < p, or equivalently λ1 − λ2 < λ1p, and because

λ1 − λ2 must also be negative, 1 > λ1p/(λ1 − λ2), i.e., α < 1. Thus, if p < 0 then

0 < α < 1 and (2.23) is a mixture.

To summarize, when λ1 �= λ2, the pdf f(x) is given by (2.23) with α given by (2.24).

If p > 0 then (2.23) is either a mixture or a combination of two exponential pdfs, whereas

if p < 0 then (2.23) is a mixture.

Again from (2.17)

1− f̃(s)

s
=
1

s

{
1− (1− p)

λ1

s+ λ1
− p

λ1λ2

(s+ λ1)(s+ λ2)

}
=
1

s

{
(1− p)

(
1− λ1

s+ λ1

)
+ p

(
1− λ1λ2

(s+ λ1)(s+ λ2)

)}
=

1− p

s+ λ1
+ p

s+ λ1 + λ2

(s+ λ1)(s+ λ2)

=
(1 − p)(s+ λ2) + p(s+ λ2 + λ1)

(s+ λ1)(s+ λ2)
,

that is, ∫ ∞

0

e−sxF (x)dx =
1− f̃(s)

s
=

s+ λ2 + λ1p

(s+ λ1)(s+ λ2)
. (2.25)

With s = 0, (2.25) gives the mean, namely,∫ ∞

0

F (x)dx =
λ2 + λ1p

λ1λ2
. (2.26)
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The equilibrium pdf fe(x) = F (x)R
∞

0
F (y)dy

thus has Laplace transform, from (2.25) and

(2.26), given by

f̃e(s) =
s+ λ2 + λ1p

(s+ λ1)(s+ λ2)

λ1λ2

λ2 + λ1p

=
λ1

(
λ2

λ2+λ1p

)
s+ λ1λ2

(s+ λ1)(s+ λ2)
.

That is,

f̃e(s) =
λ1(1− pe)s+ λ1λ2

(s+ λ1)(s+ λ2)
, (2.27)

where

pe =
λ1p

λ2 + λ1p
. (2.28)

Comparison of (2.27) with (2.16) implies immediately (by the uniqueness of the Laplace

transform) that fe(x) is again a Coxian-2 pdf, but with p replaced by pe from (2.28).



CHAPTER 3

MIXED ERLANG DISTRIBUTIONS

3.1 Introduction

It is clear from the previous chapter that it is very difficult to get explicit closed form ex-

pressions for quantities associated with the aggregate claims distribution on a portfolio of

insurance business. While there are various numerical methods available, it is neverthe-

less convenient to utilize analytic techniques when possible. Of course, there is always a

tradeoff between mathematical simplicity on the one hand and realistic modeling on the

other.

An alternative approach that addresses many of these issues may be referred to as a

partially parametric or semiparametric approach. Clearly, the exponential distribution has

many attractive mathematical properties in the present context but is not terribly realistic

as a model for claims in many situations. It is possible, however, to capitalize on these

properties in more complex models.

In the present chapter, we consider the class of mixed Erlang distributions. There are

various reasons why the use of mixed Erlang distributions is of interest. First, mixed

Erlang distributions are extremely flexible in terms of distributional shape. In fact, the

mixed Erlang class is dense in the set of positive continuous distributions [96, pp. 163–

164] so that any such distribution may be approximated arbitrarily accurately by a member

of the mixed Erlang class. Second, the mixed Erlang class is extremely large and includes

many distributions as members, despite the fact that their membership in the mixed Erlang

class is not at all obvious at first glance. Third, many quantities of interest in connection

with aggregate claims and stop-loss analysis are easily computable under the mixed Erlang

Loss Models: Further Topics.

By Stuart A. Klugman, Harry H. Panjer, Gordon E. Willmot Copyright c© 2013 John Wiley & Sons, Inc.
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assumption. Lee and Lin [62] discuss fitting of mixed Erlang distributions to data using

maximum likelihood estimation and the expectation–maximization (EM) algorithm.

Two other classes of distributions may also be viewed as semiparametric, namely the

class of combinations of exponentials discussed in Section 2.2 and the class of phase-type

distributions introduced in the queueing theoretic community. Both of these classes are

also dense in the class of positive continuous distributions, and, in fact, the class of phase-

type distributions is a subset of the mixed Erlang class [85]. Perhaps not surprisingly,

these two classes are also generalizations of the exponential distribution. While both of

these are also useful in various situations, the infinite series expansion methodology in the

mixed Erlang case has the advantage of avoiding the location of roots needed for the partial

fraction expansions typically used with combinations of exponentials and also avoids the

determination of eigenvalues needed for evaluation of matrix-exponentials in the phase-

type case.

We will understand X to have a mixed Erlang distribution (we will not give a formal

definition as it is possible to have Erlang mixtures over both Erlang parameters) if it has a

pdf for x > 0 of the form

f(x) =
∞∑

n=1

qn
λnxn−1e−λx

(n− 1)!
=

∞∑
n=1

qneλ,n(x), (3.1)

where eλ,n(x) is the Erlang-n pdf (2.5). For mathematical convenience, we assume that X
may also have a discrete mass point q0 at 0 and that the “mixing weights” form a discrete

counting distribution with probability generating function (pgf)

Q(z) =

∞∑
n=0

qnzn. (3.2)

Thus, using (2.4) and (3.1), X has a mixed Erlang distribution if its Laplace transform is

E
(
e−sX

)
=

∞∑
n=0

qn

(
λ

λ + s

)n

= Q

(
λ

λ + s

)
, (3.3)

where Q(z) is given by (3.2).

In many modeling applications, the distribution {q0, q1, . . .} is finite, so that qr+k = 0
for some r and k = 0, 1, 2, . . .. Also, if q0 = 0 then X has a continuous distribution.

It is also useful to note that (3.3) reveals that a mixed Erlang distribution may also be

viewed as a compound distribution where the primary distribution has pgf Q(z) and the

secondary distribution is exponential with mean 1/λ. For this reason, a mixed Erlang

distribution may serve as a model for aggregate claims but is also well suited for use as a

claim size distribution. In this context, it will be seen that it is often not at all restrictive

to assume that there is no parametric structure to the distribution {q0, q1, . . .}. The term

“semiparametric” stems from the possibly nonparametric nature of {q0, q1, . . .} coupled

with the parametric exponential assumption, combined via (3.3).

3.2 Members of the mixed Erlang class

It is clear from (3.1) with q1 = 1 that the exponential distribution is a member of the

mixed Erlang class. More generally, the Erlang-r distribution is the special case qr = 1.
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Tijms [96, pp. 358–359] discusses two special cases. For both, qk ∈ (0, 1) has an arbitrary

value for some k. One case then has q1 = 1 − qk and the other has qk−1 = 1 − qk. As

mentioned previously, the phase-type distributions are members of the mixed Erlang class.

The following well-known distribution is also a member of the class.

EXAMPLE 3.1 Noncentral chi-squared with even degrees of freedom

It is well-known [52, p. 437] that the Laplace transform of the noncentral chi-squared

distribution with noncentrality parameter μ and 2m degrees of freedom is given by

f̃(s) = (1 + 2s)−me−
μs

1+2s

= (1 + 2s)−me
μ
2 (

1
1+2s−1)

=

∞∑
j=0

(
μ
2

)j
e−

μ
2

j!
(1 + 2s)−(m+j).

That is,

f̃(s) =

∞∑
n=m

(
μ
2

)n−m
e−

μ
2

(n−m)!

( 1
2

1
2
+ s

)n

,

which is of the form (3.3) with λ = 1/2 and qn = (μ
2 )

n−me−
μ
2 /(n − m)! for n =

m, m + 1, . . . and qn = 0 otherwise. Thus the mixing weights are of Poisson form

(with mean μ/2) shifted to the right by m. �

The mixed Erlang examples discussed to this point are “obvious” in the sense that the

mixing weights q0, q1, . . . are of a simple form. But many other distributions are of mixed

Erlang form with more complicated mixing weights. A key observation in this regard is

(5.21) from Example 5.2. Let λ in (5.21) be replaced by λi and λ/(1 − q) by λ. A key

observation in this regard is the algebraic identity

λi

λi + s
=

λ

λ + s

λi

λ

1− (
1− λi

λ

)
λ

λ+s

, (3.4)

a relationship which is of interest when 0 < λi ≤ λ < 0. We note that the right-hand side

of (3.4) is of the form (3.3) with

Q(z) = z

{
λi

λ

/[
1−

(
1− λi

λ

)
z

]}
,

which for λi < λ is the pgf of a zero-truncated geometric distribution. Thus (3.4) expresses

(in Laplace transform form) the exponential distribution as a compound zero-truncated

geometric distribution with a different exponential secondary distribution. For distributions

whose Laplace transform is a function of λi/(λi + s) for different values of λi, it is often

possible to “change” to a common value of λ using (3.4) and hence express the Laplace

transform in the mixed Erlang form (3.3). The following example illustrates this idea.
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EXAMPLE 3.2 Exponential mixtures with a finite range

Consider the exponential mixture with pdf

f(x) =

∫ λ

0

μe−μxdB(μ), x > 0, (3.5)

where B(μ) is a cumulative distribution function (cdf) (discrete or continuous) satis-

fying B(0) = 0 and B(λ) = 1. The Laplace transform of (3.5) is

f̃(s) =

∫ λ

0

μ

μ+ s
dB(μ),

which may be expressed using (3.4) with λi = μ as

f̃(s) =

∫ λ

0

λ

λ+ s

[
μ
λ

1− (
1− μ

λ

)
λ

λ+s

]
dB(μ).

That is, f̃(s) = Q( λ
λ+s

) where

Q(z) =

∫ λ

0

μ
λ z

1− (
1− μ

λ

)
z
dB(μ), (3.6)

a relation of the form (3.3). It is clear that (3.6) is the pgf of a mixture of zero-truncated

geometric pgfs. As (3.6) may be expressed as

Q(z) =

∫ λ

0

[ ∞∑
n=1

μ

λ

(
1− μ

λ

)n−1

zn

]
dB(μ),

it follows by comparison with (3.2) that q0 = 0 and

qn =

∫ λ

0

μ

λ

(
1− μ

λ

)n−1

dB(μ), n = 1, 2, . . . . (3.7)

Thus, by the uniqueness of the Laplace transform, the pdf f(x) in (3.5) may be re-

expressed as (3.1) with qn given by (3.7). We note that (3.7) is particularly simple in

the mixed exponential–beta model. That is, if

B′(μ) =
Γ(α+ β)

Γ(α)Γ(β)

1

λ

(μ

λ

)α−1 (
1− μ

λ

)β−1

, 0 < μ < λ,

then

qn = α
Γ(α+ β)Γ(β + n− 1)

Γ(α+ β + n)Γ(β)

=
α

β + n− 1

n−1∏
j=0

(
β + j

α+ β + j

)
.

�

The following example illustrates why it is usually not necessary to generalize (3.1) by

allowing for countable (or even unbounded) mixtures over the Erlang scale parameter.
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EXAMPLE 3.3 A double Erlang mixture

Consider the “generalization” of (3.1) given by

f(x) =
∞∑

i=1

∞∑
j=1

qij
λj

i x
j−1e−λix

(j − 1)!
, x > 0, (3.8)

where qij ≥ 0 for all i and j and sup
i

λi < ∞. Then let λ ≥ supi λi, and using (3.4),

the Laplace transform of (3.8) may be expressed as

f̃(s) =

∞∑
i=1

∞∑
j=1

qij

(
λi

λi + s

)j

=

∞∑
i=1

∞∑
j=1

qij

(
λ

λ+ s

)j
[

λi

λ

1− (
1− λi

λ

)
λ

λ+s

]j

.

That is, f̃(s) = Q( λ
λ+s

), where

Q(z) =

∞∑
i=1

∞∑
j=1

qij

[
λi

λ
z

1− (
1− λi

λ

)
z

]j

. (3.9)

It is not hard to see that (3.9) has the form of a mixture of shifted Pascal pgfs. Thus the

double-mixture pdf (3.8) is actually a “single” mixture of Erlangs of the form (3.1), as

long as supi λi < ∞. This must be the case if there are a finite number of λis in (3.8)

. To identify the mixing weights, the pgf (3.9) may be expressed as

Q(z) =

∞∑
i=1

∞∑
j=1

qij

∞∑
k=0

(
j + k − 1

j − 1

)(
λi

λ

)j (
1− λi

λ

)k

zj+k.

A change in the third index of summation from k to n = j + k yields

Q(z) =

∞∑
i=1

∞∑
j=1

qij

∞∑
n=j

(
n− 1

j − 1

)(
λi

λ

)j (
1− λi

λ

)n−j

zn

=

∞∑
i=1

∞∑
n=1

zn
n∑

j=1

qij

(
n− 1

j − 1

)(
λi

λ

)j (
1− λi

λ

)n−j

,

that is, Q(z) =
∑∞

n=1 qnzn where

qn =

∞∑
i=1

n∑
j=1

qij

(
n− 1

j − 1

)(
λi

λ

)j (
1− λi

λ

)n−j

, n = 1, 2, 3, . . . ,

which is a finite sum if there are a finite number of λis. To summarize, the pdf (3.8) is

actually of the form (3.1) with qn as given. �

We next present a general example of a distribution that includes various special cases

of interest.
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EXAMPLE 3.4 A generalized mixed Erlang convolution

Suppose that X1, X2, . . . , Xk are independent random variables such that Xi has

Laplace transform

f̃i(s) =

(
λi

λi + s

)αi

Qi

(
λi

λi + s

)
,

where αi ≥ 0, Qi(z) is a pgf, and λi > 0. Clearly, if αi > 0 and Qi(z) = 1 for all

i, then f̃i(s) is the Laplace transform of a gamma distribution. Conversely, if αi = 0
and Qi(z) �= 1 for all i, then f̃i(s) is a mixed Erlang Laplace transform. Then let

X = a1X1 + a2X2 + · · ·+ akXk ,

where ai > 0 for all i = 1, 2, . . . , k. The Laplace transform of X is

E
(
e−sX

)
= E

[
exp

(
−s

k∑
i=1

aiXi

)]
=

k∏
i=1

E
(
e−aisXi

)
=

k∏
i=1

f̃i(ais)

=

k∏
i=1

⎡⎢⎢⎣
⎛⎜⎜⎝

λi

ai

λi

ai
+ s

⎞⎟⎟⎠
αi

Qi

⎛⎜⎜⎝
λi

ai

λi

ai
+ s

⎞⎟⎟⎠
⎤⎥⎥⎦ . (3.10)

The Laplace transform in (3.10) is very general. If αi = Qi(z) = 1 for all i, the

generalized Erlang distribution of Example 2.1 results. If Qi(z) = 1 for all i, then

(3.10) is the Laplace transform of the convolution of gamma distributions. If αi = 0
for all i, then (3.10) is the convolution of mixed Erlang distributions. Of course, if

ai = 1 for all i, then X = X1 +X2 + · · ·+Xk , and if a1 + a2 + · · ·+ ak = 1 then

X is a weighted average of the Xi.

If m = α1 + α2 + · · ·+ αk is a nonnegative integer, then (3.10) is a mixed Erlang

Laplace transform, as we now demonstrate. Let λ ≥ supi λi/ai, and using (3.4), we

may write

λi

ai

λi

ai
+ s

=

(
λ

λ+ s

)⎡⎢⎢⎣
λi

aiλ

1−
(
1− λi

aiλ

)(
λ

λ+ s

)
⎤⎥⎥⎦ =

z

1 + βi − βiz
,

where z = λ/(λ + s) and βi = (aiλ− λi)/λi. Hence, (3.10) may be expressed as

E
(
e−sX

)
= Q

(
λ

λ+ s

)
where

Q(z) =

k∏
i=1

[(
z

1 + βi − βiz

)αi

Qi

(
z

1 + βi − βiz

)]
,

or equivalently

Q(z) = zm
k∏

i=1

[
(1 + βi − βiz)

−αi Qi

(
z

1 + βi − βiz

)]
. (3.11)


