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PREFACE

In the first edition of this book, it was assumed that the partial differential
equations (PDEs) are of the form ∂u/∂t = P(∂/∂x), where P is a differen-
tial operator of any order in space. Particular emphasis was given to hyperbolic
first-order systems. Wave propagation problems most often come in the form
∂2u/∂t2 = P(∂/∂x), where P is a differential operator of second order. Such dif-
ferential equations can be rewritten as first-order systems, which is then used for
discretization and computation. However, the original second-order form might
be more convenient for computation and is often used. When it comes to initial–
boundary value problems, it turns out that there are new properties to take into
account when analyzing stability for second-order systems. This is discussed in
Chapter 10.

A short section on staggered grids in Chapter 5 is also new, as well as an
extension of SBP (summation by parts) operators in Section 11.4, including
second-order derivatives and SAT (simultaneous approximation term) methods
for implementation. There is also a new Appendix D containing the explicit
form of a number of SBP operators.

Even if new parts have been included, this second edition is shorter than
the original one. The reason is that we have tried to simplify certain parts.
For example, in the discussion of difference methods in Chapter 4, we have
emphasized explicit one-step methods to avoid the more complicated notation
that comes with general multistep methods. We have also left out some of the
detailed derivations and proofs in Chapters 5, 6, and 12. Furthermore, the Laplace
transform methods for analysis of initial–boundary value problems is now limited
to hyperbolic problem, where its strength is more pronounced.

ACKNOWLEDGMENTS

The authors want to thank Barbro Kreiss for her assistance in preparing the
manuscript of Chapter 10.
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PREFACE TO THE FIRST
EDITION

In this preface, we discuss the material to be covered, the point of view we
take, and our emphases. Our primary goal is to discuss material relevant to
the derivation and analysis of numerical methods for computing approximate
solutions to partial differential equations for time-dependent problems arising in
the sciences and engineering. It is our intention that this book should be useful for
graduate students interested in applied mathematics and scientific computation as
well as physical scientists and engineers whose primary interests are in carrying
out numerical experiments to investigate physical behavior and test designs.

We carry out a parallel development of material for differential equations and
numerical methods. Our motivation for this approach is twofold: the usual treat-
ment of partial differential equations does not follow the lines that are most useful
for the analysis of numerical methods, and the derivation of numerical methods
is increasingly utilizing and benefiting from following the detailed development
for the differential equations.

Most of our development and analysis is for linear equations, whereas most
of the calculations done in practice are for nonlinear problems. However, this
is not so fruitless as it may sound. If the nonlinear problem of interest has a
smooth solution, then it can be linearized about this solution and the solution
of the nonlinear problem will be a solution of the linearized problem with a
perturbed forcing function. Errors of numerical approximations for the nonlinear
problem can thus be estimated locally, and justified in terms of the linearized
equations. A problem often arises in this scenario; the mathematical properties
required to guarantee that the solution is smooth a priori may not be known or
verifiable. So we often perform calculations whose results we cannot justify a
priori. In this situation, we can proceed rationally, if not rigorously, by using a
method that we could justify for the corresponding linearized problems and can be
justified a posteriori, at least in principle, if the obtained solution satisfies certain
smoothness properties. The smoothness properties of our computed solutions can
be observed to experimentally verify the needed smoothness requirements and
justify our computed results a posteriori. However, this procedure is not without
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xii PREFACE TO THE FIRST EDITION

its limitations. There are many problems that do not have smooth solutions.
There are genuinely nonlinear phenomena, such as shocks, rarefaction waves,
and nonlinear instability, that we must study in a nonlinear framework, and
we discuss such issues separately. There are a few general results for nonlinear
problems that generally are justifications of the linearization procedure mentioned
above and that we include when available.

The material covered in this book emphasizes our own interests and work.
In particular, our development of hyperbolic equations is more complete and
detailed than our development of parabolic equations and equations of other
types. Similarly, we emphasize the construction and analysis of finite difference
methods, although we do discuss Fourier methods. We devote a considerable
portion of this book to initial boundary value problems and numerical methods for
them. This is the first book to contain much of this material and quite a lot of it has
been redone for this presentation. We also tend to emphasize the sufficient results
needed to justify methods used in applications rather than necessary results, and
to stress error bounds and estimates which are valid for finite values of the
discretization parameters rather than statements about limits.

We have organized this book in two parts: Part I discusses problems with peri-
odic solutions and Part II discusses initial-boundary-value problems. It is simpler
and more clear to develop the general concepts and to analyze problems and
methods for the periodic boundary problems where the boundaries can essen-
tially be ignored and Fourier series or trigonometric interpolants can be used.
This same development is often carried out elsewhere for the Cauchy, or pure
initial-value, problem. These two treatments are dual to each other, one relying
upon Fourier series and the other upon Fourier integrals. We have chosen peri-
odic boundary problems, because we are, in this context, dealing with a finite,
computable method without any complications arising from the infinite domains
of the corresponding Cauchy problems. Periodic boundary problems do arise nat-
urally in many physical situations such as flows in toroids or on the surface of
spheres; for example, the separation of periodic boundary and initial-boundary-
value problems is also natural, because the results for initial-boundary-value
problems often take the following form: If the problem or method is good for the
periodic boundary problem and if some additional conditions are satisfied, then
the problem or method is good for a corresponding initial-boundary-value prob-
lem. So an analysis and understanding of the corresponding periodic boundary
problem is often a necessary condition for results for more general problems.

In Part I, we begin with a discussion in Chapter 1 of Fourier series and trigono-
metric interpolation, which is central to this part of the book. In Chapter 2, we
discuss model equations for convection and diffusion. Throughout the book, we
often rely upon a model equation approach to our material. Equations typifying
various phenomena, such as convection, diffusion, and dispersion, that distin-
guish the difficulties inherent in approximating equations of different types are
central to our analysis and development. Difference methods are first introduced
in this chapter and discussed in terms of the model equations. In Chapter 3,
we consider the efficiencies of using higher order accurate methods, which, in
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a natural limit, lead to the Fourier or pseudospectral method. The concept of a
well-posed problem is introduced in Chapter 4 for general linear and nonlinear
problems for partial differential equations. The general stability and convergence
theory for difference methods is presented in Chapter 5. Sections are devoted
to the tools and techniques needed to establish stability for methods for linear
problems with constant coefficients and then for those with variable coefficients.
Splitting methods are introduced, and their analysis is carried out. These methods
are very useful for problems in several space dimensions and to take advantage
of special solution techniques for particular operators. The chapter closes with
a discussion of stability for nonlinear problems. Chapters 6 and 7 are devoted
to specific results and methods for hyperbolic and parabolic equations, respec-
tively. Nonlinear problems with discontinuous solutions, in particular, hyperbolic
conservation laws with shocks and numerical methods for them are discussed in
Chapter 8, which concludes Part I of the book and our basic treatment of partial
differential equations and methods in the periodic boundary setting.

Part II is devoted to the discussion of the initial boundary value problem for
partial differential equations and numerical methods for these problems. Chapter
9 discusses the energy method for initial-boundary-value problem for hyperbolic
and parabolic equations. Chapter 10 discusses Laplace transform techniques for
these problems. Chapter 11 treats stability for difference approximations using
the energy method and follows the treatment of the differential equations in
Chapter 9. Chapter 12 follows from Chapter 10 in terms of development–here
the Laplace transform is used for difference approximations. This treatment is
carried out for the semidiscretized problem: Only the spacial part of the operator
is discretized. Finally, the fully discretized problem is treated in Chapter 13
using the Laplace transform. The so-called “normal mode analysis” technique is
used and developed in these last two chapters. In particular, sufficient stability
conditions for the fully discretized problem are obtained in terms of stability
results for the semidiscretized problem, which are much easier to obtain.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance we have gotten from our stu-
dents and colleagues who have worked through various versions of this material
and have supplied us with questions and suggestions that have been very helpful.
We want to give special thanks to Barbro Kreiss and Mary Washburn who have
expertly handled the preparation of our manuscript and have carried out most of
the computations we have included. Their patience and good humor through our
many versions and revisions is much appreciated. Pelle Olsson has gone over
our manuscript carefully with us and a number of sections have been improved
by his suggestions.

Finally, we acknowledge the Office of Naval Research and the National Aero-
nautics and Space Administration for their support of our work.





I
PROBLEMS WITH PERIODIC
SOLUTIONS





1
MODEL EQUATIONS

In this chapter, we examine several model equations to introduce some basic
properties of differential equations and difference approximations by example.
Generalizations of these ideas are discussed throughout the remainder of this
book.

1.1. PERIODIC GRIDFUNCTIONS AND DIFFERENCE OPERATORS

Let h = 2π/(N + 1), where N is a natural number, denote a grid interval. A
grid on the x-axis is defined to be the set of gridpoints

xj = jh, j = 0, ±1, ±2, . . .

A discrete, possibly complex valued, function u defined on the grid is called
a gridfunction (see Figure 1.1.1). Here, we are only interested in 2π-periodic
gridfunctions, that is,

uj = u(xj ) = u(xj + 2π) = uj+N+1.

Clearly, the product and sum of gridfunctions are again gridfunctions. Their
gridvalues are

(uv)j = ujvj , (u + v)j = uj + vj .

We denote the set of all 2π-periodic gridfunctions by Ph. If u, v ∈ Ph, then uv,
u + v ∈ Ph.

We now introduce difference operators. They play a fundamental role through-
out the book. We start with the translation operator E. It is defined by

(Ev)j = vj+1.

Time-Dependent Problems and Difference Methods, Second Edition.
Bertil Gustafsson, Heinz-Otto Kreiss, Joseph Oliger.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Figure 1.1.1. A gridfunction.

If v ∈ Ph, then Ev ∈ Ph. Powers of E are defined recursively,

Epv = Ep−1(Ev).

Thus,

(Epv)j = vj+p. (1.1.1)

The inverse also exists and

(E−1v)j = vj−1.

If we define E0 by E0v = v, then Eq. (1.1.1) holds for all integers p. E is a
linear operator and

(aEp + bEq)v = aEpv + bEqv.

The forward, backward, and central difference operators are defined by

D+ = (E − E0)/h,

D− = (E0 − E−1)/h = E−1D+, (1.1.2)

D0 = (E − E−1)/(2h) = 1
2 (D+ + D−),
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respectively. In particular, consider these operators acting on the functions eiωx .
Then, we have for all x = xj

hD+eiωx = (eiωh − 1)eiωx = (
iωh + O (ω2h2)

)
eiωx,

hD−eiωx = (1 − e−iωh)eiωx = (
iωh + O (ω2h2)

)
eiωx, (1.1.3)

hD0e
iωx = i sin(ωh)eiωx = (

iωh + O (ω3h3)
)
eiωx.

Thus, ∣∣∣∣(D+ − ∂

∂x

)
eiωx

∣∣∣∣ = O (ω2h),∣∣∣∣(D− − ∂

∂x

)
eiωx

∣∣∣∣ = O (ω2h), (1.1.4)∣∣∣∣(D0 − ∂

∂x

)
eiωx

∣∣∣∣ = O (ω3h2).

Consequently, one says that D+ and D− are first-order accurate approximations
of ∂/∂x because the error is proportional to h. D0 is second-order accurate.

Higher derivatives are approximated by products of the above operators. For
example,

(D+D−v)j = (D−D+v)j = h−2 ((E − 2E0 + E−1)v
)
j

= h−2(vj+1 − 2vj + vj−1).

In particular,

h2D+D−eiωx = (eiωh − 2 + e−iωh)eiωx = −4 sin2
(

ωh

2

)
eiωx

= (−ω2h2 + O (ω4h4)
)
eiωx.

(1.1.5)

Therefore, ∣∣∣∣(D+D− − ∂2

∂x2

)
eiωx

∣∣∣∣ = O (ω4h2),

and D+D− is a second-order accurate approximation of ∂2/∂x2. Note that all of
the above operators commute, because they are all defined in terms of powers
of E.

We need to define norms for finite-dimensional vector spaces and discuss some
of their properties. We begin with the usual Euclidean inner product and norm.
Consider the m-dimensional vector space consisting of all u = (u(1), . . . , u(m))T
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where u(j), j = 1, . . . , m, are complex numbers. We denote the conjugate trans-
pose of u by u∗ (u∗ = uT if u is real). The inner product and norm are defined by

〈u, v〉 = u ∗ v =
m∑

j=1

u(j)v(j), and |u| = 〈u, u〉1/2, (1.1.6)

respectively. The inner product is a bilinear form that satisfies the following
equalities:

〈u, v〉 = 〈v, u〉,
〈u + w, v〉 = 〈u, v〉 + 〈w, v〉,

〈u, λv〉 = λ〈u, v〉, λ a complex number,

〈λu, v〉 = λ〈u, v〉.

(1.1.7)

The following inequalities hold:

|〈u, v〉| ≤ |u| |v|,
|u + v| ≤ |u| + |v|,

‖u| − |v‖ ≤ |u − v|,

〈u, v〉 ≤ |u| · |v| ≤ δ|u|2 + 1

4δ
|v|2 for any δ > 0.

(1.1.8)

Let A = (aij ) be a complex m × m matrix. Then, its transpose is denoted by
AT = (aji) and its conjugate transpose by A∗ = (aji). The Euclidean norm of
the matrix A is defined by

|A| = max
|u|=1

|Au|,

where the norm on the right-hand side is the vector norm defined above. If A

and B are matrices, then

|Au| ≤ |A| |u|,
|A + B| ≤ |A| + |B|,

|AB| ≤ |A| |B|.
(1.1.9)

If the scalar λ and vector u 	= 0 satisfy Au = λu, then λ is an eigenvalue of A

and u is the corresponding eigenvector. The spectral radius, ρ(A), of a matrix A

is defined by
ρ(A) = max

j
|λj |,

where the λj are the eigenvalues of A. The spectral radius satisfies the inequality

ρ(A) ≤ |A|. (1.1.10)
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We next define a scalar product and norm for our periodic gridfunctions of length
N + 1. For fixed h and N + 1, these functions form a vector space. However, we
are interested in these functions as h → 0 and N(h) + 1 → ∞. The Euclidean
inner product and norm defined above would not necessarily be finite in this
limit, so we must use a different definition.

We define a discrete scalar product and norm for periodic gridfunctions by

(u, v)h =
N∑

j=0

ujvjh and ‖u‖h =
√

(u, u)h, (1.1.11)

respectively.
The scalar product is also a bilinear form and satisfies the same equalities as

the Euclidean inner product for vectors in Eq. (1.1.7):

(u, v)h = (v, u)h,

(u + w, v)h = (u, v)h + (w, v)h,

(u, λv)h = λ(u, v)h, λ a complex number,

(λu, v)h = λ(u, v)h.

(1.1.12)

The following inequalities also hold in analogy with Eq. (1.1.8):

|(u, v)h| ≤ ‖u‖h‖v‖h,

|(u, av)h| ≤ ‖a‖∞‖u‖h‖v‖h, ‖a‖∞ = max
j

|aj |,

‖u + v‖h ≤ ‖u‖h + ‖v‖h,

|‖u‖h − ‖v‖h| ≤ ‖u − v‖h.

(1.1.13)

For periodic functions f (x), g(x) defined everywhere, the L2 scalar product and
norm are defined by

(f, g) =
∫ 2π

0
u(x)v(x) dx , ||f || =

√
(f, f ).

A function f (x) with finite norm ||f || is called an L2 function.
If u, v are the projections of continuous functions onto the grid, then

lim
h→0

(u, v)h = (u, v), lim
h→0

‖u‖2
h = ‖u‖2,

converge to the L2 scalar product and norm. Therefore, the above-mentioned
inequalities are also valid for the L2 scalar product and norm applied to C1

functions. Because any function ∈ L2 can be approximated arbitrarily well by a
C1 function, they are valid for all L2 functions as well.
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The norm of an operator is defined in the usual way,

‖Q‖h = sup
u 	=0

‖Qu‖h

‖u‖h

= sup
‖u‖h=1

‖Qu‖h.

From this definition, it follows that ‖Qu‖h ≤ ‖Q‖h‖u‖h. Thus,

‖Epu‖2
h =

N∑
j=0

|uj+p|2h =
N∑

j=0

|uj |2h = ‖u‖2
h

implies
‖Ep‖h = 1, p = 0, ±1, ±2, . . . (1.1.14)

Also,

‖D+u‖h = 1

h
‖(E − E0)u‖h ≤ 2

h
‖u‖h,

that is,
‖D+‖h ≤ 2/h.

The general inequalities

‖P + Q‖h ≤ ‖P ‖h + ‖Q‖h, ‖PQ‖h ≤ ‖P ‖h‖Q‖h (1.1.15)

give us

‖D−‖h = ‖E−1D+‖h ≤ 2

h
, ‖D0‖h = 1

2h
‖E − E−1‖h ≤ 1

h
.

Actually, these inequalities for the norms of D+, D−, and D0 can be replaced
by equalities. For D+, we define uj = (−1)j and obtain

‖u‖2
h = (N + 1)h,

‖D+u‖2
h =

N∑
j=0

(
(−1)j+1 − (−1)j

)2
h−1 = 4(N + 1)h−1 = 4

h2
‖u‖2

h,

which yields
‖D+‖h = 2/h. (1.1.16)

Using the same gridfunction uj again, we get

‖D−‖h = 2/h. (1.1.17)
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For D0, we choose uj = ij (where i = √−1) and obtain

‖u‖2
h = (N + 1)h,

‖D0u‖2
h =

N∑
j=0

1

4h

(
(−1)j+1 − (−i)j−1) (ij+1 − ij−1) = N + 1

h
= 1

h2
‖u‖2

h,

so

‖D0‖h = 1/h. (1.1.18)

We now consider systems of partial differential equations and consequently
need to define a norm and scalar product for vector-valued gridfunctions u =
(u(1), . . . , u(m))T . Let u and v be two such vector-valued gridfunctions, then we
define

(u, v)h =
N∑

j=0

〈uj , vj 〉h, ‖u‖h =
√

(u, u)h. (1.1.19)

The properties shown in Eqs. (1.1.12) and (1.1.13) are still valid. We can also
generalize the second inequality in Eq. (1.1.13) when a is replaced by an (m × m)

matrix A. If A is a constant matrix, we have

|(Au, v)h| ≤ |A| ‖u‖h‖v‖h, (1.1.20)

If A = Aj is a matrix-valued gridfunction, then

|(Au, v)h| ≤ max
j

|Aj | ‖u‖h‖v‖h. (1.1.21)

EXERCISES

1.1.1. Derive estimates for ∣∣∣∣(D − ∂3

∂x3

)
eiωx

∣∣∣∣ ,
where D = D3+, D−D2+, D2−D+, D3−, D0D+D−.

1.1.2. Both the difference operators D+ and D0 approximate ∂/∂x, but they have
different norms. Explain why this is not a contradiction.

1.1.3. Compute ‖D+D−‖h.
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1.2. FIRST-ORDER WAVE EQUATION, CONVERGENCE,
AND STABILITY

The equation ut = ux is the simplest hyperbolic equation; the general definition
of the class of hyperbolic equations is given in Section 3.3. We consider the
initial value problem

ut = ux, −∞ < x < ∞, t ≥ 0,

u(x, 0) = f (x), −∞ < x < ∞,
(1.2.1)

where f (x) = f (x + 2π) is a smooth 2π-periodic function. To begin, we assume
that the initial function

f (x) = 1√
2π

eiωxf̂ (ω)

consists of one wave. The integer ω is called the wave number or the frequency.
We try to find a solution of the same type

u(x, t) = 1√
2π

eiωxû(ω, t) (1.2.2)

with û(ω, 0) = f̂ (ω). Substituting Eq. (1.2.2) into Eq. (1.2.1) yields an initial
value problem for the ordinary differential equation

dû

dt
= iωû,

û(ω, 0) = f̂ (ω),

which is called the Fourier transform of Eq. (1.2.1). Therefore,

û(ω, t) = eiωt û(ω, 0) = eiωt f̂ (ω).

It follows that

u(x, t) = 1√
2π

eiω(x+t)f̂ (ω) = f (x + t) (1.2.3)

is a solution to our problem.
Now consider the general case

f (x) = 1√
2π

∞∑
ω=−∞

eiωxf̂ (ω), (1.2.4)
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which is the Fourier series representation as described in Section A.1. By the
superposition principle,

u(x, t) = 1√
2π

∞∑
ω=−∞

eiω(x+t)f̂ (ω) = f (x + t) (1.2.5)

is a solution to our problem. For every fixed t , Parseval’s relation (A.1.9) yields

‖u(·, t)‖2 =
∞∑

ω=−∞
|eiωt f̂ (ω)|2 =

∞∑
ω=−∞

|f̂ (ω)|2 = ‖f (·)‖2. (1.2.6)

The squared norm ‖u‖2 is often called the energy of u. Therefore, the differential
equation in Eq. (1.2.1) is said to be energy conserving; the obvious phrase norm
conserving is often used in this context as well. Clearly, any method of approxi-
mation must be nearly norm conserving to be useful. We also note that there is a
finite speed of propagation associated with this problem. The expression (1.2.5)
shows that the solution is constant along the lines x + t = const, which are called
characteristics (see Figure 1.2.1).

Any particular feature of the initial data, such as a wave crest, is propagated
along these characteristics. In our case, the speed of propagation (or wave speed)
is dx/dt = −1. For general hyperbolic systems, there may be many families of
characteristics corresponding to different wave speeds of different components.
The important thing is that these speeds are always finite.

Figure 1.2.1. Characteristics.
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We now solve the problem using a difference approximation. We introduce a
space step h = 2π/(N + 1), with N a natural number, and a time step k > 0. The
space and time steps h, k define a grid in x, t space, consisting of the gridpoints
(xj , tn) := (jh, nk). Gridfunctions will be denoted by un

j = u(xj , tn). A simple
approximation based on forward differences in time and centered differences in
space is

vn+1
j = (I + kD0)v

n
j =: Qvn

j , j = 0, ±1, ±2, . . .

v0
j = fj .

(1.2.7)

If vn is known at time tn = nk, then we can use Eq. (1.2.7) to calculate vn+1
j for

all j . Thus, the initial data determine a unique solution, and we call such a method
a one-step method. Also, if vn is 2π-periodic, then vn+1 is too. Therefore, we
can restrict the calculation to j = 0, 1, 2, . . . , N and use periodicity conditions
to extend the solution and provide the extra needed values for Eq. (1.2.7) at
j = 0, N , that is, vn

−1 = vn
N, vn

N+1 = vn
0 .

We will now calculate the solution analytically. First, consider the case where
f consists of one single wave, that is,

fj = 1√
2π

eiωxj f̂ (ω), j = 0, 1, 2, . . . , N.

As in the continuous case, we make the ansatz

vn
j = 1√

2π
v̂n(ω)eiωxj , (1.2.8)

that is, we assume that the solution can also be expressed in terms of one single
Fourier component. Substituting Eq. (1.2.8) into Eq. (1.2.7) yields

eiωxj v̂n+1(ω) =
(

eiωxj + λ

2
(eiωxj+1 − eiωxj−1)

)
v̂n(ω),

where λ = k/h. This equation can be rewritten as

eiωxj v̂n+1(ω) = (1 + iλ sin ξ)eiωxj v̂n(ω),

where ξ = ωh, and we get

v̂n+1(ω) = Q̂v̂n(ω), Q̂ = 1 + iλ sin ξ. (1.2.9)

The complex number Q̂ is the Fourier transform of (I + kD0), and Eq. (1.2.9)
is the Fourier transform of Eq. (1.2.7). We also call Q̂ the symbol , or the ampli-
fication factor . Actually, it is the discrete Fourier transform which is further
discussed in Appendix A. The solution of Eq. (1.2.9) is

v̂n(ω) = Q̂nv̂0(ω) = Q̂nf̂ (ω),
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and it is clear that

vn
j = 1√

2π
Q̂neiωxj f̂ (ω) = 1√

2π

(
1 + i

k

h
sin(ωh)

)n

eiωxj f̂ (ω)

solves our problem.
Now, we consider a sequence of grid intervals k, h → 0. We want to show

that vn
j converges to the corresponding solution of the differential equation. We

have(
1 + i

k

h
sin(ωh)

)n

= (
1 + iωk + O (kh2ω3)

)n = (
eiωk + O (k2ω2 + kh2ω3)

)n
= (

1 + O
(
(kω2 + h2ω3)tn

))
eiωtn .

Therefore,

vn
j = 1√

2π

(
1 + O

(
(kω2 + h2ω3)tn

))
eiω(xj +tn)f̂ (ω).

Thus, for every fixed ω, we obtain

lim
k,h→0

vn
j = u(xj , tn)

in any finite interval 0 ≤ t ≤ T .
Now assume that the initial data are represented by a trigonometric polynomial

u(x, 0) = 1√
2π

M∑
ω=−M

eiωxf̂ (ω).

By the superposition principle, the above result implies that the solution of the
difference approximation will converge to the solution of the differential equation
as k, h → 0. Thus, one might think that the approximation could be useful in
practice. However, consider the problem (1.2.1) with initial data f (x) ≡ 0 which
has the trivial solution u(x, t) ≡ 0. Now consider the problem with perturbed data

f̂ (ω) =
{

ε, for ω = N/4,

0, otherwise.

The corresponding solution of the transformed difference approximation is

v̂n(N/4) =
(

1 + i
k

h
sin

(
2π

N + 1

N

4

))n

ε ∼
(

1 + i
k

h

)n

ε,
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that is,

|v̂tn/k(N/4)|2 ∼
(

1 + k2

h2

)tn/k

ε2.

For tn = 1, that is, n = 1/k

|v̂1/k(N/4)|2 ∼
(

1 + k2

h2

)1/k

ε2.

Now consider any sequence k, h → 0 with k/h = λ > 0 fixed. Then,

lim
k→0

|v̂1/k(N/4)| = ∞.

This “explosion,” or growth, can be arbitrarily fast. For example, if we consider
λ = 10, k = 10−5, then

|v̂1/k(N/4)|2 ∼ 100105
ε2.

The numerical calculation is therefore worthless. In Figure 1.2.2, we have
calculated the maximum of the solutions of the difference approximation (1.2.7)
with initial data

fj =
{
xj , for 0 ≤ xj ≤ π,

2π − xj , for π ≤ xj ≤ 2π,

and stepsizes h = 0.01, k = 0.01 and h = 0.01, k = 0.1, respectively.
The analytic results lead us to expect that the solutions will grow like 2n/2

and 101n/2, respectively. The numerical results confirm that prediction.
In realistic computations, one must always expect perturbations, either from

measurement errors in the data or from rounding errors due to the finite repre-
sentation of numbers in the computer. Therefore, we must require that |Q̂n| is
bounded independently of h and k, and we call such methods stable. (We make
the formal definition of this concept later.)
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Figure 1.2.2. maxj |vn
j |, vn

j solution of Eq. (1.2.7). (a) h = 0.01; k = 0.01 and (b) h = 0.01;
k = 0.1.


