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1

1
Pharmacokinetics and Pharmacodynamics (PK/PD) of
Bionanomaterials

Ergang Liu, Meng Zhang, and Yongzhuo Huang

1.1
Introduction

Nanomaterials (NMs) refer to synthetic or naturally occurring substances with
size ranging from 1 to 1000 nm. The concept of “nanomaterial” was proposed by
Feynman 50 years ago in the field of physics [1], which has since unveiled an era of
nanotechnology. NMs contain merely tens to thousands of atoms, and are char-
acterized by the surface and quantum size effects that are distinct from the bulk
matters, and have thus gained wide applications in various areas [2]. For example,
in medical application, nanotechnology has attracted specific attention in cancer
therapy and diagnosis, largely due to the proposal of enhanced permeation and
retention (EPR) effect by Maeda and coworkers; they demonstrated that nano-
sized macromolecules displayed a preferential retention in tumor site due to the
leaky vasculatures [3, 4]. The EPR effect-associated nanomedicine composed of
various natural or synthetic entities in the nanoscale, which have been developed
to deliver drugs/imaging agents to the tumors based on the passive targeting effect
[5]. Later, in order to further increase the transport efficiency, antibodies or tar-
geting ligands with high binding affinity to tumor-overexpressed surface antigens
or receptors have been applied to conjugate onto the surface of NMs to achieve
the so-called active targeting [6].

NMs can also be applied in formulation development because of their capability
to improve solubility [7], drug permeation [8], and drug stability [9]. Pharmaceuti-
cal nanotechnology may thus help improve druggability of those active molecules
that are otherwise considered to be unsuitable for formulation development for
clinical use due to unfavorable properties such as poor solubility and low perme-
ation to the lipid bilayer membranes [10].

The emerging nanomedicine has greatly promoted drug development, and a
good number of NM-based medicine or diagnostic agents have entered clinical
trials, most in the field of cancer therapy, in which the NM-based delivery strate-
gies are characterized by EPR effect for achieving tumor targeting. However, in
spite of the enhanced permeability of the tumor vasculature, not all types of NMs

Biomedical Nanomaterials, First Edition. Edited by Yuliang Zhao and Youqing Shen.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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could benefit from EPR effect to achieve a substantial targeting efficiency [11]. The
in vivo ADME (absorption, distribution, metabolism, and excretion) behaviors of
NMs vary because of the difference of the surface properties, size, and charges of
the NMs, as well as their compositions, often leading to inconsistent therapeutic
outcomes in animal studies [12].

On this account, investigation of “what the body does to NMs” may help us with
a better understanding of the in vivo fate. We herein present a brief introduction of
the commonly utilized NMs in pharmaceutical research, the anatomic features of
the body and tumor, and the physiochemical natures of NMs that affect the in vivo
fate. The established PK/PD models for simulating the in vivo ADME behavior of
NMs will also be introduced. We hope this summary would give a glimpse into
the complicated in vivo processes and provide helpful information for the rational
design of NM-based drug delivery systems.

1.2
Commonly Utilized NMs in Pharmaceutical Research

NMs can be categorized into different groups based on certain classification. To
make it simple, we use the natural/synthetic classification in this chapter because
the natural/synthetic NMs are generally disposed by the body in different ways.
Moreover, inorganic NMs characterized by the hard-core structure bear unique
physical characteristics (magnetism, thermal response to radiation, optical fea-
tures, etc.) [13, 14], and are discussed as an independent section. Other resources
such as cell-based NMs (e.g., RBCs [15] and MSCs [16]) and components from
microbes (e.g., inactivated virus envelope [17] and TAT [18]), are usually utilized
with preservation of their original natures, which are thereby discussed as a com-
plimentary to this classification.

1.2.1
Natural NMs

Natural NMs have been widely investigated because of their biodegradability
and compatibility to human body. As known, lipids, proteins, carbohydrates,
and nucleic acids are highly biodegradable in the body. Phospholipids are one
of the most widely applied natural resources to build the nanocarriers such as
liposomes and solid lipid nanoparticles (SLNs) [19]. Polysaccharides, including a
variety of carbohydrates with different structures and functional groups, can be
utilized to build different types of nanoparticles. Protein-based NMs (typically,
serum proteins such as albumin [20], high-density lipoprotein (HDL) [21], and
lactoferrin [22]) are often utilized as drug carriers.

1.2.1.1 Lipid-Based NMs
Lipid-based NMs include liposomes [19], SLNs, micelles [23], and nanoemul-
sions [24] (Figure 1.1). The main components of liposomes are phospholipids. In
aqueous solution, the phospholipids will self-assemble into a bilayer structure
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Liposome Solid lipid nanoparticle Micelle Nano-emulsion

Oil droplet

WaterSolid

Figure 1.1 Schematic illustration of lipid-based NMs.

that functions as drug carriers with hydrophilic drugs encapsulated inside the
interior, whereas hydrophobic drugs in bilayer [19]. One-tail lipids are inclined
to form micelles in aqueous media [25], whereas using steric acid or oleic acid
supplemented with surfactants to stabilize the solid/liquid lipids normally results
in nanoparticles [26] or emulsions [27].

1.2.1.2 Protein-Based NMs
Protein-based drug carriers have been widely used in pharmaceutical industry.
However, owing to the concerns of protein immunogenicity (e.g., OVA, which
has been utilized as adjuvant for immune activation [28]), endogenous serum-rich
proteins with low immunogenicity and long half-life such as albumin, high-density
lipoprotein, and lactoferrin have distinct advantages [20–22]. As a case in point,
albumin-bound paclitaxel nanoparticles (Abraxane®) have attained great market
success [29]. In general, proteins can either be processed to form nanoparticles
[30] or directly coupled with drugs by physical adsorption or via covalent bonds
[20]. In certain instances, the protein carriers are further modified with targeting
ligands to achieve specific delivery [31].

1.2.1.3 Polysaccharide-Based NMs
Polysaccharides originate from animal, plant, or bacterial sources. In general, the
physicochemical properties of polysaccharides are governed by monosaccharide
unit and the overall molecular weight [32]. The high molecular weight molecules,
such as heparin and hyaluronic acid, show strong affinity to water molecules,
and thus form hydrogels that have been widely applied for local administration
because of their biocompatibility and sustained drug release functions [33].
The ionic polysaccharides can bind with molecules of the opposite charge, and
the interaction normally leads to decreased solubility and the formation of
nanoparticles [34].

1.2.2
Synthetic NMs

Although NMs based on naturally occurring materials have the advantages
of biocompatibility and wide availability, structure modification is difficult
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to process to tailor their functions to satisfy the needs from pharmaceutical
application.

By contrast, synthetic polymers can be much more flexibly designed for a
specific application. For example, by using the pH-sensitive synthetic materials,
the NMs could release drugs in a pH-dependent manner for achieving tumor-
targeting delivery [35], because the rapidly prolific neoplastic tissues normally
secrete more lactose from the hyperactive anaerobic glycolysis, leading to a
decreased pH in tumor microenvironment [36].

1.2.2.1 Diversity of Synthetic NMs in Forms

Synthetic NMs can be tailored for different purposes. For instance, polyethylenei-
mine (PEI) can be synthesized in the forms of linear, branched, or dendritic struc-
tures (Figure 1.2) [37]. Synthetic polymers can be fabricated into various types of
NMs such as nanoparticles, micelles, and nanocubes. For example, poly(lactic-co-
glycolic acid) (PLGA) can be made into widely applied nanoparticles [38], micro-
spheres [39], and micelles [40].

NMs are often used as carriers for small molecular drugs. Drugs are loaded into
NMs by encapsulation or via a covalent linkage, in order to improve the PK profiles
and achieve targeting delivery to a specific site.

1.2.2.2 Drug Release Behaviors

Drug release from NMs is governed by the physiochemical properties of the drug
and NMs. Burst release is often seen for the hydrophobic drugs in capsulation by
liposomes, while sustained release for the hydrophilic drugs in liposomes, which
are slow to diffuse across the lipid bilayers [41]. However, it is more complex to



1.2 Commonly Utilized NMs in Pharmaceutical Research 5

investigate the drug release profile when NMs are injected to the body, and knowl-
edge of the in vitro in vivo correlation (IVIVC) is still insufficient.

In order to reduce the unwanted drug exposure, a number of strategies have
been developed to achieve a site-specific release of the loaded cargos.

pH-sensitive NMs
The slightly acidic tumor environment and endosome’s even lower pH have
attracted extensive interests in the application for designing NMs with the
ability to respond to pH changes during the delivery. This strategy has been
intensively explored by employing the polycationic dendrimers such as PEI
and PAMAM. Acidic pH could cause the electrostatic repulsions between
side chains in these polyamines because of the protonation of amino groups.
As a result, the dendrimers swell in response to the acidic condition and the
abrupt pH drop – the so-called “proton sponge” effect [42]. After engulfed
by the cells, the swelling of NMs can lead to endosome rupture, and thus is
favorable for intracellular drug release.
Another strategy is to use pH-sensitive linkage (e.g., hydrazone bonds) for
cross-linking and building the NMs [43]. The NMs disassemble in a pH-
dependent pattern, thus triggering drug release in acidic environments.

Redox-sensitive NMs
Besides the decreased pH, the rapidly growing tumor is also characterized
by the intracellular reducibility due to the increased level of glutathione
(GSH) [42]. The redox-sensitive NMs (e.g., NMs built via disulfide linkage)
can display an accelerated drug release once entering the tumor cells.

Enzyme-sensitive NMs
Tumor-associated proteases have been widely investigated for their appli-
cation as biomarkers in cancer diagnosis, prognosis, and therapy. Overex-
pression of tumor-associated proteases (e.g., MMP-2 [44], MMP-9 [45], and
legumain [46]) in tumors provides ideal targets for the design of “smart”
NMs with controlled release. A general strategy is to use a specific substrate
peptide to modify the NMs, and the cleavage of the peptide would trigger
drug release or cellular uptake.

Thermo/radio wave-sensitive NMs
Other stimulus-responsive NMs can respond to external physical stimu-
lation (such as localized heating and electromagnetic radiation) and have
been applied in drug delivery [47]. Specificity of this strategy is largely
dependent on the precise control of the applied stimuli at the target sites.

1.2.3
Inorganic NMs

Inorganic NMs are distinguished from the organic NMs (soft matters) with the
hard cores. In order to avoid aggregation in aqueous media, the inorganic cores are
typically modified with surfactants or hydrophilic polymers to form a core–shell
structure [48]. Of note, the in vivo biofate of inorganic NMs is greatly affected by
the surface characteristics of the coating materials [49].
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Inorganic NMs exhibit many unique physical properties – for example –
fluorescence (quantum dots), superparamagnetism (iron oxide nanoparticles),
photothermal effect (gold nanorods, carbon nanotubes), or special optical
properties (silver nanoparticles) [13, 50]. These properties of the inorganic NMs
have been utilized in cancer diagnosis and treatment applications.

1.2.4
Other NMs

Together with the rapid development of NMs, knowledge of NMs has accumu-
lated. Proteins, in terms of the size, can also be viewed as bionanomaterials, which
are rich in the body. As a case in point, albumin (MW 67 kDa) with a diameter
around 7 nm [51] can serve as a unique “protein carrier” for drugs. Another
example is the red blood cells (RBCs), with diameter from several to tens of
micrometers [15], which may be regarded as a type of “microliposomes” to deliver
therapeutic macromolecules. Moreover, even the protein capsids of a virus (size
<100 nm) can be used as a “nanocapsule” [52]. Inspired by biomimetics, these
physiologically originated NMs have been explored as novel carriers for drug
delivery.

Moreover, there is another form of nanodrugs – the nanocrystals of hydropho-
bic drugs [53]. Such nanodosage forms can solve the solubility problem, and fur-
thermore improve the PK profiles.

1.3
In vivo Biodistribution and the Evolving Targeting Principles for NMs

The targeting strategies have been mostly employed in cancer therapy areas. In
general, there are two types of targeting strategies: the passive targeting via EPR
effect and the active targeting mediated by antibodies or ligands that can specif-
ically bind with receptors on cancer cells. Recently, with the growing knowledge
of tumor physiology, the tumor microenvironments (e.g., acidic pH and the over-
expressed proteases) have been used as a target for cancer drug delivery [6]. A
combination of the targeting strategies by using multifunctional NMs has also
been investigated for achieving improved specific targeted delivery and controlled
release [54]. The ultimate goal is to increase drug concentration in tumor while
reducing its exposure to the healthy organs.

1.3.1
Organ Distribution versus Cell-Specific Targeting

Ideally, NMs should be able to deliver the cargo drugs specifically into a target
site. The in vivo fate of NMs is determined by a combination of multiple factors,
including particle size, shape, and surface characteristics [55]. It is thus difficult to
assess the overall targeting efficiency from in vitro data (e.g., cellular uptake by a


