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PREFACE TO THE FIRST EDITION 

Several years ago, while reading Weil's Number Theory: An Approach Through His
tory, I noticed a conjecture of Euler concerning primes of the fonn xl + 14y2. That 
same week I picked up Cohn's A Classical Invitation to Algebraic Numbers and 
Class Fields and saw the same example treated from the point of view of the Hilbert 
class field. The coincidence made it clear that something interesting was going on, 
and this book is my attempt to tell the story of this wonderful part of mathematics. 

I am an algebraic geometer by training, and number theory has always been more 
of an avocation than a profession for me. This will help explain some of the curi
ous omissions in the book. There may also be errors of history or attribution (for 
which I take full responsibility), and doubtless some of the proofs can be improved. 
Corrections and comments are welcome! 

I would like to thank my colleagues in the number theory seminars of Oklahoma 
State University and the Five Colleges (Amherst College, Hampshire College, Mount 
Holyoke College, Smith College and the University of Massachusetts) for the op
portunity to present material from this book in preliminary fonn. Special thanks 
go to Dan Flath and Peter Nonnan for their comments on earlier versions of the 
manuscript. I also thank the reference librarians at Amherst College and Oklahoma 
Slate University for their help in obtaining books through interlibrary loan. 

Amherst, Massachsusetts 
August 1989 

DAVID A. COX 
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PREFACE TO THE SECOND EDITION 

The philosophy of the second edition is to preserve as much of the original text as 
possible. The major changes are: 

• A new § 15 on Shimura reciprocity has been added, based on work of Peter 
Stevenhagen and Alice Gee [AlD, All, A23] and Bumkyo Cho [A6]. 

• The fifteen sections are now organized into four chapters: 

- The original §§ 1-13, which present a complete solution of p = x?- + nl, 
now constitute Chapters One, 1\vo and Three. 

- The new Chapter Four consists of the original §14 (on elliptic curves) 
and the new § 15 (on Shimura reciprocity). 

• An "Additional References" section has been added to supplement the original 
references [1]-[112]. This section is divided into five parts: 

- The first part consists of references [A 1 ]-[ A24] that are cited in the text. 
These references (by no means complete) provide updates to the book. 

- The remaining four parts give some references (also not complete) for 
further reading that are relevant to the topics covered in Chapters One, 
1\vo, Three and Four. 

• The expanded Notation section now includes all notation used in the book. 
Specialized notation is listed according to the page where it first appears. 

xi 



xii PREFACE TO THE SECOND EDITION 

The other changes to the text are very minor, mostly to enhance clarity, improve 
formatting, and simplify some of the proofs. One exception is the addition of new 
exercises: at the end of §12, Exercise 12.31 shows how Ramanujan could have de
rived Weber's formula for h ( yf-14)2 (thanks to Heng Huat Chan), and at the end of 
§ 14, Exercise 14.24 gives an elliptic curve primality test for Mersenne numbers due 
to Dick Gross [A12] (thanks to Alice Silverberg). 

The web site for the book includes typographical errors and a link to supplemen
tary exercises for §§1-3 written by Jeffrey Stopple. The URL of the web site is 

http://www.cs.amherst.edu/-dac/primes.html 

I would like to thank the following people for the errors they found in the first 
edition and for the suggestions they made: Michael Baake, Dominique Bernardi, Jeff 
Beyerl, Reinier Broker, Tony Feng, Nicholas Gavrielides, Lee Goswik, Christian 
Guenther, Shiv Gupta, Kazuo Hata, Yves Hellegouarach, Norm Hurt, Tim Hutchin
son, Trevor Hyde, Maurice Kostas, Susumu Kuninaga, Franz Lemmermeyer, Joseph 
Lipman, Mario Magioladitis, David May, Stephen Mildenhall, Takashi Ono, Frans 
Oort, Alf van der Poorten, Jerry Shurman, Alice Silverberg, Neil Sloane, Steve 
Swanson, Cihangir Tezcan, Satoshi Tomabechi, Fan Xingyuan and Noriko Yui. 

Please let me know if you find any errors in the new edition! 
My hope is that the second edition of Primes of the Form x2 + nl will help bring 

this wonderful part of number theory to a new audience of students and researchers. 

Amherst, Massachsusetts 
November 2012 

DAVID A. Cox 



NOTATION 

The following standard notation will be used throughout the book. 

Z,Q,lR,C 
Re(z), Im(z) 
~ 
lFq 
Zp 
ZjnZ 
[a] EAjB 
R* 
GL(2,R) 
SL(2,R) 
I 
Gal(LjK) 
[L:K] 
OK 
(n = e27ri/ n 

[a,b] 
gcd(a,b) 
¢(n) 
log (x) 
[x] 
lSI 
G>4H 
ker(r,o), im(r,o) 
Q.E.D. 

The integers, rational numbers, real numbers, and complex numbers 
The real and imaginary parts of z E C 
The upper half plane {x + iy E C : y > O} 
The finite field with q elements 
The ring of p-adic integers 
The ring of integers modulo n 
The coset of a E A in the quotient A j B 
The group of units in a commutative ring R with identity 
The group of invertible matrices (~ S), a, b, c, d E R 
The subgroup ofGL(2,R) of matrices with determinant I 
The 2 x 2 identity matrix 0, n 
The Galois group of the finite extension K C L 
The degree of a the finite extension K C L 
The ring of algebraic integers in a finite extension K of Q 
The standard primitive nth root of unity 
The set {ma+nb: m,n E Z} 
The greatest common divisor of the integers a and b 
The Euler ¢-function 
The logarithm to the base e of x E lR 
The greatest integer ~ x for x E lR 
The number of elements in a finite set S 
The semi direct product, where H acts on G 
The kernel and image of a homomorphism 10 
The end of a proof or the absence of a proof 

xiii 
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INTRODUCTION 

Most first courses in number theory or abstract algebra prove a theorem of Fermat 
which states that for an odd prime p, 

p=x:-+l,x,yEZ {=} p== 1 mod 4. 

This is only the first of many related results that appear in Fermat's works. For 
example, Fermat also states that if p is an odd prime, then 

p =X:-+2l, x,y E Z {=} P == 1,3 mod 8 

p=x:-+3l, x,yEZ {=} p=30rp== 1 mod 3. 

These facts are lovely in their own right, but they also make one curious to know 
what happens for primes of the form x:- + 5y2, x2 + 6y2, etc. This leads to the basic 
question of the whole book, which we formulate as follows: 

Basic Question 0.1. Given a positive integer n, which primes p can be expressed in 
the/arm 

p = x:- +nl 

where x and yare integers? 

We will answer this question completely, and along the way we will encounter some 
remarkably rich areas of number theory. The first steps will be easy, involving only 

1 



2 INTRODUCTION 

quadratic reciprocity and the elementary theory of quadratic forms in two variables 
over Z. These methods work nicely in the special cases considered above by Fermat. 
Using genus theory and cubic and biquadratic reciprocity, we can treat some more 
cases, but elementary methods fail to solve the problem in general. To proceed fur
ther, we need class field theory. This provides an abstract solution to the problem, 
but doesn't give explicit criteria for a particular choice of n in xl + ny2. The final step 
uses modular functions and complex multiplication to show that for a given n, there 
is an algorithm for answering our question of when p = xl + ny2. 

This book has several goals. The first, to answer the basic question, has already 
been stated. A second goal is to bridge the gap between elementary number theory 
and class field theory. Although our basic question is simple enough to be stated 
in any beginning course in number theory, we will see that its solution is intimately 
bound up with higher reciprocity laws and class field theory. A related goal is to pro
vide a well-motivated introduction to the classical formulation of class field theory. 
This will be done by carefully stating the basic theorems and illustrating their power 
in various concrete situations. 

Let us summarize the contents of the book in more detail. We begin in Chapter 
One with the more elementary approaches to the problem, using the works of Fermat, 
Euler, Lagrange, Legendre and Gauss as a guide. In § 1, we will give Euler's proofs 
of the above theorems of Fermat for primes of the form xl + y2, xl + 2y2 and x2 + 
3y2, and we will see what led Euler to discover quadratic reciprocity. We will also 
discuss the conjectures Euler made concerning p = xl + ny2 for n > 3. Some of these 
conjectures, such as 

(0.2) p =xl +5l {=:} p == 1,9 mod 20, 

are similar to Fermat's theorems, while others, like 

2 2 { p == 1 mod 3 and 2 is a 
p =.r +27y {=:} 

cubic residue modulo p, 

are quite unexpected. For later purposes, note that this conjecture can be written in 
the following form: 

(0.3) 
2 2 { p == 1 mod 3 and .0 == 2 mod p 

p = x + 27y {=:} 
has an integer solution. 

In §2, we will study Lagrange's theory of positive definite quadratic forms. After 
introducing the basic concepts of reduced form and class number, we will develop 
an elementary form of genus theory which will enable us to prove (0.2) and similar 
theorems. Unfortunately, for cases like (0.3), genus theory can only prove the partial 
result that 

(0.4) { 
x2+27y2 } 

p = or {=:} p == 1 mod 3. 

4xl + 2xy + 7y2 



INTRODUCTION 3 

The problem is that r- + 27y2 and 4r- + 2xy + 7y2 lie in the same genus and hence 
can't be separated by simple congruences. We will also discuss Legendre's tentative 
attempts at a theory of composition. 

While the ideas of genus theory and composition were already present in the 
works of Lagrange and Legendre, the real depth of these theories wasn't revealed 
until Gauss came along. In §3 we will present some basic results in Gauss' Dis
quisitiones Arithmeticae, and in particular we will study the remarkable relationship 
between genus theory and composition. But for our purposes, the real breakthrough 
came when Gauss used cubic reciprocity to prove Euler's conjecture (0.3) concern
ing p =:x2 + 27y2. In §4 we will give a careful statement of cubic reciprocity, and we 
will explain how it can be used to prove (0.3). Similarly, biquadratic reciprocity can 
be used to answer our question for:x2 + 64y2. We will see that Gauss clearly recog
nized the role of higher reciprocity laws in separating forms of the same genus. This 
section will also begin our study of algebraic integers, for in order to state cubic and 
biquadratic reciprocity, we must first understand the arithmetic of the rings Z[e27ri/ 3] 

andZ[i]. 
To go further requires class field theory, which is the topic of Chapter 1\\'0. We 

will begin in §5 with the Hilbert class field, which is the maximal unramified Abelian 
extension of a given number field. This will enable us to prove the following general 
result: 

Theorem 0.5. Let n := 1,2 mod 4 be a positive square free integer. Then there is an 
irreducible polynomial fn(x) E Z[x] such that for a prime p dividing neither n nor 
the discriminant of fn (x), 

2 2 {(-n/p )=land fn (X):=omod P 
p=x-+ny {:::::::} 

has an integer solution. 

While the statement of Theorem 0.5 is elementary, the polynomial fn(x) is quite 
sophisticated: it is the minimal polynomial of a primitive element of the Hilbert 
class field L of K = Q( Fn). 
. As an example of this theorem, we will study the case n = 14. We will show that 

the Hilbert class field of K = Q(v'-14) is L = K(a), where a = V2..J2-1. By 
Theorem 0.5, this will show that for an odd prime p, 

(0.6) 
2 2 {(-14/p)=land(r-+l f :=8mod P 

p=x-+14y {:::::::} 
has an integer solution, 

which answers our basic question for:x2 + 14y2. The Hilbert class field will also 
enable us in §6 to give new proofs of the main theorems of genus theory. 

The theory sketched so far is very nice, but there are some gaps in it. The most 
obvious is that the above results for:x2 + 27y2 and:x2 + 14y2 «0.3) and (0.6) respec
tively) both follow the same format, but (0.3) does not follow from Theorem 0.5, 
for n = 27 is not squarefree. There should be a unified theorem that works for all 
positive n, yet the proof of Theorem 0.5 breaks down for general n because Z[ Fnl 
is not in general the full ring of integers in Q( Fn). 



4 INTRODUCTION 

The goal of §§7-9 is to show that Theorem 0.5 holds for all positive integers 
n. This, in fact, is the main theorem of the whole book. In §7 we will study the 
rings 12.: [A for general n, which leads to the concept of an order in an imaginary 
quadratic field. In §8 we will summarize the main theorems of class field theory and 
the Cebotarev Density Theorem, and in §9 we will introduce a generalization of the 
Hilbert class field called the ring class field, which is a certain (possibly ramified) 
Abelian extension of Q( Fn) determined by the order 12.:[ A. Then, in Theorem 
9.2, we will use the Artin Reciprocity Theorem to show that Theorem 0.5 holds for 
all n > 0, where the polynomial fn(x) is now the minimal polynomial of a primitive 
element of the above ring class field. To give a concrete example of what this means, 
we will apply Theorem 9.2 to the case Xl + 27y2, which will give us a class field 
theory proof of (0.3). In §§8 and 9 we will also discuss how class field theory is 
related to higher reciprocity theorems. 

The major drawback to the theory presented in §9 is that it is not constructive: 
for a given n > 0, we have no idea how to find the polynomial fn(x). From (0.3) 
and (0.6), we know h7(X) and fI4(X), but the methods used in these examples hardly 
generalize. Chapter Three will use the theory of complex multiplication to remedy 
this situation. In § lOwe will study elliptic functions and introduce the idea of com
plex multiplication, and then in § 11 we will discuss modular functions for the group 
ro(m) and show that the j-function can be used to generate ring class fields. As an 
example of the wonderful formulas that can be proved, in § 12 we will give Weber's 
computation that 

j(J-14) = 23 (323+228h+ (231 + 161h) V2v'2-1 Y 
These methods will enable us to prove the Baker-Heegner-Stark Theorem on imag
inary quadratic fields of class number 1. In § 13 of the book we will discuss the class 
equation, which is the minimal polynomial of j( Fn). We will learn how to com
pute the class equation, which will lead to a constructive solution of p = Xl + ny2. 
We will then describe some work by Deuring and by Gross and Zagier. In 1946 
Deuring proved a result about the difference of singular j-invariants, which implies 
an especially elegant version of our main theorem, and drawing on Deuring's work, 
Gross and Zagier discovered yet more remarkable properties of the class equation. 

The first three chapters of the book present a complete solution to the problem of 
when p = Xl + ny2. In Chapter Four, we pursue two additional topics, elliptic curves 
in § 14 and Shimura reciprocity in § 15, that give a more modem approach to the study 
of complex multiplication. We also include applications to primality testing in § 14. 
The new § 15 discusses ideles and the field of modular functions, and replaces certain 
pretty but ad-hoc arguments used in §12 with a more systematic treatment based on 
Shimura reciprocity. We also give an unexpected application to p = Xl + ny2. 

Number theory is usually taught at three levels, as an undergraduate course, a 
beginning graduate course, or a more advanced graduate course. These levels cor
respond roughly to the first three chapters of the book. Chapter One requires only 
beginning number theory (up to quadratic reciprocity) and a semester of abstract al
gebra. Since the proofs of quadratic, cubic and biquadratic reciprocity are omitted, 
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this book would be best suited as a supplementary text in a beginning course. For 
Chapter Two, the reader should know Galois theory and some basic facts about al
gebraic number theory (these are reviewed in §5), but no previous exposure to class 
field theory is assumed. The theorems of class field theory are stated without proof, 
so that this book would be most useful as a supplement to the topics covered in a first 
graduate course. Chapter Three requires a knowledge of complex analysis, but other
wise it is self-contained. (Brief but complete accounts of the Weierstrass p-function 
and modular functions are included in § § 10 and 11.) This portion of the book should 
be suitable for use in a graduate seminar. The same is true for Chapter Four. 

There are exercises at the end of each section, many of which consist of working 
out the details of arguments sketched in the text. Readers learning this material for 
the first time should find the exercises to be useful, while more sophisticated readers 
may skip them without loss of continuity. 

Many important (and relevant) topics are not covered in the book. An obvious 
omission in Chapter One concerns forms such as x2 - 2y2, which were certainly 
considered by Fermat and Euler. Questions of this sort lead to Pell's equation and 
the class field theory of real quadratic fields. We have also ignored the problem 
of representing arbitrary integers, not just primes, by quadratic forms, and there are 
interesting questions to ask about the number of such representations (this material is 
covered in Grosswald's book [47]). In Chapter Two we give a classical formulation 
of class field theory, with only a brief mention of adeles and ideles. A more modem 
treatment can be found in Neukirch [80] or Weil [104] (see also the new §15). We 
also do not do justice to the use of analytic methods in number theory. For a nice 
introduction in the case of quadratic fields, see Zagier [111]. Our treatment of elliptic 
curves in Chapter Four is rather incomplete. See Husemoller [58], Knapp [AI4] or 
Silverman [93] for the basic theory, while more advanced topics are covered by Lang 
[73], Shimura [90] and Silverman [A21]. At a more elemenary level, there is the 
wonderful book [A22] by Silverman and Tate. 

There are many books which touch on the number theory encountered in study
ing the problem of representing primes by x2 + ny2. Four books that we particu
larly recommend are Cohn's A Classical Invitation to Algebraic Numbers and Class 
Fields [19], Lang's Elliptic Functions [73], Scharlau and Opolka's From Fermat to 
Minkowski [86], and Weil's Number Theory: An Approach Through History [106]. 
These books, as well as others to be found in the References, open up an extraordi
narily rich area of mathematics. The purpose of this book is to reveal some of this 
richness and to encourage the reader to learn more about it. 

Notes on the Second Edition 

The original text of the book consisted of §§1-14. For the second edition, we 
added the new § 15 on Shimura reciprocity described above. 

As a supplement to the references for the first edition, a new section Additional 
References has been added. The new references cited in the text are indicated with a 
leading "ft(' (e.g., the references Knapp [AI4], Silverman [A21], and Silverman and 
Tate [A22] given above). This section also contains suggestions for further reading 
for the four chapters. 





CHAPTER ONE 

FROM FERMAT TO GAUSS 

§1. FERMAT, EULER AND QUADRATIC RECIPROCITY 

In this section we will discuss primes of the form x? + ny2, where n is a fixed positive 
integer. Our starting point will be the three theorems of Fermat for odd primes p 

(1.1) 

p=x?+l, x,yEZ ~p=lmod4 

p=x2 +2l, x,yEZ ~p=lor3mod8 

p=x?+3l, x,yEZ ~p=30rp=lmod3 

mentioned in the introduction. The goals of §1 are to prove (1.1) and, more impor
tantly, to get a sense of what's involved in studying the equation p = x2 + nl when 
n > 0 is arbitrary. This last question was best answered by Euler, who spent 40 years 
proving Fermat's theorems and thinking about how they can be generalized. Our 
exposition will follow some of Euler's papers closely, both in the theorems proved 
and in the examples studied. We will see that Euler's strategy for proving (1.1) was 
one of the primary things that led him to discover quadratic reciprocity, and we will 
also discuss some of his remarkable conjectures concerning p = x? + nl for n > 3. 

Primes o/the Formi2 +nr. Second Edition. By David A. Cox 
Copyright © 2013 John Wiley & Sons. Inc. 
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8 §1. FERMAT, EULER AND QUADRATIC RECIPROCITY 

These conjectures touch on quadratic forms, composition, genus theory, cubic and 
biquadratic reciprocity, and will keep us busy for the rest of the chapter. 

A. Fermat 

Fermat's first mention of p =.x?- + y2 occurs in a 1640 letter to Mersenne [35, Vol. II, 
p. 212], while p =.x?- + 2y2 and p =.x?- + 3y2 come later, first appearing in a 1654 
letter to Pascal [35, Vol. II, pp. 310-314]. Although no proofs are given in these 
letters, Fermat states the results as theorems. Writing to Digby in 1658, he repeats 
these assertions in the following form: 

Every prime number which surpasses by one a mUltiple of four is composed 
of two squares. Examples are 5,13,17,29,37,41, etc. 

Every prime number which surpasses by one a multiple of three is composed 
of a square and the triple of another square. Examples are 7, 13, 19,31,37,43, 
etc. 

Every prime number which surpasses by one or three a multiple of eight is 
composed of a square and the double of another square. Examples are 3, II, 17, 
19,41,43, etc. 

Fermat adds that he has solid proofs-"firmissimis demonstralibus" [35, Vol. II, pp. 
402-408 (Latin), Vol. III, pp. 314-319 (French)]. 

The theorems (1.1) are only part of the work that Fermat did with .x?- + ny2. For 
example, concerning.x?- + y2 , Fermat knew that a positive integer N is the sum of two 
squares if and only if the quotient of N by its largest square factor is a product of 
primes congruent to 1 modulo 4 [35, Vol. III, Obs. 26, pp. 256-257], and he knew 
the number of different ways N can be so represented [35, Vol. III, Obs. 7, pp. 243-
246]. Fermat also studied forms beyond.x?- + y2, x2 + 2y2 and.x?- + 3y2. For example, 
in the 1658 letter to Digby quoted above, Fermat makes the following conjecture 
about.x?- + 5y2, which he admits he can't prove: 

If two primes, which end in 3 or 7 and surpass by three a multiple of four, are 
mUltiplied, then their product will be composed of a square and the quintuple of 
another square. 

Examples are the numbers 3, 7, 23, 43, 47, 67, etc. Take two of them, for 
example 7 and 23; their product 161 is composed of a square and the quintuple 
of another square. Namely 81, a square, and the quintuple of 16 equal 161. 

Fermat's condition on the primes is simply that they be congruent to 3 or 7 modulo 
20. In §2 we will present Lagrange's proof of this conjecture, which uses ideas from 
genus theory and the composition of forms. 

Fermat's proofs used the method of infinite descent, but that's often all he said. 
As an example, here is Fermat's description of his proof for p = .x?- + y2 [35, Vol. II, 
p.432]: 

If an arbitrarily chosen prime number, which surpasses by one a multiple of 
four, is not a sum of two squares, then there is a prime number of the same 
form, less than the given one, and then yet a third still less, etc., descending 
infinitely until you arrive at the number 5, which is the least of all of this nature, 
from which it would follow was not the sum of two squares. From this one 
must infer, by deduction of the impossible, that all numbers of this form are 
consequently composed of two squares. 



B. EULER 9 

This explains the philosophy of infinite descent, but doesn't tell us how to produce 
the required lesser prime. We have only one complete proof by Fermat. It occurs in 
one of his marginal notes (the area of a right triangle with integral sides cannot be 
an integral square [35, Vol. III, Obs. 45, pp. 271-272]-for once the margin was big 
enough!). The methods ofthis proof (see Weil [106, p. 77] or Edwards [31, pp. 10-
14] for modem expositions) do not apply to our case, so that we are still in the dark. 
An analysis of Fermat's approach to infinite descent appears in Bussotti [A5]. Weil's 
book [106] makes a careful study of Fermat's letters and marginal notes, and with 
some hints from Euler, he reconstructs some of Fermat's proofs. Weil's arguments 
are quite convincing, but we won't go into them here. For the present, we prefer to 
leave things as Euler found them, i.e., wonderful theorems but no proofs. 

B. Euler 

Euler first heard of Fermat's results through his correspondence with Goldbach. In 
fact, Goldbach's first letter to Euler, written in December 1729, mentions Fermat's 
conjecture that 22" + 1 is always prime [40, p. 10]. Shortly thereafter, Euler read some 
of Fermat's letters that had been printed in Wallis' Opera [100] (which included the 
one to Digby quoted above). Euler was intrigued by what he found. For example, 
writing to Goldbach in June 1730, Euler comments that Fermat's four-square theo
rem (every positive integer is a sum of four or fewer squares) is a "non inelegans 
theorema" [40, p. 24]. For Euler, Fermat's assertions were serious theorems deserv
ing of proof, and finding the proofs became a life-long project. Euler's first paper on 
number theory, written in 1732 at age 25, disproves Fermat's claim about 22" + 1 by 
showing that 641 is a factor of 232 + 1 [33, Vol. II, pp. 1-5]. Euler's interest in num
ber theory continued unabated for the next 51 years-there was a steady stream of 
papers introducing many of the fundamental concepts of number theory, and even af
ter his death in 1783, his papers continued to appear until 1830 (see [33, Vol. IV-VD. 
Weil's book [106] gives a survey of Euler's work on number theory (other references 
are Burkhardt [14], Edwards [31, Chapter 2], Scharlau and Opolka [86, Chapter 3], 
and the introductions to Volumes II-V of Euler's collected works [33D. 

We can now present Euler's proof ofthe first of Fermat's theorems from (1.1): 

Theorem 1.2. An odd prime p can be written as x2 + l if and only if p == 1 mod 4. 

Proof. If p = r + l, then congruences modulo 4 easily imply that p == 1 mod 4. 
The hard work is proving the converse. We will give a modem version of Euler's 
proof. Given an odd prime p, there are two basic steps to be proved: 

Descent Step: If p I x2 + l, gcd(x,y) = 1, then p can be written 
as x2 + l for some possibly different x, y. 

Reciprocity Step: If p == 1 mod 4, then pi r + l, gcd(x,y) = 1. 

It will soon become clear why we use the names "Descent" and "Reciprocity." 
We'll do the Descent Step first since that's what happened historically. The argu

ment below is taken from a 1747 letter to Goldbach [40, pp. 416-419] (see also [33, 
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Vol. II, pp. 295-327]). We begin with the classical identity 

(1.3) 

(see Exercise 1.1) which enables one to express composite numbers as sums of 
squares. The key observation is the following lemma: 

Lemma 1.4. Suppose that N is a sum of two relatively prime squares, and that 
q = :x2 + I is a prime divisor of N. Then N / q is also a sum of two relatively prime 
squares. 

Proof. Write N = a2 + b2 , where a and b are relatively prime. We also have q = 
x2 + I, and thus q divides 

~N - a2q = ~(a2 + b2) - a2(~ + i) 
=~b2 -a21 = (xb-ay)(xb+ay). 

Since q is prime, it divides one of these two factors, and changing the sign of a if 
necessary, we can assume that q I xb - ay. Thus xb - ay = dq for some integer d. 

We claim that x I a + dy. Since x and y are relatively prime, this is equivalent to 
x I (a + dy)y. However, 

(a + dy)y = ay+dl =xb-dq+dl 

= xb-d(~+l)+dl =xb-d~, 

which is obviously divisible by x. Furthermore, if we set a + dy = ex, then the above 
equation implies that b = dx + ey. Thus we have 

(1.5) 
a =ex-dy 

b=dx+ey. 

Then, using (1.3), we obtain 

N = a2 +b2 = (ex- dy)2 + (dx+ey)2 

= (~+l)(e2+d2) =q(e2+d2). 

Thus N / q = e2 + d 2 is a sum of squares, and (1.5) shows that e and d must be 
relatively prime since a and b are. This proves the lemma. Q.E.D. 

To complete the proof of the Descent Step, let p be an odd prime dividing N = 
a2 + b2, where a and b are relatively prime. If a and b are changed by multiples 
of p, we still have pi a2 + b2. We may thus assume that lal < p/2 and Ibl < p/2, 
which in tum implies that N < p2/2. The new a and b may have a greatest common 
divisor d > 1, but p doesn't divide d, so that dividing a and b by d, we may assume 
that piN, N < p2/2, and N = a2 + b2 where gcd (a, b) = 1. Then all prime divisors 
q =1= p of N are less than p. If q were a sum of two squares, then Lemma 1.4 would 
show that N / q would be a mUltiple of p that is again a sum of two squares. If all such 
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q's were sums oftwo squares, then repeatedly applying Lemma 1.4 would imply that 
p itself was of the same form. So if p is not a sum of two squares, there must be a 
smaller prime q with the same property. Since there is nothing to prevent us from 
repeating this process indefinitely, we get an infinite decreasing sequence of prime 
numbers. This contradiction finishes the Descent Step. 

This is a classical descent argument, and as Weil argues [lO6, pp. 68-69], it is 
probably similar to what Fermat did. In §2 we will take another approach to the 
Descent Step, using the reduction theory of positive definite quadratic forms. 

The Reciprocity Step caused Euler a lot more trouble, taking him until 1749. 
Euler was clearly relieved when he could write to Goldbach "Now have I finally 
found a valid proof' [40, pp. 493-495]. The basic idea is quite simple: since p ::= 
1 mod 4, we can write p = 4k + 1. Then Fermat's Little Theorem implies that 

(x2k_l)(~k+ 1) ::=x4k_l ::=0 mod p 

for all x =t=. 0 mod p. If? - 1 =t=. 0 mod p for one such x, then pi x2k + 1, so that 
p divides a sum of relatively prime squares, as desired. For us, the required x is 
easy to find, since x2k - 1 is a polynomial over the field Z/ pZ and hence has at most 
2k < p - 1 roots. Euler's first proof is quite different, for it uses the calculus of 
finite differences-see Exercise 1.2 for details. This proves Fermat's claim (1.1) for 
primes of the form x2 + l. Q.E.D. 

Euler used the same two-step strategy in his proofs for x2 + 2l and x2 + 3l. The 
Descent Steps are 

If p I ~ + 2l, gcd (x,y) = 1, then p is of the form~ +2l for 

some possibly different x, y 

If pi x2 + 3l, gcd (x,y) = 1, then p is of the form~ + 3l for 

some possibly different x, y, 

and the Reciprocity Steps are 

Ifp::= 1,3 mod 8, then pi x2 + 2l, gcd(x,y) = 1 

If p::= 1 mod 3, then pi x2 + 3l, gcd(x,y) = 1, 

where p is always an odd prime. In each case, the Reciprocity Step was harder to 
prove than the Descent Step, and Euler didn't succeed in giving complete proofs of 
Fermat's theorems (1.1) until 1772,40 years after he first read about them. Weil 
discusses the proofs for x2 + 2l and x2 + 3l in [106, pp. 178-179, 191, and 210-
212], and in Exercises 1.4 and 1.5 we will present a version of Euler's argument for 
x2+3l. 

c. p = x2 + ny2 and Quadratic Reciprocity 

Let's turn to the general case of p = x2 + nl, where n is now any positive integer. To 
study this problem, it makes sense to start with Euler's two-step strategy. This won't 


