Progress in IS

Christian Czarnecki Christian Dietze

Reference Architecture for the Telecommunications Industry

Transformation of Strategy, Organization, Processes, Data, and Applications

Progress in IS

More information about this series at http://www.springer.com/series/10440

Reference Architecture for the Telecommunications Industry

Transformation of Strategy, Organization, Processes, Data, and Applications

Christian Czarnecki Düsseldorf Germany Christian Dietze Abu Dhabi United Arab Emirates

ISSN 2196-8705 ISSN 2196-8713 (electronic) Progress in IS ISBN 978-3-319-46755-9 ISBN 978-3-319-46757-3 (eBook) DOI 10.1007/978-3-319-46757-3

Library of Congress Control Number: 2016952817

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The idea of writing this book came to us while we were together on one of our frequent international business trips in the Middle East. Through our role as consultants, we were involved in a broad variety of project engagements, proposal development activities, presentations, and publications related to the architectural transformation of telecommunications operators. In the last decade, we have supported more than 50 transformational projects in the telecommunications industry worldwide. Most of these dealt with the customization of reference solutions provided by the TM Forum and the alignment of those solutions across different parts of the company. This encouraged us to summarize our experiences in general recommendations and blueprints. Moreover, we have had the good fortune to discuss our viewpoints with executives as well as experts worldwide. We came to the conclusion that there is a significant and indeed increasing demand in this knowledge area for professionals, researchers, and students associated with the telecommunications industry. These facts and our well-founded scientific research experience, combined with practical knowledge from our project engagements across the globe, have motivated us to write this book together.

Preparing the concept of this book as well as the detailed elaboration of the content, while at the same time working as professional consultants and academics, has certainly demanded a lot from both of us. In addition, the fact that each of us has been working on different chapters and sections in different locations and time zones has led to several alignments and iterative updates to ensure the comprehensibility and the consistency of the contents throughout all chapters. In total, it has taken us almost two years to finalize this book.

Writing this book was only possible because of the comprehensive, ongoing support we have received from our project clients and colleagues. Being part of the innovative and international environment at the management consultancy, Detecon International GmbH was one of the lucky circumstances that resulted in the opportunity to summarize our experiences in this book. We would like to express our special appreciation to Issa Nasser Oesterreich and Dr. Kai Grunert, who always supported us and gave us the freedom to realize our ideas on projects worldwide. Furthermore, we had the great pleasure to work with teams of inspiring and knowledgeable colleagues. We were always supported by our colleagues from the MENA office, the International Telco Cluster, and our eTOM knowledge initiative. Whereas it is impossible to list all of their names here, we would like to thank each of them personally. Without the TM Forum, our book would not have been possible, so our sincere thanks go to the whole TM Forum team and the eTOM working group. We would also like to thank our editor Christian Rauscher, who was a great help during the whole publication process, and Patricia Joliet for her excellent work in proofreading our manuscript.

Writing such a book alongside the daily work responsibilities has been a challenge that we were only able to meet through the continuous encouragement of our families and friends. We would like to express our deep gratitude to all of them and especially to Nadine Schultes, Cecilia Carvajal, and Dr. Andreas Dietze.

Düsseldorf Abu Dhabi November 2016 Christian Czarnecki Christian Dietze

Contents

1		-	the Transformational Needs of Telecommunications	1
	-			1
	1.1		Is the Structure of This Book?	2
	1.2		Are the Major Findings of This Book?	3
	1.3		Sources Were Used?	9
	1.4		Could Benefit from This Book?	11
	1.5	How I	s the Content Used in Real-Life Projects?	12
	Refe	rences.		13
2	Und	erstand	ling Today's Telecommunications Industry	17
	2.1	Teleco	ommunications Market	20
		2.1.1	Price Decrease and Cost Pressure	21
		2.1.2	Emergence of Over-the-Top (OTT) Providers	24
		2.1.3	Growth Potential in Vertical Markets	27
		2.1.4	A New Role for Regulators.	35
	2.2	Teleco	ommunications Products and Services	39
		2.2.1	Interrelation Between Commercial Products	
			and Technical Services	39
		2.2.2	Customer Experience Management	42
	2.3	Teleco	ommunications Value Chain.	44
		2.3.1	Erosion of the Traditional Telecommunications	
			Value Chain	45
		2.3.2	The Operator Partnering Imperative	47
	Refe	rences.		50
3	Und	erstand	ling the Methodical Principles	55
•	3.1		mentals of Information Systems Modeling	57
	3.2		rise Architecture	60
	5.2	3.2.1	Introduction to Enterprise Architecture	61
		3.2.2	Enterprise Architecture Frameworks	63
		3.2.2	Enterprise Architecture Management.	67
		3.2.3	The Open Group Architecture Framework	68
		5.2.4		00

	3.3	Refere	ence Modeling	70
		3.3.1	Introduction to Reference Modeling	71
		3.3.2	Types of Reference Models.	72
		3.3.3	Development and Usage of Reference Models	74
	3.4	Refere	ence Models in the Telecommunications Industry	78
		3.4.1	TM Forum Business Process Framework (eTOM)	80
		3.4.2	TM Forum Information Framework (SID)	85
		3.4.3	TM Forum Application Framework (TAM)	88
		3.4.4	IT Infrastructure Library (ITIL)	91
	3.5	Introd	uction to Enterprise Transformation	92
	Refe	rences.		95
4	Desi	gning (the Architecture Solution	103
	4.1		iew of Reference Architecture	105
		4.1.1	Layers of Reference Architecture	107
		4.1.2	Defining Architecture Domains.	115
		4.1.3	Defining Reference Process Flows	119
	4.2		uring the Architecture Solution	123
		4.2.1	Structuring the Process Layer	125
		4.2.2	Structuring the Organizational Mapping	129
		4.2.3	Structuring the Data Layer	134
		4.2.4	Structuring the Application Layer	137
	4.3	Detail	ing the Customer-Centric Domain	141
		4.3.1	Reference Process Flows of the Customer-Centric	
			Domain	141
		4.3.2	Organizational Mapping of the Customer-Centric	
			Domain	145
		4.3.3	Data Layer of the Customer-Centric Domain	153
		4.3.4	Application Layer of the Customer-Centric Domain	155
		4.3.5	Summary of the Customer-Centric Domain	160
	4.4		ing the Technology Domain	161
		4.4.1	Reference Process Flows of the Technology Domain	162
		4.4.2	Organizational Mapping of the Technology Domain	166
		4.4.3	Data Layer of the Technology Domain	174
		4.4.4	Application Layer of the Technology Domain	178
		4.4.5	Summary of the Technology Domain	182
	4.5	Detail	ing the Product Domain	184
		4.5.1	Reference Process Flows of the Product Domain	184
		4.5.2	Organizational Mapping of the Product Domain	186
		4.5.3	Data Layer of the Product Domain	190
		4.5.4	Application Layer of the Product Domain	193
		4.5.5	Summary of the Product Domain	195

	4.6	Detail	ing the Customer Domain and the Support Domain	197
		4.6.1	Reference Process Flows of the Customer Domain	197
		4.6.2	Reference Process Flows of the Support Domain	198
	Refe	erences.		199
5	Plan	ning a	nd Implementing the Architecture Solution	203
	5.1	Archit	ecture Solution Map	205
		5.1.1	Map Element 1: Architecture Diagnostics	209
		5.1.2	Map Element 2: Strategic Alignment	212
		5.1.3	Map Element 3: Architecture Framework	214
		5.1.4	Map Element 4: Architecture Ownership	216
		5.1.5	Map Element 5: Architecture Design	218
		5.1.6	Map Element 6: Training and Awareness	220
		5.1.7	Map Element 7: Change Management	222
		5.1.8	Map Element 8: Architecture Implementation	223
	5.2	Transf	Formation Types and Organizational Responsibility	226
	5.3	Transf	formation Project Examples	231
	5.4	Detail	ed Example Cases	238
		5.4.1	Case Study 1—Introduction of an OSS	
			(Customer Orientation)	238
		5.4.2	Case Study 2—Introduction of an OSS (NGN-Based)	241
		5.4.3	Case Study 3—Introduction of a CRM System	243
		5.4.4	Case Study 4—Introduction of Process Architecture	245
	Refe	erences.	· · · · · · · · · · · · · · · · · · ·	247
In	dex .			249

Abbreviations

3G	Third generation (of mobile network technologies)
4G	Fourth generation (of mobile network technologies)
ABE	Aggregated Business Entity
ADM	Architecture Development Method (as a part of TOGAF)
ANSI	American National Standards Institute
ARPU	Average Revenue per User
B2B	Business-to-Business
B2B2C	Business-to-Business-to-Consumer
BPM	Business Process Management
BPMN	Business Process Model and Notation
BSS	Business Support Systems
CCAO	Chief Corporate Affairs Officer
CCO	Chief Commercial Officer
CCTA	Central Computing and Telecommunications Agency
CEM	Customer Experience Management
CEO	Chief Executive Officer
CFO	Chief Financial Officer
CHRO	Chief Human Resources Officer
CIM	Computer-Integrated Manufacturing
CIO	Chief Information Officer
CLCO	Chief Legal and Compliance Officer
СМО	Chief Marketing Officer
CNBO	Chief New Business Officer
COO	Chief Operating Officer
CPO	Chief Procurement Officer
CRM	Customer Relationship Management
CSO	Chief Strategy Officer
СТО	Chief Technology Officer
E2AF	Extended Enterprise Architecture Framework
EAF	Enterprise Architecture Framework

EAM	Enterprise Architecture Management
EPC	Event-driven Process Chain
ERM	Entity Relationship Model
eTOM	• •
FEAF	enhanced Telecom Operations Map
	Federal Enterprise Architecture Framework
FTTH	Fiber-to-the-Home
GCC	Gulf Cooperation Council
HIS	Hospital Information Systems
HR	Human Resource (Management)
HTML	Hypertext Markup Language
IaaS	Infrastructure as a Service
IAF	Integrated Architecture Framework
ICT	Information and Communication Technology
IEEE	Institute of Electrical and Electronics Engineers
IFEAD	Institute for Enterprise Architecture Developments
IPTV	Internet Protocol Television
ISP	Internet Service Provider
IT	Information Technology
ITIL	Information Technology Infrastructure Library
ITU	International Telecommunication Union
KPI	Key Performance Indicator
LTE	Long-Term Evolution
M2M	Machine-to-Machine
NGN	Next-Generation Network
NIST	National Institute of Standards and Technology
NOC	Network Operations Center
OECD	Organization for Economic Cooperation and Development
OSI	Open Systems Interconnection
OSS	Operations Support Systems
OTT	Over-The-Top
PaaS	Platform as a Service
PMI	Program Management Institute or Post Merger Integration
PRINCE2	PRojects In Controlled Environments, version 2
QoS	Quality of Service
RfP	Request for Proposal
RLC/MAC	Radio Link Control/Medium Access Control
SaaS	Software as a Service
S-BPM	Subject-oriented Business Process Management
SID	Shared Information/Data Model
SIM	Subscriber Identity Module
SIP	Strategy, Infrastructure, and Products (as a part of eTOM)
SME	Small- and Medium-sized Enterprises/Small and Medium Enterprise
SMS	Short Message Service
SOA	Service-Oriented Architecture
TAFIM	Technical Architecture Framework for Information Management
	C

TAM	Telecom Applications Map
TCP/IP	Transmission Control Protocol/Internet Protocol
TEAF	Treasury Enterprise Architecture Framework
TNA	Technology Neutral Architecture
TOGAF	The Open Group Architecture Framework
TV	Television
UML	Unified Modeling Language
VoIP	Voice over Internet Protocol

List of Figures

Figure 1.1	Chapters and their interrelation	3
Figure 1.2	Development of telecommunications subscriptions	4
Figure 1.3	Overall structure of the reference architecture	5
Figure 1.4	Exemplary detailing of reference architecture	7
Figure 1.5	Architecture solution map (simplified illustration)	8
Figure 1.6	Relevant topics	10
Figure 2.1	Framework for categorizing telecommunications operators	
	(according to Czarnecki 2013, p.52)	19
Figure 2.2	Challenges of telecommunications operators	20
Figure 2.3	OTT response strategy development approach	27
Figure 2.4	Correlation of number of vertical initiatives and readiness	
	score (according to Velasco-Castillo	
	and Renesse 2014, p. 12)	29
Figure 2.5	Transition from product-centric to customer-centric	
	organization (according to Pouillot 2013, p. 22)	29
Figure 2.6	M2M verticals for B2B2C and B2B	30
Figure 2.7	Main drivers for M2M	31
Figure 2.8	Traditional Mobile Operator vs. M2M Provider	31
Figure 2.9	M2M value chain	32
Figure 2.10	Market map for healthcare	34
Figure 2.11	Overview of connected mobility services in automotive	35
Figure 2.12	Regulatory imbalance for operators and OTTs	37
Figure 2.13	Network neutrality and two opposing positions	38
Figure 2.14	Relation between services and layers	
	(according to Georg 1996, p. 43)	40
Figure 2.15	Interrelation between product, service, and resource	
	(according to Bruce et al. 2008, p. 19; Czarnecki and	
	Spiliopoulou 2012, p. 393; TM Forum 2015, p. 46)	41
Figure 2.16	Pain point identification from a customer perspective	43
Figure 2.17	Example for improved customer experience	44

Figure 2.18	Selected innovative services of the telecommunications value creation	47
Figure 2.19	Strategic partnership framework establishment	49
Figure 2.20	Target picture of strategic partnership framework	50
Figure 3.1	Overview of methodical concepts	57
Figure 3.2	Components of an information system	58
Figure 3.3	Summary of modeling fundamentals	60
Figure 3.4	Interrelation between Enterprise Architecture and detailed	00
	solutions (according to Aier et al. 2008, p. 39; Schekkerman	
	2004, p. 24)	63
Figure 3.5	Reference model types.	74
Figure 3.6	Iterative reference modeling approach	
	(according to Schütte 1998, p. 185).	75
Figure 3.7	Interrelation between reference, application,	
	and solution model	77
Figure 3.8	Reference model usage	77
Figure 3.9	Structure of the reference process model eTOM	
	(Kelly 2003, p. 112)	81
Figure 3.10	eTOM process levels (Czarnecki et al. 2013, p. 86)	82
Figure 3.11	End-to-end process flows (according to Czarnecki et al.	
	2013, p. 89)	84
Figure 3.12	Hierarchical structure of TAM (Czarnecki 2013, p. 60)	90
Figure 3.13	Transformation from as-is to target architecture	93
Figure 3.14	Identification of relevant stakeholders based	
	on reference solution	94
Figure 4.1	Designing the architecture—overview	105
Figure 4.2	Conceptual basis of the reference architecture	106
Figure 4.3	Layers of the reference architecture	107
Figure 4.4	Usage of eTOM	109
Figure 4.5	Flexible data structure for product definition and	
	provisioning (according to TM Forum 2015b, pp. 42–46)	112
Figure 4.6	Differentiation between BSS and OSS	113
Figure 4.7	Interrelation between network infrastructure and	
	standardized architecture (according to Czarnecki 2013,	
	p. 149; Czarnecki and Spiliopoulou 2012, p. 395)	115
Figure 4.8	Structuring according to architecture domains	116
Figure 4.9	Structuring the activities of a telecommunications	
	operator	117
Figure 4.10	Architecture domains (according to Czarnecki 2013,	
	p. 109; TM Forum 2010, p. 8, 2015e, p. 12)	118
Figure 4.11	Interrelation between reference process flows	123

Figure 4.12	General structure of the architecture solution	124
Figure 4.13	General concept of hierarchical process structure	125
Figure 4.14	Definition of process levels	126
Figure 4.15	Example of process levels	127
Figure 4.16	Example of level 2 process description	128
Figure 4.17	Example of level 3 process flow	128
Figure 4.18	Dimensions of organizational mapping	131
Figure 4.19	Proposal for structuring the organizational mapping	132
Figure 4.20	Exemplary task definitions for organizational mapping	133
Figure 4.21	SID hierarchy	135
Figure 4.22	Exemplary interrelation between ABEs and processes	136
Figure 4.23	Exemplary mapping between processes (level 3)	100
E : 4.2.4	and SID ABEs.	136
Figure 4.24	Exemplary mapping of SID ABEs in BPMN diagram.	137
Figure 4.25	Interrelation between processes, logical applications,	120
	and application systems	138
Figure 4.26	Interrelation between process and application layers	139
Figure 4.27	Exemplary mapping between processes (level 3) and	1.10
	application function (level 2)	140
Figure 4.28	Exemplary mapping of application functions as BPMN diagram.	141
Figure 4.29	Reference process flows of customer-centric	
e	domain (level 1)	142
Figure 4.30	Reference process flow Request-to-Answer (level 2)	143
Figure 4.31	Reference process flow Order-to-Payment (level 2)	143
Figure 4.32	Reference process flow Usage-to-Payment (level 2)	144
Figure 4.33	Reference process flow Request-to-Change (level 2)	144
Figure 4.34	Reference process flow Termination-to-Confirmation	
e	(level 2)	144
Figure 4.35	Reference process flow Problem-to-Solution (level 2)	145
Figure 4.36	Reference process flow Complaint-to-Solution (level 2)	145
Figure 4.37	Functional roles involved in customer-centric domain	146
Figure 4.38	Criteria of organizational scope in the	
e	customer-centric domain	147
Figure 4.39	Exemplary organizational structure distinguishes between	
C	customer types	147
Figure 4.40	Exemplary organizational structure distinguishes between	
-	product types	148
Figure 4.41	Exemplary organizational structure combines distinction	
	between customer and product type	149

Figure 4.42	Exemplary organizational structure for consumer sales	1.40
E: 4 42	and customer service based on channels	149
Figure 4.43	Exemplary organizational structure for consumer call center	150
Figure 4.44	Exemplary organizational structure for corporate sales	150
1 igule 4.44	and customer service	151
Figure 4.45	Exemplary organizational structure of own financial	151
i iguie 1.15	operations entity	151
Figure 4.46	Exemplary organizational structure for integrating	101
i iguie ii io	the financial operations in the consumer call center	152
Figure 4.47	Differentiation of SID domains between customer-centric	
U	and technology domain (according to TM Forum 2015b,	
	pp. 42–46)	154
Figure 4.48	Mapping of customer-centric domain to BSS	155
Figure 4.49	Summary of application layer of customer-centric domain	159
Figure 4.50	Summary of reference architecture of the customer-centric	
	domain	160
Figure 4.51	Reference process flows of technology domain (level 1)	162
Figure 4.52	Reference process flow Production-Order-to-Acceptance	
	(level 2)	163
Figure 4.53	Reference process flow Trouble-Ticket-to-Solution	
	(level 2)	163
Figure 4.54	Reference process flow Usage-to-Usage-Data (level 2)	164
Figure 4.55	Reference process flow Service Lifecycle Management	
	(level 2)	164
Figure 4.56	Reference process flow Resource Lifecycle Management	165
E: 4.57	(level 2)	165
Figure 4.57 Figure 4.58	Reference process flow Capacity Management (level 2) Reference process flow Continuity Management (level 2)	165 165
Figure 4.58 Figure 4.59	Functional roles involved in technology domain	165
Figure 4.60	Criteria of organizational scope in the technology	100
11guie 4.00	domain	167
Figure 4.61	Exemplary organizational structure distinguishes	107
i iguie 1.01	between functions	168
Figure 4.62	Exemplary organizational structure of network operations	100
8	and management	169
Figure 4.63	Exemplary organizational structure of network operations	
U	and support differentiated by regions	170
Figure 4.64	Exemplary organizational structure distinguishes between	
C	network element suppliers	171
Figure 4.65	Exemplary organizational structure distinguishes between	
	transmission types and network infrastructure	173
Figure 4.66	Exemplary high-level organizational integration of network	
	and information technology	173

Figure 4.67	Exemplary organizational structure responsible for network	
	operations and management systems	174
Figure 4.68	Usage of SID data entities for product development,	
	provisioning, and usage	177
Figure 4.69	Mapping of technology domain to OSS	178
Figure 4.70	Summary of application layer of technology domain	182
Figure 4.71	Summary of reference architecture of the technology	
	domain	183
Figure 4.72	Reference process flows of product domain (level 1)	185
Figure 4.73	Reference process flow Idea-to-Business-Opportunity	
	(level 2)	185
Figure 4.74	Reference process flow Business-Opportunity-to-Launch	
	(level 2)	186
Figure 4.75	Reference process flow Decision-to-Relaunch (level 2)	186
Figure 4.76	Reference process flow Decision-to-Elimination (level 2)	186
Figure 4.77	Functional roles involved in product domain	187
Figure 4.78	Criteria of organizational scope in the product domain	188
Figure 4.79	Exemplary organizational structure distinguishes	
	between customer types	188
Figure 4.80	Exemplary organizational structure distinguishes between	
	product types	189
Figure 4.81	Exemplary organizational structure combines sales and	
	customer service with product marketing	
	and development	189
Figure 4.82	Exemplary organizational structure with central product	
	innovation	190
Figure 4.83	Usage of SID data entities with focus on the product	
	domain	191
Figure 4.84	Mapping of product domain to BSS	194
Figure 4.85	Summary of reference architecture of the product	
	domain	196
Figure 4.86	Reference process flows of customer domain (level 2)	197
Figure 4.87	Reference process flow Customer Relation Management	
	(level 2)	198
Figure 4.88	Reference process flow Sales Management (level 2)	198
Figure 5.1	Simplified architecture solution	204
Figure 5.2	Architecture solution map elements	206
Figure 5.3	Transformation program breakdown	207
Figure 5.4	Master plan development.	208
Figure 5.5	Architecture gap analysis	210
Figure 5.6	Architecture diagnostic element	211
Figure 5.7	Gap prioritization matrix	211
Figure 5.8	Alignment of strategic targets and architecture solution	213

Figure 5.9	Architecture framework views	214
Figure 5.10	Exemplary framework of the process layer	215
Figure 5.11	Architecture solution versus architecture layer ownership	216
Figure 5.12	Tasks of architecture solution and architecture layer	
	owner	217
Figure 5.13	Architecture layer design example (illustrative)	219
Figure 5.14	Architecture layer design approval process	219
Figure 5.15	Exemplary training preparation elements	221
Figure 5.16	Change management approach	222
Figure 5.17	Process implementation approach	224
Figure 5.18	Process implementation tasks and responsibilities	225
Figure 5.19	Technical implementation tasks	225
Figure 5.20	Transformation types and functional orientation	227
Figure 5.21	Exemplary chief officer positions in telecommunications	
	operators	228
Figure 5.22	Context and usability of artifacts	240
Figure 5.23	Operating support system introduction.	242
Figure 5.24	CRM system introduction	244
Figure 5.25	Process architecture introduction	246

List of Tables

Table 1.1	Published own research results	9
Table 1.2	Case studies of real-life projects	13
Table 2.1	Selected reports about OTT market and strategies	24
Table 2.2	Selected reports about changes of the telecommunications	
	value chain	46
Table 3.1	Overview of selected EAF (according to Schekkerman	
	2004 pp. 89-141; Urbaczewski and Mrdalj 2007,	
	pp. 18–19)	65
Table 4.1	Detailing of process groups (according to ITU 2007a, b)	110
Table 4.2	Detailing of application layer	114
Table 4.3	Mapping between use cases and reference process flows	122
Table 4.4	Mapping between reference process flows and application	
	areas (level 1) for customer-centric domain	156
Table 4.5	Mapping between reference process flows and application	
	areas (level 1) for technology domain	180
Table 4.6	Mapping between reference process flows and application	
	areas (level 1) for product domain	194
Table 5.1	Summary of architecture diagnostics element	212
Table 5.2	Summary of strategic alignment element	213
Table 5.3	Summary of architecture framework element	215
Table 5.4	Summary of architecture ownership element.	218
Table 5.5	Summary of architecture design element	220
Table 5.6	Summary of training and awareness element	221
Table 5.7	Summary of change management element	223
Table 5.8	Summary of architecture implementation element	226
Table 5.9	Process and quality diagnostic study	232
Table 5.10	BPM establishment	232
Table 5.11	Organization restructuring towards customer centricity	233

Post merger integration (Organization, Processes and IT)	233
Introduction of a Next Generation (NG) mobile network	
technology	234
Strategic business division establishment	235
Introduction of an OSS (customer orientation)	235
Introduction of an OSS (NGN-based)	236
Introduction of a CRM System	236
Introduction of process architecture	237
Introduction of an OSS	241
Introduction of an OSS	243
Introduction of a CRM System	245
Introduction of process architecture	247
	Introduction of a Next Generation (NG) mobile networktechnologyStrategic business division establishmentIntroduction of an OSS (customer orientation)Introduction of an OSS (NGN-based)Introduction of a CRM SystemIntroduction of process architectureIntroduction of an OSSIntroduction of an OSS

Chapter 1 Addressing the Transformational Needs of Telecommunications Operators

Abstract The telecommunications industry has changed tremendously during the last decades. Challenges of today's telecommunications operators are, for example, enhanced customer orientation and product innovation combined with cost savings as well as shorter lead times. In many cases, this leads to continuous improvement and restructuring initiatives. Process standardization, automation through new software systems, outsourcing of support activities, and roll-out of new network technologies are just some of the typical topics of these initiatives. In this context, an aligned transformation of organization, processes, applications, data, and network technologies is a key success factor. The overall structure of such transformations is supported by general enterprise architecture methods. From a topical perspective, industry-specific reference solutions are proposed by well-recognized industry organizations, such as the TM Forum. This book explains the whole architectural transformation customized to fit the specific challenges of telecommunications operators. All phases are described, from the planning and set-up to the implementation. While this chapter provides an introduction and summary, in subsequent chapters the following details are discussed: Specifics of the telecommunications industry are described in Chap. 2, methodical principals are explained in Chap. 3, a concrete recommendation for the architecture solution is proposed in Chap. 4, and the planning and implementation are discussed in Chap. 5. This book gives the latest insights into the standard development, shows lessons learned from numerous international projects, and presents well-founded research results. practitioners. enterprise Telecommunication architects. project managers. researchers, and students alike benefit from numerous examples and illustrations.

The telecommunications industry has changed tremendously during the last decades. Challenges of today's telecommunications operators are, for example, enhanced customer orientation and product innovation combined with cost savings as well as shorter lead times. In many cases, this leads to continuous improvement and restructuring initiatives. Process standardization, automation through new software systems, outsourcing of support activities, and roll-out of new network technologies are just some of the typical topics of these initiatives. While some

C. Czarnecki and C. Dietze, *Reference Architecture* for the Telecommunications Industry, Progress in IS,

DOI 10.1007/978-3-319-46757-3_1

[©] Springer International Publishing AG 2017

telecommunications operators are able to plan, design, and implement these changes successfully, others become lost in a labyrinth of unaligned activities. A major challenge is to understand the interrelation between those different topics and to design, plan, and implement a well-defined target picture for the whole enterprise. A typical situation in practice is that, in parallel, the IT department plans the outsourcing of IT services to save operational costs, the marketing department plans the launch of a new IPTV offer to increase revenues, and the technology department plans the harmonization of their production systems. In the end, all these different initiatives might result in minor, local improvements that are paid dearly with various conflicts and difficulties from a cross-functional perspective.

An aligned transformation of organization, processes, applications, and network technologies is a key success factor for today's telecommunications operators. The overall structure of such transformations is supported by general enterprise architecture methods. From a topical perspective, the International Telecommunication Union (ITU) and the TM Forum provide reference solutions, such as the *enhanced Telecom Operations Map* (eTOM) for processes and the *Telecom Applications Map* (TAM) for applications. These reference models are well recognized by the whole value chain of the telecommunications industry and can be seen as de facto standard. However, to gain the full benefits of these standards, a structured approach that shows how to use them in a practical context is essential.

From a practical perspective, the content of this book is particularly beneficial for people working in the telecommunications industry including:

- general top managers;
- managers of IT, network or technology departments;
- process/quality/architecture management departments;
- program management departments;
- project managers and team members of transformation projects;
- consulting companies, freelancers, and system integrators.

In addition, researchers and students receive detailed industry-specific insights into the context of information systems.

1.1 What Is the Structure of This Book?

This book explains the whole architectural transformation customized to fit the specific challenges of telecommunications operators. All phases are described, from the planning and set-up to the implementation (cf. Fig. 1.1). The specifics of the telecommunications industry are described in Chap. 1, and the methodical principals are explained in Chap. 3. Based on these two fundamental topics, a concrete recommendation for the architecture solution is proposed in Chap. 4. This architecture solution combines the general structure of enterprise architectures and reference standards in the telecommunications industry and offers a reference for a

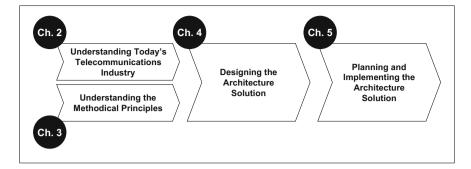


Fig. 1.1 Chapters and their interrelation

concrete solution design. In Chap. 5, the planning and implementation are discussed, using various projects as examples. This book comprises the overarching view of enterprise architecture concepts together with the specific industry standards. It gives the latest insights into the standard development, shows lessons learned from numerous international projects, and presents well-founded research results in enterprise architecture management and reference modeling. Telecommunication practitioners, enterprise architects and project managers alike benefit from numerous examples and illustrations.

1.2 What Are the Major Findings of This Book?

Understanding today's telecommunications industry is a prerequisite for a successful solution design and implementation. The tremendous changes of the industry during the last decades have completely altered their rules and structures. In the past, traditional—mainly government-owned—telecommunications operators were responsible for the technical realization of fixed-line and mobile radio communications. Their business model was based on long-term infrastructure investments that were financed through usage-based connection fees. Today competitors of traditional operators do not necessarily require their own network infrastructure -such as, for example, Over-The-Top (OTT) Providers. Increasingly, the technical connection is becoming a commodity. Innovative applications, convergent services, and dedicated customer orientation are today's success factors. However, increasing data volumes and mobile usage still requires ongoing modernization of network technologies. Figure 1.2 shows the worldwide development of telecommunications subscriptions. During the last 10 years, fixed lines have been in constant decline, while mobile-cellular and especially mobile broadband have increased tremendously.

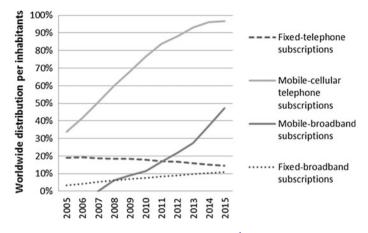


Fig. 1.2 Development of telecommunications subscriptions¹

Due to the increasing competition, price decreases can be observed (ITU 2015b, p. 5; Plunkett 2014, p. 8). As a result, the revenue growth rates are low: for example, the Telecommunication Industry Association observed an average growth of 6 % in telecommunications spending between 2010 and 2015 Telecommunications Industry Association (2015). A major challenge for telecommunications operators is the combination of continuous innovation requirements with a stagnating market and changing value chains.

Understanding the methodical principles is indispensable for the successful adaptation of structures, processes, and applications to the changed industry conditions. In most cases, those adjustments are related to the various different parts of a telecommunications operator. The planning, design, and realization of those changes are a complex endeavor which, in most situations, takes several years, involves huge project teams, and impacts major parts of the enterprise. Without clear structures and guidelines, the risk of inconsistent and singular solutions is high. The overriding challenge is to understand the interrelations between the different enterprise parts and take decisions that are beneficial from the overall enterprise perspective. The general methodical foundation of the solution design is related to information systems modeling. In this context, information systems are a complex construct comprised of employees, their organizational responsibilities, their activities that create the enterprise architectures provide a general structure to plan, design, and implement those complex solutions. Content-wise, reference

¹Own illustration, data is based on ITU (2015a). The distribution per inhabitants is a theoretical figure based on the total number of subscriptions and the world population. It does not provide penetration rate—i.e., through the high mobile penetration in developed countries, one mobile subscriber often has several subscriptions. The number of worldwide mobile-cellular telephone subscriptions in comparison to the world population has almost reached the 100 % mark.

models are used as recommendations. In the telecommunications industry, the TM Forum offers well-accepted reference models for processes, data, and applications. From the dynamic perspective, concepts of enterprise architecture management and enterprise transformation support the planning and implementation.

Designing the architecture solution combines the methodical principles in an architectural construct that offers clear recommendations for the specific challenges facing today's telecommunications operators. First, the relevant elements are identified and arranged in an architecture structure for organization, processes, data, and applications. As an additional structural element, five industry-specific architecture domains are proposed. These architecture domains provide an overall structure of telecommunications operators. The customer-centric domain covers all architecture elements related to direct customer interactions. All technical specifics are encapsulated in the technology domain. The product domain includes the planning, development, and roll-out of new products. Both the product and the

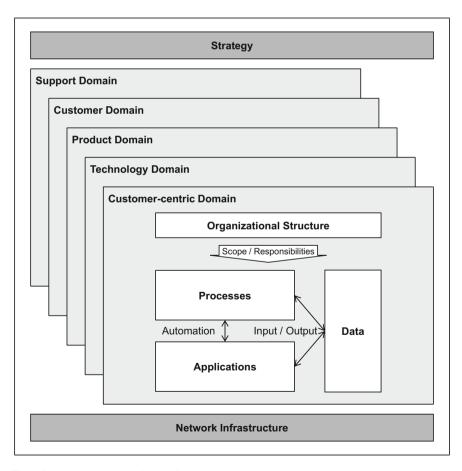


Fig. 1.3 Overall structure of the reference architecture

technology domain prepare the prerequisites to fulfill customer requests in the customer-centric domain. Further support activities are included in the customer domain and enterprise support domain. For each of these domains, concrete reference solutions for organization, processes, data, and applications are described (cf. Fig. 1.3). These reference solutions combine the industry-specific TM Forum reference models and provide a detailed blueprint for the transformational needs of telecommunications operators. The reference architecture includes a hierarchical decomposition and interrelations between the different elements.

In the following, an exemplary description of the different elements of the reference architecture proposed in this book is given (cf. Fig. 1.4). The customer-centric domain contains seven reference process flows defining all interactions with а customer from an end-to-end perspective. The Request-to-Answer process is one of these reference process flows. It deals with answering all types of customer requests. The process can be divided into the following activities: customer contact management, request specification, and the handling of the request according to the request type (cf. upper part of Fig. 1.4).

The responsibilities for management and execution of these activities are defined by the organizational structure. Parameters for structuring those responsibilities are contact channel, customer type, product type, and geographical structure. Typical contact channels for consumer customers are call center, shops, internet, and indirect sales. A possible organizational structure is a consumer sales and customer service unit that contains departments for each contact channel (cf. middle part of Fig. 1.4). From an organizational perspective, a differentiation between contact channels is reasonable. However, from the process perspective, standardization between those contact channels is recommended. The data elements required in the Request-to-Answer process are mainly customers and products (cf. bottom left of Fig. 1.4). The Request-to-Answer process is mapped to various application areas, such as customer information management, customer order management, and customer self-management (cf. bottom right of Fig. 1.4).

Planning and implementing the architecture solution is essential to benefit from the solution design. From a dynamic perspective the architectural implementation is a transformation from the current state of the enterprise to a targeted state that is defined by the solution design. In most cases, the entire design and implementation are conducted in a cross-functional project. With respect to the duration and persons involved, such a project can be seen as complex endeavor. Various interrelations between the architectural elements, conflicts of objective between different organizational entities, and changing external or internal factors require careful consideration. For planning the tasks from the set-up to design and implementation, an Architecture Solution Map is proposed. It consists of eight major tasks (cf. Fig. 1.5).

At the beginning, the architecture diagnostics provides an analysis of the current situation as basis for a first goal definition. The strategic alignment ensures that the transformational goals are consistent with the overall corporate strategy. The definition of a high-level architecture framework could be a customized version of the reference architecture proposed in this book. Typically a cross-functional

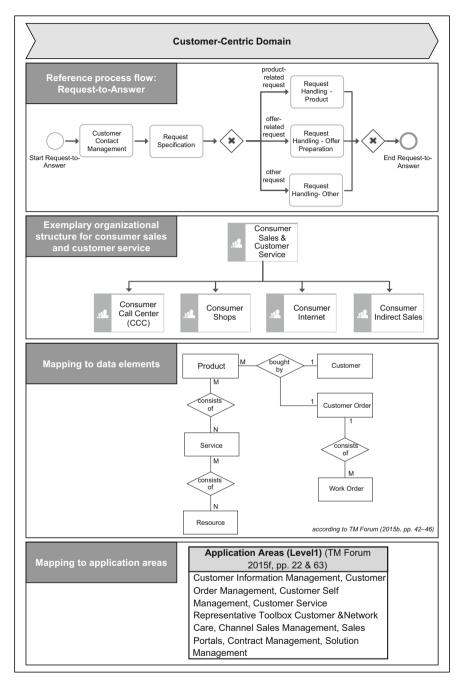


Fig. 1.4 Exemplary detailing of reference architecture