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Introduction: Goals and

Challenges for the In-situ

Characterization of

Heterogeneous Catalysts

José A. Rodriguez, Jonathan C. Hanson, and Peter J.

Chupas

Catalysis and the Need to

Characterize Active Sites in

Different Types of Materials and

Chemical Environments

Catalysis is central to the production of fuels and chemicals,

including more than 70% of today’s chemical products.

About 20% of the value of all commercial products

manufactured in the United States is derived from processes

involving catalysis [1–3]. Thus, the understanding and

optimization of heterogeneous catalysts is a critical need

within the chemical industry [2, 3]. The most important

considerations when designing a new catalyst or when

optimizing the performance of an existing one are activity,

selectivity, and durability [3]. The catalyst must be able to

perform a reaction of interest at an acceptable rate under a

practical set of temperatures and pressures. There is a

commercial incentive to tune catalysts to operate at low

temperatures and pressures [2, 3]. It is concurrently

important that the rate of side reactions be minimal, and

the catalyst must be able to sustain the desired reaction



over long periods of time [3]. When designing or optimizing

a catalyst, one must know the nature of its active sites and

how they interact with the reactants, intermediates, and

products of a catalytic process. The structural and electronic

properties of the active sites are usually affected by the

chemical environment in which they operate. This book

describes experimental techniques that have been

developed to characterize catalysts and study reaction

mechanisms in situ under academic and technical or

industrial conditions.

Heterogeneous catalysts can be metals, oxides, carbides,

sulfides, nitrides, practically any type of material [1–3]. In

the nineteenth century it was already known that all the

regions or atoms in the surface of a heterogeneous catalyst

are not involved in the real catalytic process. The concept of

the “active site” in catalysis has been used since its

introduction in the 1920s by Taylor and Langmuir [4, 5].

However, despite considerable scientific effort over many

years, our knowledge of what exactly the active sites are

and how they really work is in most cases very primitive [6].

First, it is necessary to identify the active site and fully

characterize its electronic and structural properties under

reaction conditions. Since industrial catalysts and catalytic

processes are extremely complex [2, 3], the development of

techniques for the characterization of catalytic systems in

situ as they evolve in time with a changing chemical

environment is a very challenging task. Figure I.1 shows four

different types of systems which are frequently used in

catalytic studies. Figure I.1A displays an image of high-

resolution transmission electron microscopy (HR-TEM) for a

high surface area Pt-Ru/CeO2 catalyst [7]. One sees

particles of a Pt–Ru alloy (1.5–3 nm in size) on top of a ceria

support that mainly exhibits the (111) face of the oxide. In

the case of Figure I.1B, the HR-TEM image corresponds to a

Pt/CeOx/TiO2 catalyst [8]. The loading of Pt is very low



(0.5 wt%) and the small particles of the metal (0.4–0.5 nm)

are difficult to detect with HR-TEM. The TiO2 support

nanoparticles are monocrystalline and present an average

size of 10–15  nm. The bright spots as indicated by the

arrows represent CeO2 nanoparticles with an average

diameter of about 4–5 nm. In the Pt/CeOx/TiO2 catalyst, the

very low content of Pt points to the need for

characterization techniques with a high sensitivity. Many

catalytic processes are carried out on the type of

metal/oxide powder catalyst shown in Figure I.1A,B, with the

surface exhibiting a high degree of structural heterogeneity

[1–3]. In contrast, when studying correlations between

surface “structure” and reactivity, it may be advantageous

to do experiments on well-defined single-crystal surfaces

such as those displayed in Figure I.1C,D [9, 10].

Furthermore, the system in Figure I.1A has the typical

metal/oxide configuration seen in many industrial catalysts

[1–3]. However, to enhance the participation of ceria in

catalytic reactions, one may adopt an inverse configuration

in which nanoparticles of this oxide are deposited on top of

the surface of a metal or another oxide [11]. Thus, the

inverse CeO2/CuO and CeO2/CuOx/Cu(111) catalysts shown

in Figure I.2 exhibit a very high activity for the low-

temperature oxidation of CO and the CO preferential

oxidation (PROX) reactions [12, 13]. In practical terms, one

needs to develop techniques for the in-situ characterization

of all the systems shown in Figure I.1 and Figure I.2, and

even much more complex materials in which there are

multiple phases coexisting in a three-dimensional space

[14]. When focusing on spatial resolution, characteristic

length scales relevant for catalytic materials range from a

few millimeters (usual sample size) to nanometers (typical

size of catalytic nanoparticles). If one is interested in the

geometrical structure of molecules adsorbed on the surface

of the catalyst as reactants or intermediates, then the



significant length scale is in the order of angstroms or

picometers.

Figure I.1. Different types of systems investigated in

studies in the area of catalysis. (A) Image of HR-TEM for a

Pt–Ru/CeO2 catalyst. Reprinted with permission from

Reference 7. Copyright (2012) Elsevier. (B) Image of HR-TEM

for a Pt/CeOx/TiO2 catalyst. Reprinted with permission from

Reference 8. Copyright (2012) American Chemical Society.

(C) Top view of a Sn–Pt(111) model catalyst. (D) Side view of

a TiO2(110) surface.

Figure I.2. Inverse ceria/copper oxide catalysts. (A) Image

of HR-TEM for a CeO2/CuO powder catalyst. Reprinted with

permission from Reference 12. Copyright (2010) American

Chemical Society. (B) Image of STM for a

CeO2/CuOx/Cu(111) model catalyst. Reprinted with

permission from Reference 13. Copyright (2011) American

Chemical Society.



Time is a very important parameter when studying a

catalytic process. A phenomenological rate law gives the

disappearance of reactants or appearance of products as a

function of time for a particular set of reaction conditions

(pressure, temperature, and chemical concentrations) [6].

At a microscopic level, molecules are transformed and the

chemical environment around the active sites of a catalyst

changes as a function of time [6, 10]. In order to obtain a

full understanding of the key transformations associated

with a catalytic process, one must be able to track the time

evolution of the structural and electronic properties of the

active site. The activation and breaking of a chemical bond

inside a molecule occurs in the picosecond regime but the

completion of a full reaction cycle on the surface of a

catalyst usually takes longer times. Based on turnover rates

for typical reactions (10−2–103 molecules/site•second) [9,

10], one can estimate that the timescale for a catalytic

transformation on the surface of a catalyst is usually in the

range of minutes to milliseconds under typical reaction

conditions. Ideally, one must be able to track

transformations of the catalytic material in this time range.

Very valuable information about catalytic processes can be

obtained under steady-state conditions (i.e., no variations in



temperature, pressure, and reaction rate), but to obtain a

detailed understanding of reaction mechanism one

frequently has to do experiments in a non-steady-state or

transient mode in which the properties of the catalytic

system are perturbed by changing the temperature (see Fig.

I.3), or by pulses (fluctuations) in the pressures of the

reactants [5, 6, 15]. In principle, the perturbations in the

reaction conditions can affect the structural properties of

the catalyst (Fig. I.3 and Fig. I.4) and the lifetime of surface

intermediates that are produced during the reaction.

Figure I.3. Three-dimensional plot of in-situ XRD patterns

collected during the reduction/activation of a powder

CuO/ZnO catalyst in a mixture of 0.25% CO, 0.25% CO2, and

4% H2 in argon. The XRD patterns were collected at

temperatures between 375 and 493 K. A CuO → Cu

structural transformation was seen around 400 K. Reprinted

with permission from Reference 5. Copyright (1991) Elsevier.



Figure I.4. Variation of the lattice constant of ceria after

exposing a powder Au–CeO2 catalyst to CO, the reaction

mixture for the water–gas shift reaction (CO/H2O), CO, and

O2. The reported values were obtained after analyzing

results of time-resolved XRD by Rietveld refinement.

Reprinted with permission from Reference 15. Copyright

(2006) American Chemical Society.

On the basis of the considerations discussed in the

previous paragraphs, one finds that the ideal tool for a

detailed study of typical catalytic processes should have

high sensitivity and allow us the fast acquisition of data in a

milliseconds timescale with a spatial resolution in the range

of nanometers or smaller, monitoring simultaneously the

properties of the catalyst active sites and the adsorbed

reaction intermediates. This is a highly demanding set of

requirements. At the present time, no single technique can

accomplish all of these tasks. For a complete

characterization of a catalytic process, one must combine

different techniques. Many of the existing techniques focus

only on examining the properties of the catalyst, while

others are better suited for studying the surface chemistry

associated with the reaction process. In practical terms, it is

necessary to find a reasonable balance between temporal



and spatial resolutions. Techniques which can provide

morphological information at the nanometer or

subnanometer range do not have the time resolution

required for most transient or kinetic studies. Most

characterization techniques give average properties for

relative large areas (from micrometers to millimeters) of the

catalyst sample, making emphasis on obtaining high

sensitivity for dealing with low concentrations of elements

and for allowing the fast data acquisition necessary for

transient experiments.

Nowadays surface science offers a quite impressive array

of experimental techniques to investigate the properties of

surfaces [6, 10]. Many of these techniques are based on

some type of excitation (photons, electrons, neutrons, ions,

electromagnetic field, heat, etc.) to which the catalyst

responds. A similar type of excitation can be associated with

different types of phenomena yielding information about

different properties. For example, X-ray diffraction (XRD), X-

ray absorption spectroscopy (XAS), and X-ray photoelectron

spectroscopy (XPS) all use photons for probing the sample

and are among the most frequently employed techniques

for catalyst characterization [5, 6]. XRD occurs in the elastic

scattering of X-ray photons by atoms in a periodic lattice

and can be used to obtain structural information. In

contrast, irradiating a catalyst with X-ray photons can

induce excitation of electrons from occupied core levels to

empty valence levels (XAS) or generate photoelectrons

(XPS), yielding information about the composition of the

sample and the electronic properties of the elements

present.

Many surface science techniques operate under vacuum or

high-vacuum conditions [6, 10] and cannot be applied in the

characterization of catalysts under normal reaction

conditions. In order to overcome this problem, several

laboratories have developed experimental systems which



combine a high-pressure system with an ultra-high-vacuum

(UHV) analysis chamber [9, 10, 16]. The high-pressure

reactor allows the kinetics of catalytic reactions to be

measured on a given surface (see Fig. I.5), while analysis of

the structure and composition of the surface both before

and after reaction can be accomplished in the UHV chamber.

This approach has provided valuable insights into many

catalytic processes [9, 10, 16], but it is now clear that the

combination of prenatal and postmortem analysis can miss

important changes that occur to the surface of a catalyst

under reaction conditions [17–19]. Since surfaces are

flexible entities which can reconstruct after interacting with

adsorbed molecules (see Fig. I.6 and References [17–19]),

one must perform an in-situ characterization of the catalyst.

In recent years, notable advances in design and

instrumentation have added moderate-pressure XPS (Fig.

I.7) and high-pressure scanning tunneling microscopy (HP-

STM) [17, 20, 21] to the arsenal of techniques that is

available for the in-situ characterization of catalysts.

Furthermore, there has been an extraordinary effort to

develop or improve characterization techniques which take

advantage of synchrotrons or neutron facilities. It is in these

facilities where major advances have been made in the

development of techniques which allow us the structural

characterization of crystalline or amorphous materials [22–

26], dealing with diluted samples [26, 27], the fast

acquisition of data [27–29], and catalyst imaging [24, 26,

30]. There has also been substantial progress in the

integration of techniques for the simultaneous study of the

catalyst properties and reaction mechanism [25, 30–34].



Figure I.5. Arrhenius plots for the 2CO + O2 → 2CO2

reaction on Cu(111) and on a surface in which ceria

nanoparticles covered ∼18% of the copper substrate.

PCO = 20 Torr, PO2 = 10 Torr. Reprinted with permission

from Reference 13. Copyright (2011) American Chemical

Society.

Figure I.6. Images of in-situ low-energy electron

microscopy obtained before and during the exposure of a

CeOx/CuOx/Cu(111) model catalyst to CO [19]. In the final

step, the system consisted of ceria nanoparticles dispersed

on a reconstructed Cu(111) surface. Reprinted with

permission from Reference 19. Copyright (2012) American

Chemical Society.



Figure I.7. Carbon and oxygen 1s XPS spectra of (A) pure

Cu and (B) Zn/Cu (0.1 mL Zn) in the presence of 0.1 Torr of

CO2 and 0.1 Torr of H2O at room temperature. Two

carbonaceous species, formate and methoxy, are shown to

form on both surfaces. Activated CO2 and carbonate species

present in pure CO2 remain visible on each surface. In

addition, molecularly adsorbed H2O is also observed in both

spectra. The presence of Zn makes carbonate the majority

species on the surface. Reprinted with permission from

Reference 20. Copyright (2009) Elsevier.



This book is divided in 16 chapters which cover recent

advances in an array of techniques which can be used to

study in-situ catalytic processes taking place on high-

surface area powders or on well-defined model catalysts.

Using these techniques, one can perform fundamental

studies of the physical and chemical properties of a catalyst

obtaining information about composition, structural

features, surface morphology, electronic states, and

chemical reactivity. Figure I.8 shows a typical approach

followed nowadays in the study of catalytic processes. First,

one must identify and characterize the active phase of the

catalyst. This is usually followed by studies of surface

chemistry aimed at obtaining the details of the reaction

mechanism. Theoretical studies can provide a conceptual

frame for understanding the properties of the catalyst or the

steps in the reaction mechanism [35, 36]. The integral

approach shown in Figure I.8 eventually can yield a

fundamental understanding of the behavior of active sites

which can be used for the rational design of better catalysts.



This approach usually takes advantage of the in-situ

techniques described in this book.

Figure I.8. Different areas of research during the study of

catalytic processes. A fundamental understanding is

obtained by combining in-situ characterization of the active

phase in the catalyst with experimental and theoretical

studies of the surface chemistry associated with the

catalytic process. NS, neutron scattering; TEM, transmission

electron microscopy; EPR, electron paramagnetic

resonance; UV-Vis, ultraviolet–visible spectroscopy; IR,

infrared; DFT, density functional theory; MD; molecular

dynamics; MC, Monte Carlo.

Catalyst Composition and Active

Phase Identification

The fist step in any catalytic study is to identify the

composition and active phase of the catalyst under reaction

conditions. XAS is perhaps the technique most frequently

used for this task. The first three chapters in the book show


