Edited by Jie Jack Li

Heterocyclic Chemistry in Drug Discovery

Heterocyclic Chemistry in Drug Discovery

Heterocyclic Chemistry in Drug Discovery

Edited by

Jie Jack Li Bristol-Myers Squibb Company

WILEY A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Heterocyclic chemistry in drug discovery / edited by Jie Jack Li.
p. ; cm.
Includes bibliographical references and index.
ISBN 978-1-118-14890-7 (cloth)
I. Li, Jie Jack.
[DNLM: 1. Drug Discovery—methods. 2. Heterocyclic Compounds—chemistry. 3. Heterocyclic Compounds—pharmacology. QD 400]

2012030054

615.1'9-dc23

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Dedicated To Li Jing Ya, Li (Zhen) Cheng-Cheng, Li Chun, and Li Lei

Preface		xvii
Contributing A	Authors	xix
Chapter 1	Introduction	1
PART I	FIVE-MEMBERED HETEROCYCLES WITH	ONE
HETEROAT	OM	17
Chapter 2	Pyrroles	18
Chapter 3	Indoles	54
Chapter 4	Furans, Benzofurans, Thiophenes, and Benzothiophenes	119
PART II	FIVE-MEMBERED HETEROCYCLES WITH TW	O OR
MORE HET	EROATOMS	197
Chapter 5	Pyrazoles, Pyrazolones, and Indazoles	198
Chapter 6	Oxazoles, Isoxazoles, and Oxazolidinones	231
Chapter 7	Thiazoles and Benzothiazoles	283
Chapter 8	Imidazoles and Benzimidazoles	333
Chapter 9	Triazoles and Tetrazoles	373
PART III	SIX-MEMBERED HETEROCYCLES WITH	ONE
HETEROAT	OM	397
Chapter 10	Pyridines	398
Chapter 11	Quinolines and Isoquinolines	471
PART IV	SIX-MEMBERED HETEROCYCLES WITH	TWO
HETEROAT	OMS	535
Chapter 12	Pyrazines and Quinoxalines	536
Chapter 13	Pyrimidines	569
Chapter 14	Quinazolines and Quinazolones	615
Subject Index		647

Detailed Table of Contents

Chap	ter 1	Introduction		1		
1.1	Nome	nclature of Heterocycles		1		
1.2	Arom	ticity of Heterocycles				
1.3	Impor	ance of Heterocycles in Life				
1.4	Importance of Heterocycles in Drug Discovery					
	1.4.1	Five-Membered Heterocycles with One Heteroato	m	9		
	1.4.2	Five-Membered Heterocycles with Two Heteroate	oms	12		
	1.4.3	Six-Membered Heterocycles with One Heteroaton	n	13		
	1.4.4	Six-Membered Heterocycles with Two Heteroator	ns	15		
PAR	ГІ	FIVE-MEMBERED HETEROCYCLES W	ITH	ONE		
HET	EROAT	TOM		17		
Chap	ter 2	Pyrroles		18		
2.1	Introd	uction		18		
2.2	Reacti	ivity of the Pyrrole Ring		22		
	2.2.1	Protonation		22		
	2.2.2	C2 Electrophilic Substitution		22		
	2.2.3	C3 Electrophilic Substitution		31		
	2.2.4	Metalation		34		
2.3	Const	ruction of the Pyrrole Rings		34		
	2.3.1	Knorr Pyrrole Synthesis		34		
		Paal–Knorr Pyrrole Synthesis		37		
		Hantsch Pyrrole Synthesis		40		
	2.3.4	Barton–Zard Reaction		43		
2.4		ium Chemistry of Pyrroles		44		
2.5		ble Liabilities of Pyrrole-Containing Drugs		46		
2.6	Proble			49		
2.7	Refere	ences		51		
Chap		Indoles		54		
3.1		uction		54		
3.2		ivity of the Indole Ring		58		
	3.2.1	Protonation		58		
	3.2.2	C3 Electrophilic Substitution		58		
	3.2.3	C2 Electrophilic Substitution		62		
_	3.2.4	Metallation		63		
3.3		ruction of the Indole Rings		64		
	3.3.1	Fischer Indole Synthesis		64		
	3.3.2	Mori–Ban Indole Synthesis		67		

Contents

	3.3.3	Larock Indole Synthesis	70		
	3.3.4	Bischler–Möhlau Indole Synthesis	72		
	3.3.5	Nenitzescu Indole Synthesis	75		
	3.3.6	Bartoli Indole Synthesis	77		
	3.3.7	Batcho–Leimgruber Indole Synthesis	80		
	3.3.8	Gassman Indole Synthesis	83		
~ ~	3.3.9		86		
3.4		ole-containing Drug Synthesis	88		
3.5		-coupling Reactions for Indoles	91		
	3.5.1		91		
	3.5.2	0 1 0	92		
	3.5.3	1 0	95		
	3.5.4	0 1 0	99		
		Heck Reaction	100		
3.6	Azain		104		
		Larock Reaction	105		
		Bartoli Reaction	105		
		Batcho–Leimgruber Reaction	107		
	3.6.4		108 109		
3.7		0 0 7			
3.8	Problems				
3.9	Refere	ences	113		
Chap	ter 4	Furans, Benzofurans, Thiophenes, and			
		Benzothiophenes	119		
4.1		uction	119		
4.2		s and Benzofurans	126		
		Reactions of Furans and Benzofurans	126		
		Furan and Benzofuran Synthesis	137		
	4.2.3	Synthesis of Furan- and Benzofuran-Containing Drugs	153		
4.3	Thiop	henes and Benzothiophenes	158		
	4.3.1	Reactions of Thiophene and Benzothiophene	158		
	4.3.2	Synthesis of Thiophene and Benzothiophene	171		
	4.3.3	Synthesis of Thiophene- and Benzothiophene-			
		Containing Drugs	182		
4.4	Possit	ble Liabilities of Furan- and Thiophene-Containing Drugs	185		
4.5	Proble	ems	187		
4.6	Refere	ences	191		

PART II		FIVE-MEMBERED HETEROCYCLES	WITH TWO OR
MORE HET		EROATOMS	197
Chapt	er 5	Pyrazoles, Pyrazolones, and Indazoles	198
5.1	Introd		198
	5.1.1	Basicity and Acidity	201
	5.1.2	Tautomerization	201
5.2	Reacti	vities of the Pyrazole Ring	202
	5.2.1	Alkylation of the Pyrazole Ring	202
	5.2.2	C4 Electrophilic Substitution	203
	5.2.3	C5-Metallation	205
5.3	Const	ruction of the Pyrazole and Indazole Rings	206
	5.3.1	Knorr Pyrazole Synthesis	206
	5.3.2	Variations of the Knorr Pyrazole Synthesis	210
	5.3.3	Pechmann Pyrazole Synthesis	214
5.4	Pyrazo	olone-containing Drugs	217
5.5	Indazo	ble-containing Drugs	220
5.6	Proble	ems	223
5.7	Refere	ences	226
Chapt	er 6	Oxazoles, Benzoxazoles, and Isoxazoles	231
6.1	Introd	uction	231
6.2	Const	ruction of the Heterocyclic Ring	235
	6.2.1	Construction of the Oxazole Ring	235
	6.2.2	Construction of the Benzoxazole Ring	241
	6.2.3	Construction of the Isoxazole Ring	243
6.3	Reacti	vity	244
	6.3.1	Acid/Base Reactivity	244
	6.3.2	Electrophilic Substitution	245
	6.3.3	Metalation and Nucleophilic Substitution	245
	6.3.4	Pericyclic Reactions	249
6.4	Cross-	Coupling Reactions	250
	6.4.1	Preparation of Halo- and Trifloyl Oxazoles	250
	6.4.2	Stille Coupling	253
	6.4.3	Suzuki Coupling	257
	6.4.4	Negishi Coupling	261
	6.4.5	Sonogashira Coupling	264
	6.4.6	Heck Coupling	267
6.5		ed Reactions of Isoxazoles	269
6.6		ble Liabilities of Oxazole-Containing Drugs	270
6.7	Proble		271
6.8	Refere		278

Chap	oter 7	Thiazoles and Benzothiazoles	283
7.1	Introd	uction	283
	7.1.1	Basicity of Thiazoles	290
7.2	Reacti	ions of the Thiazole Ring	290
	7.2.1	Electrophilic Attack at Carbon	290
	7.2.2	C-Metalation	292
	7.2.3	Alkylation	296
	7.2.4	N-Oxidation	298
	7.2.5	Cycloaddition	299
7.3	Pallad	lium Chemistry Undergone by Thiazoles and Benzothiazoles	300
	7.3.1	Suzuki–Miyaura Reaction	300
	7.3.2	Negishi Coupling	302
	7.3.3	Heck Reaction	304
	7.3.4	Sonogashira Coupling	304
	7.3.5	Stille Coupling	306
7.4	Const	ruction of the Thiazole Ring	307
	7.4.1	Hantzsch Method	307
	7.4.2	Cook–Heilbron Synthesis of Thiazoles	312
	7.4.3	Gabriel Synthesis of Thiazoles	314
7.5	Const	ruction of the Benzothiazole Ring	315
	7.5.1	From 2-Aminobenzenethiols	315
	7.5.2	Hugerschoff Synthesis	316
	7.5.3	Jacobson Cyclization	318
	7.5.4	Miscellaneous Methods to Form Thiazole and Benzothiazo	ole
			320
7.6	Possit	ble Liabilities of Drugs Containing Thiazoles and	
	Benzo	othiazoles	321
7.7	Thiaze	oles and Benzothiazoles as Bioisosteres	323
7.8	Proble	ems	325
7.9	Refere	ences	328
Chap	oter 8	Imidazoles and Benzimidazoles	333
8.1	Introd	uction to Imidazole	333
8.2	Reacti	ivity of the Imidazole Ring	335
	8.2.1	Nitrogen Alkylation	335
	8.2.2	Electrophilic C-Substitution	337
	8.2.3	Metallation and Direct Pd-Activation	341
8.3	Const	ruction of the Imidazole Ring	341
	8.3.1	Debus	342
	8.3.2	Weidenhagen	343
	8.3.3	Bredereck	344
	8.3.4	Radiszewski	344

xii

	8.3.5	van Leusen	344	
	8.3.6	Use of α-Amido-Ketones	345	
	8.3.7	Use of DAMN Reagent	346	
	8.3.8	Fused-Imidazole Rings	347	
	8.3.9	Miscellaneous Imidazole Ring Construction	349	
8.4	Conve	ersion of Imidazolines to Imidazoles	353	
8.5	Possib	ble Liabilities of Imidazole-Containing Drugs	353	
8.6	Introd	luction to Benzimidazole		
8.7	Synthe	esis of Benzimidazoles: Classical Approaches	357	
8.8	Const	ruction of the Benzimidazole Core Using Transition	Metal-	
	Media	ited Approaches	361	
	8.8.1	C–N Bond Formation from Aryl Halide	361	
	8.8.2	C-H Functionalization	366	
8.9	Altern	ative Cyclization Approach Toward Benzimidazoles:	Process	
	Route	Toward BYK405879	367	
8.10	Proble	ems	368	
8.11	Refere	ences	370	
Chap	ter 9	Triazoles and Tetrazoles	373	
9.1	Introd	uction	373	
9.2		ivity of the Triazole and Tetrazole Ring	375	
	9.2.1	Substitution of the 1,2,3-Triazole	375	
	9.2.2	Substitution of the 1,2,4-Triazole	377	
	9.2.3	Alkylation of Triazole	377	
	9.2.4	Substitution of the Tetrazole	382	
	9.2.5	Reactions of 1,2,3-Triazoles and Tetrazoles	382	
9.3	Const	ruction of the Triazole Ring	384	
	9.3.1	Construction of the 1,2,3-Triazole Ring	384	
	9.3.2	Construction of the 1,2,4-Triazole Ring	387	
	9.3.3	Construction of the Tetrazole Ring	391	
9.4	Possit	ble Liabilities of Triazole-Containing Drugs	392	
9.5	Proble	ems	393	
9.6	Refere	ences	394	
PAR	r III	SIX-MEMBERED HETEROCYCLES WITH	ONE	
HET	EROAT	TOM	397	
Chap	ter 10	Pyridines	398	
10.1	Introd	uction	398	
	10.1.1	Pyridine-Containing Drugs	400	

	10.1.1 Pyridine-Containing Drugs	400
	10.1.2 Potential Liabilities for Pyridine-Containing Drugs	401
10.2	Reactivity of the Pyridine Ring	404

		Electrophilic Attack at Nitrogen of the Pyridine Ring C–C/C–N Cross-Coupling Reactions with	404	
		Organometallic Reagents	409	
10.3	Constr	uction of the Pyridine Ring	425	
	10.3.1	Synthesis via Condensation Reactions	425	
	10.3.2	Synthesis via Cycloaddition Reactions	437	
	10.3.3	Synthesis via Rearrangement Reactions	450	
	10.3.4	Synthesis via Transformation of Another Heterocycle	455	
10.4.	Proble		457	
10.5	Refere	nces	459	
-	ter 11	Quinolines and Isoquinolines	471	
11.1			471	
11.2		vity of the Quinoline and Isoquinoline Ring	474	
		Protonation	477	
		Electrophilic Addition to the Nitrogen Atom	478	
		Electrophilic Substitution at Carbon Atom	480	
		Nucleophilic Substitution	483	
		Amphiphilic Character of Quinoline-N-Oxides	486	
		Metallation of Quinolines and Isoquinolines	487	
		Palladium-Catalyzed Oxidative Coupling	488	
11.0		Cross-Coupling Reactions	488	
11.3		uction of Quinoline Core	492	
	11.3.1	Camps Quinoline Synthesis	493	
		Combes Quinoline Synthesis	494	
		Conrad–Limpach and Knorr Reactions	496	
		Friedlander and Pfitzinger Syntheses	499	
		Gould–Jacobs Reaction	503	
		Meth–Cohn Quinoline Synthesis	506	
		Skraup/Doebner-von Miller Reaction	507	
11 /		Modern Methods	510	
11.4		uction of Isoquinoline Core	513 513	
	11.4.1	Bischler–Napieralski Reaction	515	
	11.4.2	Pictet–Spengler Reaction Pictet–Gams Isoquinoline Synthesis	510	
	11.4.5	Pomeranz–Fritsch Reaction	521	
	11.4.4		521	
		Modern Methods	523	
11 5		le Liabilities of Drugs Containing Quinoline and	545	
11.5		noline Rings	526	
11.6	Proble	•	520	
			527	
11./	References 52			

PAR	ГIV	SIX-MEMBERED	HETEROCYCLES	WITH	TWO
HET	EROAT	OMS			535
Chap	ter 12	Pyrazines and Quine	oxalines		536
12.1	Introdu	uction			536
12.2	Forma	tion of Diazines			539
12.3	Reactiv	vity of the Molecules			545
	12.3.1	Reactivity of the Nitro	ogen		545
	12.3.2	Reactivity of the Diaz	zine Ring		548
	12.3.3	Metallation of the Dia	azine Ring		551
12.4	Coupli	ing Reactions			553
	12.4.1	Transition-metal Cou	pling Reactions		553
	12.4.2	Palladium-catalyzed l	Reactions		556
12.5	Proble	ms			562
12.6	Refere	nces			565
Chap	ter 13	Pyrimidines			569
13.1	Introdu	uction			569
13.2	Constr	uction of the Pyrimidin	ne Ring		573
			Formation of Two Bonds		573
	13.2.2 Synthesis Involving Formation of Three or More Bonds				
	13.2.3	Synthesis of Pyrimidi	ne-Fused Systems		581
13.3	Synthe	esis of Pyrimidine-Con	taining Drugs		590
	13.3.1	Allopurinol			590
	13.3.2	Trimethoprim			591
	13.3.3	Imatinib			592
	13.3.4	Bosentan			595
	13.3.5	Erlotinib			598
	13.3.6	Rosuvastatin			600
	13.3.7	Sildenafil			603
13.4	Proble	ms			608
13.5	Refere	nces			611
Chap	ter 14	Quinazolines and Qu	uinazolones		615
14.1	Introdu	uction			615
14.2	Reacti	ons of Quinazolines an	d Quinazolinones		618
	14.2.1	Reactions at C4			618
	14.2.2	Reactions at C2			622
	14.2.3	Metal-Mediated Subs	titution Reactions		623
14.3	Quinaz	zoline and Quinazolino	one Synthesis		625
		Bischler Reaction			625
	14.3.2	Niementowski Reacti	on		626

14.3.3 Cyclization and Rearrangement Approaches	631
14.3.4 Transition Metal-Promoted Reactions	634
Synthesis of Quinazoline- and Quinazolinone-Containing Drugs	636
14.4.1 Quinazoline-Containing Drugs	636
14.4.2 Quinazolinone-Containing Drugs	639
Problems	641
References	644
	 14.3.4 Transition Metal-Promoted Reactions Synthesis of Quinazoline- and Quinazolinone-Containing Drugs 14.4.1 Quinazoline-Containing Drugs 14.4.2 Quinazolinone-Containing Drugs Problems

Subject Index

647

Preface

There is a disconnection in our education of organic chemists whose inspiration is to work on drug discovery in either industry or academia. The traditional textbooks are no longer adequate in preparing our undergraduate and graduate students in entering the pharmaceutical industry. The original philosophy was that one could learn medicinal chemistry "on the job" after a strong synthetic chemistry background.

In this book, attempts have been made to fuse the two fields: heterocyclic chemistry and drug discovery. I hope it will give our undergraduate and graduate students a "jump-start" in this competitive employment market. As a matter of fact, there is no sacrificing of a solid education in "authentic" heterocyclic chemistry here. All aspects of reactions, reactivity, and mechanisms are still intact, except they are discussed in the context of medicinal chemistry and drug discovery.

I welcome your critique! Please send your comments to me directly: <u>lijiejackli@hotmail.com</u>.

Contributing Authors:

Dr. Nadia M. Ahmad Eli Lilly and Company Erl Wood Manor Windlesham Surrey, GU20 6PH United Kingdom

Dr. Narendra B. Ambhaikar Dr. Reddy's Laboratories CPS Bollaram Road, Miyapur Hyderabad-500 049 A. P., India

Professor Adam M. Azman Department of Chemistry Butler University 4600 Sunset Avenue Indianapolis, IN 46208, United States

Connor W. Brown Hamilton College 198 College Hill Road Clinton, NY 13323, United States

Dr. Timothy T. Curran Chemical Development Vertex Pharmaceuticals 130 Waverly Street Cambridge, MA 02139, United States

Professor Amy B. Dounay Department of Chemistry and Biochemistry Colorado College 14 East Cache La Poudre Street Colorado Springs, CO 80903, United States Tyler W. Farnsworth Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way Spartanburg, SC 29303, United States

Professor Micheal Fultz Department of Chemistry West Virginia State University Institute, WV 25112, United States

Professor Timothy J. Hagen Department of Chemistry and Biochemistry Northern Illinois University DeKalb, IL 60115, United States

Dr. Jie Jack Li Medicinal Chemistry Bristol-Myers Squibb Company Route 206 and Province Line Road Princeton, NJ 08540, United States

Dr. Sha Lou Process Research and Development Bristol-Myers Squibb Company New Brunswick, NJ 08901, United States

Professor Richard J. Mullins Department of Chemistry Xavier University 3800 Victory Parkway Cincinnati, OH 45207-4221, United States

Dr. Jennifer Xiaoxin Qiao Medicinal Chemistry Bristol-Myers Squibb Company P.O. Box 5400 Princeton, NJ 08543-5400, United States William Rollyson Department of Chemistry West Virginia State University Institute, WV 25112, United States

Professor Joshua V. Ruppel Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way Spartanburg, SC 29303, United States

Professor Nicole L. Snyder Department of Chemistry Davidson College Box 7120 Davidson, NC 28036, United States

Alexander D. Thompson Hamilton College 198 College Hill Road Clinton, NY 13323, United States

Dr. Ji Zhang HEC R&D Center Pharmaceutical Science Process Research and Development HEC-Hi-Tech Park, Dongguan Guang Zhou, Guang-Dong Province P. R. China

Dr. Zheng Zhang Department of Chemistry and Biochemistry Northern Illinois University DeKalb, IL 60115, United States

Professor Alexandros L. Zografos Department of Chemistry Aristotle University of Thessaloniki Thessaloniki 54124, Greece

Chapter 1 Introduction

Jie Jack Li

1.1 Nomenclature of Heterocycles

What's in a name? That which we call rose by any other name would smell as sweet. [William Shakespeare, Romeo and Juliet (II, ii, 1–2)].

Contrary to Shakespeare's exclamation, *naming heterocycles* is an integral part of our learning of heterocyclic chemistry. They are the professional jargon that we routinely use to communicate with our peers.

Heterocycles, as the name suggests, are cyclic compounds containing one or more heteroatoms such as N, O, S, P, Si, B, Se, and Se. They may be further divided into aromatic heterocycles and saturated heterocycles. This book will focus largely on aromatic heterocycles. Saturated heterocycles represent a smaller portion of drugs. Another way of naming heterocycles is using the size of the heterocyclic rings. Therefore, they may be classified as three-, four-, five-, six-, and seven-membered heterocycles, and so on.

Three-membered heterocycles are important reaction intermediates in organic chemistry and in preparing medicines. But they usually do not exist in final drugs because they are reactive in physiological environments. Exceptions are found in cancer drugs such as epothilone A and mitomycin C (see Section 1.4, page 9), where their reactivities are taken advantage of for therapeutic purposes.

The most frequently encountered three-membered heterocycles are oxirane, thiirane, aziridine, and azirine.

Four-membered heterocycles include oxetane, 2*H*-oxete, thietane, 2*H*-thiete, azetidine, and azete. In the field of drug discovery, oxetanes and azetidines are more and more incorporated into drugs for modulating biological and physical properties as well as for expanding intellectual properties space.

Heterocyclic Chemistry in Drug Discovery

Five- and six-membered heterocycles are of utmost importance to both life and drug discovery. The most common five-membered heterocycles with one heteroatom are pyrrole, furan, and thiophene.

Popular five-membered heterocycles with two heteroatoms include pyrazole, imidazole, oxazole, isoxazole, thiazole, and isothiazole.

All these aromatic heterocycles have their counterparts in the saturated heterocycles. corresponding Among those, pyrrolidines, tetrahydrofurans, and oxazolidines are more frequently encountered in drug discovery.

pyrazolidine imidazolidine oxazolidine isoxazolidine thiazolidine isothiazolidine

5 2 6 indole

benzofuran

benzothiophene

Some of the important benzene-fused five-membered heterocycles are indole, benzofuran, benzothiophene, benzimidazole, benzoxazole, and benzothiazole. The numbering of these heterocycles is shown below:

Chief among the six-membered heterocycles, pyridine and its benzene-fused derivative quinoline are most ubiquitous. Pyrazine and its benzene-fused analogue, quinoxaline, also play an important role in heterocyclic chemistry.

Their corresponding saturated derivatives often encountered in drug discovery are piperidine and piperazine.

piperazine

The major thrust of this book is aromatic heterocycles. According to Hückel's rule of aromaticity, a cyclic ring molecule is aromatic when the number of its π -electrons equals 4n + 2, where n is zero or any positive integer. The most common aromatic compound is benzene, which has 4 + 2= 6 π -electrons. Pyridine, an electron-deficient aromatic heterocycle, also has 6 π -electrons. In comparison with benzene, pyridine has an additional lone pair of electrons at the nitrogen atom after it contributes a pair of two electrons to make up the 6 π -electrons for aromaticity. These lone pair electrons are responsible for much of pyridine's unique physical and chemical properties. On the other hand, furan, an electron-excessive aromatic heterocycle also with 6 π -electrons, is different from both benzene and pyridine. The oxygen atom has two lone pairs of electrons, one of which contributes to the 6 π -electrons to achieve the aromaticity. The second pair of electrons is located in an sp^2 hybrid orbital in the plane of the furan ring. Thiophene is similar to furan in its aromaticity although thiophene is more "aromatic" because the S atom is larger than the O atom.

The relative aromaticity of common heterocycles is shown below:

Pyrrole, also an aromatic heterocycle with 6 π -electrons, is probably the most unique of all among the aromatic heterocycles. Different from furan and thiophene, the nitrogen atom on the pyrrole ring only has one lone pair of electrons, which both contributed to the 6 π -electrons to achieve the aromaticity. As a consequence, although pyrrole is also an electronexcessive aromatic heterocycle, just like furan and thiophene, pyrrole has many of its own characteristics. For instance, it is probably the most reactive as a nucleophile among all aromatic heterocycles (see Chapter 2). In addition, pyrrole's conjugation effect outweighs the nitrogen's inductuve effect in the contributing dipole moment, with the partial positive charge resting at the nitrogen atom.

1.3 Importance of Heterocycles in Life

The importance of heterocycles in life was recognized as the nascent stage of organic chemistry two centuries ago with isolation of alkaloids such as morphine from poppy seeds, quinine from cinchona barks, and camptothecin from the Chinese joy tree. Today, heterocycles are found in numerous fields of biochemical and physiological such as photosynthesis, amino acids, DNA bases, vitamins, endogenous neurotransmitters, and so on.

To begin with, chlorophyll is porphyrin (a tetramer of pyrrole) surrounding a magnesium atom. It is the molecule that absorbs sunlight and

uses its energy to synthesize carbohydrates from CO_2 and water. This process, known as photosynthesis, is the basis for sustaining the life processes of all plants.

On the other hand, the heme consists of a porphyrin ring surrounding an *iron* atom. The ring contains a large number of conjugated double bonds, which allows the molecule to absorb light in the visible part of the spectrum. The iron atom and the attached protein chain modify the wavelength of the absorption and give hemoglobin its characteristic color.

Several amino acids, the building block of life, are made of heterocycles. Histidine has an imidazole; tryptophan has an indole; yet proline has a pyrrolidine.

Heterocycles also play an important role as endogenous neurotransmitters. Chief among them are serotonin and histamine, which are of paramount importance in modulating the body's physiological and biochemical processes.

