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Preface

Unlike most books and textbooks on logic, this one purports to teach logic not so much
as a subject to study, but rather as a tool to master and use for performing and structuring
correct reasoning. It introduces classical logic rather informally, with very few theorems
and proofs (which are mainly located in the supplementary sections). Nevertheless, the
exposition is systematic and precise, without compromising on the essential technical and
conceptual issues and subtle points inherent in logic.

Aims

This textbook covers only the core of classical logic, which itself is just the heart of the
vast and growing body of modern logic. The main aims of the book are:

1. to explain the language, grammar, meaning, and formal semantics of logical formulae,
to help the reader understand the use of classical logical languages and be able both to
formalize natural language statements in them and translate back from logical formulae
to natural language;

2. to present, explain, and illustrate with examples the use of the most popular deductive
systems (namely, axiomatic systems, Semantic Tableaux, Natural Deduction, and Res-
olution with the only notable exclusion being Sequent Calculus, which is essentially
inter-reducible with Natural Deduction) for mechanizing and “computing” logical rea-
soning both on propositional and on first-order level, and to provide the reader with the
necessary technical skills for practical derivations in them; and

3. to offer systematic advice and guidelines on how to organize and perform a logically
correct and well-structured reasoning using these deductive systems and the reasoning
techniques that they provide.

Summary of the content and main features

The structure of the book reflects the two levels of expression and reasoning in classical
logic: propositional and first-order.

The first two chapters are devoted to propositional logic. In Chapter 1 I explain how
to understand propositions and compute their truth values. I then introduce propositional
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xii Preface

formulae and their truth tables and then discuss logical validity of propositional argu-
ments. The fundamental notion here is that of propositional logical consequence. Then,
in Chapter 2, I present several deductive systems used for deriving logical consequences
in propositional logic and show how they can be used for checking the logical correct-
ness of propositional arguments and reasoning. In a supplementary section at the end of
the chapter I sketch generic proofs of soundness and completeness of the propositional
deductive systems.

The exposition of propositional logic is uplifted to first-order logic in the following two
chapters. In Chapter 3 I present first-order structures and languages and then the syntax
and semantics (first informally, and then more rigorously) of first-order logic. Then I focus
on using first-order languages and translations between them and natural languages. In
the last section of this chapter I present and discuss the fundamental semantic concepts
of logical validity, consequence, and equivalence in first-order logic. Deductive systems
for first-order logic are introduced in Chapter 4 by extending the respective propositional
deductive systems with additional rules for the quantifiers. Derivations in each of these
are illustrated with several examples. Again in a supplementary section, I sketch generic
proofs of soundness and completeness of the deductive systems for first-order logic.

Chapter 5 contains some applications of classical logic to mathematical reasoning and
proofs, first in general and then specifically, for sets functions, relations, and arithmetic.
It consists of concise presentations of the basic theories of these, where the proofs are left
as exercises. The chapter ends with applications of classical logic to automated reasoning
and theorem proving, as well as to logic programming, illustrated briefly with Prolog.

The book ends with a comprehensive set of detailed solutions or answers to many of
the exercises.

The special features of this book include:

• concise exposition, with semi-formal but rigorous treatment of the minimum necessary
theory;

• emphasis both on conceptual understanding by providing many examples, and on devel-
oping technical skills and building experience by providing numerous exercises, most
of them standard, yet non-trivial, as well as full solutions or answers for many of them;

• solid and balanced coverage of semantic, syntactic, and deductive aspects of logic;

• some refreshing extras, such as a few logic-related cartoons scattered around, as well
as many biographical boxes at the end of each section with photos and short texts on
distinguished logicians, providing some background to their lives and contributions;

• selected references to other books on logic, listed at the end of each section, which are
suitable for further reading on the topics covered in the section; and

• a supplementary website with slides, additional exercises, more solutions, and errata,
which can be viewed at https://logicasatool.wordpress.com

For the instructor

The textbook is intended for introductory and intermediate courses in classical logic,
mainly for students in both mathematics and computer science, but is also suitable and
useful for more technically oriented courses for students in philosophy and social sciences.

https://logicasatool.wordpress.com
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4.5

4.6

5.1

5.3 5.2 5.4

Dependancy chart

Some parts of the text and some exercises are much more relevant to only one of the main
target audiences, and I have indicated them by using Mathematics Track and Computer
Science Track markers in the text. Everything else which is not explicitly included in
either of these tracks should be suitable for both groups. Likewise, some specific topics
and exercises are somewhat more advanced and are indicated with an Advanced Track
marker . These are, of course, only indications.

The whole book can be covered in one or two semester courses, depending on the back-
ground and technical level of the audience. It assumes almost no specific prior knowledge,
except some general background in college maths for specific topics and examples, usu-
ally indicated in Mathematics or Advanced tracks. A dependency chart of the different
sections is provided in the figure above.
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Introduction

What is logic about? What does it study and what does it offer? A usual definition found
in the encyclopedia is that it is the branch of philosophy that studies the laws and rules
of human reasoning. Little of this is actually correct. First, logic left the cradle of philos-
ophy long ago and is now a truly interdisciplinary area, related and relevant not only to
philosophy but also to mathematics, computer science, artificial intelligence, linguistics,
social sciences, and even economics. Second, is logic really about how we reason? If that
were the case, as a professional logician for many years I should already know quite well
how exactly humans reason. Alas, the more experience I gain in life, the less I understand
that. One thing is certain: most people use in their everyday reasoning emotions, analo-
gies, clichés, ungrounded beliefs and superstitions, that is, everything but logic. But then,
maybe logic studies the reasoning of the rational human, for whom reasoning is a purely
rational brain activity? Well, while many (but far from all) of us humans reason with their
brains, this is not sufficient to understand how we do it. As the American scientist Emerson
M. Pugh brilliantly put it: “If the human brain were so simple that we could understand
it, we would be so simple that we couldn’t.”

What does logic tell us, after all, if not how we reason? A better answer is: it tells us how
we can – and ideally should – reason in a systematic and well-structured way that would
guarantee that we always derive true and correct conclusions, providing we only use true
assumptions and only apply logically correct rules of reasoning. Logic is therefore not
just concerned with what is true and what is false, but rather with the correctness of our
argumentation of what implies what and with the validity of our reasoning. What exactly
does all that mean? This book aims to answer this question, beginning with some food for
thought here.

The famous Greek philosopher Aristotle (384–322 BC), regarded as the founding father
of formal logic, was the first who systematically studied and classified logically correct
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and incorrect forms and rules of reasoning. Aristotle studied specific patterns of arguments
called syllogisms. Here is a typical example (mine, not Aristotle’s) of a syllogism:

All logicians are clever.
All clever people are rich.
All logicians are rich.

The way we actually read this is as follows.

If all logicians are clever and all clever people are rich, then all logicians are rich.

This sounds intuitively like a correct piece of reasoning, and it is, but it does not mean
that the conclusion is necessarily true. (In fact, unfortunately, it is not.) What then makes
it correct?

Here is another example:

All natural numbers are integers.
Some integers are odd numbers.
Some natural numbers are odd numbers.

Note that all statements above are true. So, is this a correct argument? If you think so,
then how about taking the same argument and replacing the words “natural numbers”
by “mice,” “integers” by “animals,” and “odd numbers” by “elephants.” This will
not change the logical shape of the argument and, therefore, should not change its logical
correctness. The result speaks for itself, however.

All mice are animals.
Some animals are elephants.
Some mice are elephants.

So what makes an argument logically correct? You will also find answers to this ques-
tion in this book.

Let me say a few more concrete words about the main aspects and issues of classical
logic treated in this book. There are two levels of logical discourse and reasoning in classi-
cal logic. The lower level is propositional logic, introduced and discussed in the first two
chapters of this book, and the higher level is first-order logic, also known as predicate
logic, treated in the rest of the book.

Propositional logic is about reasoning with propositions, sentences that can be assigned
a truth value of either true or false. They are built from simple, atomic propositions by
using propositional logical connectives. The truth values propagate over all propositions
through truth tables for the propositional connectives.

Propositional logic can only formalize simple logical reasoning that can be expressed
in terms of propositions and their truth values, but it is quite insufficient for practical
knowledge representation and reasoning. For that, it needs to be extended with several
additional features, including constants (names) and variables for objects of any nature
(numbers, sets, points, human beings, etc.), functions and predicates over objects, as
well as quantifiers such as “for all objects x( . . . x . . . ),” and “there exists an object x
such that ( . . . x . . . ).” These lead to first-order languages, which (in many-sorted ver-
sions) are essentially sufficient to formalize most common logical reasoning. Designing
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appropriately expressive logical languages and using them to capture fragments of natural
languages and reasoning is one of the main tasks of modern logic.

There are three major aspects of a logical system: semantic; syntactic; and deduc-
tive. The former deals mostly with the semantic notions of truth, validity and logical
consequence, whereas the latter two deal respectively with the syntax and grammar of
logical languages and with systems for logical deduction and derivations and deductive
consequences. Deductive systems are purely mechanical procedures designed to derive
(deduce) logical validities and consequences by means of formal rules of inference and
possibly some postulated derived formulae called axioms. Thus, a deductive system does
not refer explicitly to the meaning (semantics) of the formulae but only treats them as spe-
cial strings of symbols and acts on their shape (syntax). In principle, a deductive system
can be used successfully without any understanding of what formulae mean, and deriva-
tions in a deductive system can be performed not only by humans but also by artificial
“agents” or computers. However, deductive systems are always meant to capture (or even
determine) logical consequence so, ideally, semantic logical consequence and deductive
consequence should precisely match each other. If that is the case, we say that the deduc-
tive system is sound and complete, or just adequate. Design and study of adequate and
practically useful deductive systems is another major logical task.

The main syntactic, semantic, and deductive aspects of classical logic are discussed in
detail in the book; there is much more that is not treated here however, both inside and
outside of classical logic. In particular, logic is deeply related to: the foundations of math-
ematics, via axiomatic theories of sets; mathematics itself via model theory; the important
notions of algorithmic decidability and computability via recursion theory; and the funda-
mentals and limitations of the deductive approach via proof theory. All of these are major
branches of logic that I will only mention briefly in the text, but much more can be seen in
the references. Furthermore, there is a rich variety of other, more specialized non-classical
logical languages and systems that are better suited for specific modes and aspects of rea-
soning, such as intuitionistic, modal, temporal, epistemic, deontic, and non-monotonic
logics that will not (except briefly intuitionistic logic) be discussed at all in this book.
References to relevant publications covering these topics are provided throughout.

Finally, a few final words on the role of logic in the modern world. As I mentioned
earlier, contemporary logic has become a highly interdisciplinary area with fundamen-
tal applications to a wide variety of scientific fields including mathematics, philosophy,
computer science, artificial intelligence, and linguistics. Today logic not only provides
methodology for correct human reasoning, but also techniques and tools for automated
reasoning of intelligent agents. It also provides theoretical foundations for basic concepts
in computer science such as computation and computability, algorithms and complexity,
and semantics of programming languages, as well as practical tools for formal specifi-
cation, synthesis, analysis, and verification of software and hardware, development and
management of intelligent databases, and logic programming. The impact of logic on
computer science nowadays is often compared to the impact of differential and integral
calculus on natural sciences and engineering from the 17th century.

I end this introduction with a humble hope that this book will help the reader understand
and master the use of this great intellectual tool called Logic. Enjoy it!

Valentin Goranko
Stockholm, November 2015
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An Appetizer: Logical Paradoxes
and Self-Reference

Dear reader,

The sentence that you are reading now is not true.

Is this claim true or false? If true, then it truly claims that it is not true, so it can’t be
true. But then, it is not true that it is not true, it must be true! Or . . . ?

This is a version of probably the oldest known logical paradox since antiquity, also
known as the liar’s paradox which refers to the quote “I am lying now.”

What is a logical paradox? It is a statement or an argument that presents an apparent
logical contradiction, either with well-known and accepted truths or simply with itself.
Unlike a fallacy, a paradox is not due to an incorrect reasoning, but it could be based on
wordplay or on a subtle ambiguity in the assumptions or concepts involved. Most com-
monly however, logical paradoxes arise when using self-reference, such as in the opening
sentence above. Logicians love playing with self-reference. For instance, I have added
this sentence in order to make a reference to itself. And, this one, which does not make a
reference to itself. (Or, does it . . . ?)

A variation of the liar’s paradox is Jourdain’s card paradox, which does not rely on
immediate self-reference but on a circular reference. Here is a simple version:

The next sentence is true. The previous sentence is false.

I end this appetizer two more paradoxes which are not exactly logical but semantic,
again a self-referential play but now with natural language.

The first is known as Berry’s paradox. Clearly every natural number can be defined in
English with sufficiently many words. However, if we bound the number of words to be
used, then only finitely many natural numbers can be defined. Then, there will be numbers
that cannot be defined with that many words. Hence, there must be a least so undefinable
natural number. Now, consider the following sentence “The least natural number that is
not definable in English with less than twenty words.” There is a uniquely determined
natural number that satisfies this description, so it is a definition in English, right? Well,
count how many words it uses.
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xxii An Appetizer: Logical Paradoxes and Self-Reference

The second is the Grelling–Nelson paradox. Divide all adjectives into two
groups: autological, if and only if it describes itself, such as “English,” “short,” and
“fourteen-letter;” and heterological, if and only if it does not describes itself, such
as “wet,” “white,” and “long.” Now, is the adjective “heterological” autological or
heterological?
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Understanding Propositional Logic

Propositional logic is about reasoning with propositions. These are sentences that can be
assigned a truth value: true or false. They are built from primitive statements, called atomic
propositions, by using propositional logical connectives. The truth values propagate over
all propositions through truth tables for the propositional connectives. In this chapter I
explain how to understand propositions and compute their truth values, and how to reason
using schemes of propositions called propositional formulae. I will formally capture the
concept of logically correct propositional reasoning by means of the fundamental notion
of propositional logical consequence.

1.1 Propositions and logical connectives: truth tables and tautologies

1.1.1 Propositions

The basic concept of propositional logic is proposition. A proposition is a sentence that
can be assigned a unique truth value: true or false.

Some simple examples of propositions include:

• The Sun is hot.

• The Earth is made of cheese.

• 2 plus 2 equals 22.

• The 1000th decimal digit of the number π is 9.
(You probably don’t know whether the latter is true or false, but it is surely either true
or false.)

The following are not propositions (why?):

• Are you bored?

• Please, don’t go away!

• She loves me.

• x is an integer.

• This sentence is false.

Logic as a Tool: A Guide to Formal Logical Reasoning, First Edition. Valentin Goranko.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



�

� �

�

2 Logic as a Tool

Here is why. The first sentence above is a question, and it does not make sense to
declare it true or false. Likewise for the imperative second sentence. The truth of the third
sentence depends on who “she” is and who utters the sentence. Likewise, the truth of the
fourth sentence is not determined as long as the variable x is not assigned a value, integer
or not. As for the last sentence, the reason is trickier: assuming that it is true it truly claims
that it is false – a contradiction; assuming that it is false, it falsely claims that it is false,
hence it is not false – a contradiction again. Therefore, no truth value can be consistently
ascribed to it. Such sentences are known as self-referential and are the main source of
various logical paradoxes (see the appetizer and Russell’s paradox in Section 5.2.1).

1.1.2 Propositional logical connectives

The propositions above are very simple. They have no logical structure, so we call them
primitive or atomic propositions. From primitive propositions one can construct com-
pound propositions by using special words called logical connectives. The most com-
monly used connectives are:

• not, called negation, denoted ¬;

• and, called conjunction, denoted ∧ (or sometimes &);

• or, called disjunction, denoted ∨;

• if . . . then . . . , called implication, or conditional, denoted →;

• . . . if and only if . . . , called biconditional, denoted ↔.

Remark 1 It is often not grammatically correct to read compound propositions by simply
inserting the names of the logical connectives in between the atomic components. A typical
problem arises with the negation: one does not say “Not the Earth is square.” A uniform
way to get around that difficulty and negate a proposition P is to say “It is not the case
that P .”

In natural language grammar the binary propositional connectives, plus others like but,
because, unless, although, so, yet, etc. are all called “conjunctions” because they “con-
join”, that is, connect, sentences. In logic we use the propositional connectives to connect
propositions. For instance, given the propositions

“Two plus two equals five” and “The Sun is hot”

we can form the propositions

• “It is not the case that two plus two equals five. ”

• “Two plus two equals five and the Sun is hot.”

• “Two plus two equals five or the Sun is hot.”

• “If two plus two equals five then the Sun is hot.”

• “Two plus two equals five if and only if the Sun is hot.”
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Understanding Propositional Logic 3

For a more involved example, from the propositions (we assume we have already
decided the truth value of each)

“Logic is fun”, “Logic is easy”, and “Logic is boring”

we can compose a proposition

“Logic is not easy or if logic is fun then logic is easy and logic is not
boring.”

It sounds better smoothed out a bit:

“Logic is not easy or if logic is fun then it is easy and not boring.”

1.1.3 Truth tables

How about the truth value of a compound proposition? It can be computed from the truth
values of the components1 by following the rules of ‘propositional arithmetic’:

• The proposition ¬A is true if and only if
the proposition A is false.

• The proposition A ∧ B is true if and only if
both A and B are true.

• The proposition A ∨ B is true if and only if
either of A or B (possibly both) is true.

• The proposition A → B is true if and only if
A is false or B is true, that is, if the truth of A implies the truth of B.

• The proposition A ↔ B is true if and only if
A and B have the same truth values.

We can systematize these rules in something similar to multiplication tables. For that
purpose, and to make it easier for symbolic (i.e., mathematical) manipulations, we intro-
duce a special notation for the two truth values by denoting the value true by T and
the value false by F. Another common notation, particularly in computer science, is to
denote true by 1 and false by 0.

The rules of the “propositional arithmetic” can be summarized by means of the follow-
ing truth tables (p and q below represent arbitrary propositions):

p ¬p p q p ∧ q p ∨ q p → q p ↔ q
T F T T T T T T
F T T F F T F F

F T F T T F
F F F F T T

1 Much in the same way as we can compute the value of the algebraic expression a × (b − c) + b/a as soon as we
know the values of a, b, c.
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1.1.4 The meaning of the connectives in natural language and in logic

The use and meaning of the logical connectives in natural language does not always match
their formal logical meaning. For instance, quite often the conjunction is loaded with a
temporal succession and causal relationship that makes the common sense meanings of
the sentences “The kid threw the stone and the window broke” and “The window
broke and the kid threw the stone” quite different, while they have the same truth
value by the truth table of the conjunction. Conjunction in natural language is therefore
often non-commutative, while the logical conjunction is commutative. The conjunction
is also often used to connect not entire sentences but only parts, in order to avoid repeti-
tion. For instance “The little princess is clever and beautiful” logically means “The
little princess is clever and the little princess is beautiful.” Several other conjunctive
words in natural language, such as but, yet, although, whereas, while etc., translate into
propositional logic as logical conjunction.

The disjunction in natural language also has its peculiarities. As for the conjunction, it
is often used in a form which does not match the logical syntax, as in “The old stranger
looked drunk, insane, or completely lost”. Moreover, it is also used in an exclusive
sense, for example in “I shall win or I shall die”, while in formal logic we use it by
convention in an inclusive sense, so “You will win or I will win” will be true if we both
win. However, “exclusive or”, abbreviated Xor, is sometimes used, especially in com-
puter science. A few other conjunctive words in natural language, such as unless, can
translate into propositional logic as logical disjunction, for instance “I will win, unless
I die.” However, it can also equivalently translate as an implication: “I will win, if I do
not die.”

Among all logical connectives, however, the implication seems to be the most debat-
able. Indeed, it is not so easy to accept that a proposition such as “If 2+2=5, then the
Moon is made of cheese”, if it makes any sense at all, should be assumed true. Even
more questionable seems the truth of the proposition “If the Moon is made of chocolate
then the Moon is made of cheese.” The leading motivation to define the truth behav-
ior of the implication is, of course, the logical meaning we assign to it. The proposition
A → B means:

If A is true, then B must be true,

Note that if A is not true, then the (truth of the) implication A → B requires nothing
regarding the truth of B. There is therefore only one case where that proposition should
be regarded as false, namely when A is true, and yet B is not true. In all other cases we
have no reason to consider it false. For it to be a proposition, it must be regarded true. This
argument justifies the truth table of the implication. It is very important to understand the
idea behind that truth table, because the implication is the logical connective which is
most closely related to the concepts of logical reasoning and deduction.

Remark 2 It helps to think of an implication as a promise. For instance, Johnnie’s father
tells him: “If you pass your logic exam, then I’ll buy you a motorbike.” Then con-
sider the four possible situations: Johnnie passes or fails his exam and his father buys
or does not buy him a motorbike. Now, see in which of them the promise is kept (the
implication is true) and in which it is broken (the implication is false).

Some terminology: the proposition A in the implication A → B is called the
antecedent and the proposition B is the consequent of the implication.
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Understanding Propositional Logic 5

The implication A → B can be expressed in many different but “logically equivalent”
(to be defined later) ways, which one should be able to recognize:

• A implies B.

• B follows from A.

• If A,B.

• B if A.

• A only if B.

• B whenever A.

• A is sufficient for B.
(Meaning: The truth of A is sufficient for the truth of B.)

• B is necessary for A.
(Meaning: The truth of B is necessary for A to be true.)

1.1.5 Computing truth values of propositions

It can be seen from the truth tables that the truth value of a compound proposition does not
depend on the meaning of the component propositions, but only on their truth values. To
check the truth of such a proposition, we merely need to replace all component proposi-
tions by their respective truth values and then “compute” the truth of the whole proposition
using the truth tables of the logical connectives. It therefore follows that

• “It is not the case that two plus two equals five” is true;

• “Two plus two equals five and the Sun is hot” is false;

• “Two plus two equals five or the Sun is hot” is true; and

• “If two plus two equals five, then the Sun is hot” is true (even though it does not
make good sense).

For the other example, suppose we agree that

“Logic is fun” is true,
“Logic is boring” is false,
“Logic is easy” is true.

Then the truth value of the compound proposition

“Logic is not easy or if logic is fun then it is easy and not boring.”

can be determined just as easily. However, in order to do so, we first have to analyze the
syntactic structure of the proposition, that is, to determine how it has been composed,
in other words in what order the logical connectives occurring therein have been applied.
With algebraic expressions such as a × (b − c) + b/c that analysis is a little easier, thanks
to the use of parentheses and the established priority order among the arithmetic opera-
tions. We also make use of parentheses and rewrite the sentence in the way (presumably)
we all understand it:

“(Logic is not easy) or ((if logic is fun) then ((logic is easy) and (logic is
not boring))).”
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The structure of the sentence should be clear now. We can however go one step fur-
ther and make it look exactly like an algebraic expression by using letters to denote the
occurring primitive propositions. For example, let us denote

“Logic is fun” A,
“Logic is boring” B, and
“Logic is easy” C.

Now our compound proposition can be neatly rewritten as

(¬C) ∨ (A → (C ∧ ¬B)).

In our rather informal exposition we will not use parentheses very systematically, but
only whenever necessary to avoid ambiguity. For that purpose we will, like in arithmetic,
impose a priority order among the logical connectives, namely:

• the negation has the strongest binding power, that is, the highest priority;

• then come the conjunction and disjunction;

• then the implication; and

• the biconditional has the lowest priority.

Example 3 The proposition ¬A ∨ C → A ∧ ¬B is a simplified version of
((¬A) ∨ C) → (A ∧ ¬B).

The last step is to compute the truth value. Recall that is not the actual meaning of
the component propositions that matters but only their truth values, so we can simply
replace the atomic propositions A,B, and C by their truth values and perform the formal
computation following the truth tables step-by-step:

(¬T) ∨ (T → (T ∧ ¬F)) = F ∨ (T → (T ∧ T)) = F ∨ (T → T) = F ∨ T = T.

So, logic is easy after all! (At least, so far.)

1.1.6 Propositional formulae and their truth tables

If we only discuss particular propositions our study of logic would be no more useful than
a study of algebra based on particular equalities such as 2 + 3 = 5 or 12345679 × 9 =
111111111. Instead, we should look at schemes of propositions and their properties, just
like we study algebraic formulae and equations and their properties. We call such schemes
of propositions propositional formulae.

1.1.6.1 Propositional formulae: basics

I first define a formal language in which propositional formulae, meant to be templates
for composite propositions, will be special words. That language involves:

• propositional constants: special fixed propositions �, that always takes a truth value
true, and ⊥, that always takes a value false;


