

Table of Contents

Part I: Language Constructs and

Environment

Chapter 1: Visual Studio 2012

Visual Studio 2012

Visual Basic Keywords and Syntax

Project ProVB_VS2012

Enhancing a Sample Application

Useful Features of Visual Studio 2012

Summary

Chapter 2: The Common Language

Runtime

Framework Profiles and Platforms

Elements of a .NET Application

Cross-Language Integration

IL Disassembler

Memory Management

Namespaces

Creating Your Own Namespaces

The My Keyword

Extending the My Namespace

Summary

Chapter 3: Objects and Visual Basic

Object-Oriented Terminology

Working With Visual Basic Types

Commands: Conditional

Value Types (Structures)

Reference Types (Classes)

Parameter Passing

Working with Objects

Creating Classes

Object-Oriented Concepts

Summary

Chapter 4: Custom Objects

Inheritance

Multiple Interfaces

Abstraction

Encapsulation

Polymorphism

Summary

Chapter 5: Advanced Language Constructs

Preparing the Sample Application

Lambda Expressions

Using Lambda Expressions

Async and Await

Iterators

Summary

Chapter 6: Exception Handling and

Debugging

System.Exception

Handling Exceptions

Logging Errors

Summary

Part II: Business Objects and Data

Access

Chapter 7: Arrays, Collections, and

Generics

Arrays

Collections

Generics

Creating Generics

Summary

Chapter 8: Using XML with Visual Basic

An Introduction to XML

XML Serialization

System.Xml Document Support

LINQ to XML

XSL Transformations

XML in ASP.NET

Summary

Chapter 9: ADO.NET and LINQ

ADO.NET Architecture

Basic ADO.NET Features

.NET Data Providers

The DataSet Component

Working with the Common Provider Model

Connection Pooling in ADO.NET

Transactions and System.Transactions

Summary

Chapter 10: Data Access with the Entity

Framework

Object-Relational Mapping

Entity Framework Architecture

Mapping Objects to Entities

Summary

Chapter 11: Services (XML/WCF)

Web Services

The Larger Move to SOA

Building a WCF Service

Building a WCF Consumer

Working with Data Contracts

Namespaces

Summary

Part III: Specialized Topics and

Libraries

Chapter 12: XAML Essentials

Features Shared by All XAML Platforms

The XAML Markup Language

The Layout System

Controls and Content

Resources in XAML

Data Binding

Data Templates and ItemControls

Styles

Control Templates

Summary

Chapter 13: Creating XAML Applications

for Windows 8

How XAML Differs in Windows 8

Windows 8 UI Conventions

UI/UX Guidelines

New Visual Elements in Windows 8

Changes to the Visual Designer in Visual Studio

2012

Application Templates in Visual Studio 2012

Implementing a Live Tile

Implementing Contracts

Summary

Chapter 14: Applications with ASP.NET,

MVC, JavaScript and HTML

Visual Studio Support for ASP.NET

Server-Side Development

Client-Side Web Development

Building Windows 8 Style Apps with HTML and

JavaScript

Summary

Chapter 15: Localization

Cultures and Regions

Translating Values and Behaviors

ASP.NET Resource Files

Summary

Chapter 16: Application Services

Using IIS for Application Services

Windows Services

Characteristics of a Windows Service

Interacting with Windows Services

Creating a Windows Service

Creating a Windows Service in Visual Basic

Creating a File Watcher Service

Communicating with the Service

Custom Commands

Passing Strings to a Service

Debugging the Service

Summary

Chapter 17: Assemblies and Reflection

Assemblies

The Manifest

Assemblies and Deployment

Versioning Issues

Basics of Reflection

Dynamic Loading of Assemblies

Summary

Chapter 18: Security in the .NET

Framework

Security Concepts and Definitions

Windows Store Projects

The System.Security.Permissions Namespace

Managing Code Access Permission Sets

User Access Control

Defining Your Application UAC Settings

Encryption Basics

Summary

Chapter 19: Parallel Programming Using

Tasks and Threads

Launching Parallel Tasks

Transforming Sequential Code to Parallel Code

Parallelizing Loops

Specifying the Desired Degree of Parallelism

Creating and Managing Tasks

Summary

Chapter 20: Deploying XAML Applications

via the Window 8 Windows Store

A New Deployment Option for Windows 8 Apps

Getting an Account at the Windows Store

Requirements for Apps in the Windows Store

Working with the Windows Store in Visual Studio

2012

Side-loading for LOB Apps in an Organization

Summary

Introduction

Part I

Language Constructs and

Environment

Chapter 1: Visual Studio 2012

Chapter 2: The Common Language Runtime

Chapter 3: Objects and Visual Basic

Chapter 4: Custom Objects

Chapter 5: Advanced Language Constructs

Chapter 6: Exception Handling and Debugging

Chapter 1

Visual Studio 2012

What's in this chapter?

Versions of Visual Studio

An introduction to key Visual Basic terms

Targeting a runtime environment

Creating a baseline Visual Basic Windows Form

Project templates

Project properties—application, compilation, debug

Setting properties

IntelliSense, code expansion, and code snippets

Debugging

The Class Designer

Wrox.com Code

Downloads for this

Chapter
The wrox.com code downloads for this chapter are found at

www.wrox.com/remtitle.cgi?isbn=9781118314456 on the

Download Code tab. The code is in the chapter 1 download

and individually named according to the code filenames

listed in the chapter.

You can work with Visual Basic without Visual Studio. In

practice, however, most Visual Basic developers treat the

two as almost inseparable; without a version of Visual

http://www.wrox.com/remtitle.cgi?isbn=9781118314456

Studio, you're forced to work from the command line to

create project files by hand, to make calls to the associated

compilers, and to manually address the tools necessary to

build your application. While Visual Basic supports this at

the same level as C#, F#, C++, and other .NET languages,

this isn't the typical focus of a Visual Basic professional.

Visual Basic's success rose from its increased productivity

in comparison to other languages when building business

applications. Visual Studio 2012 increases your productivity

and provides assistance in debugging your applications and

is the natural tool for Visual Basic developers.

Accordingly this book starts off by introducing you to

Visual Studio 2012 and how to build and manage Visual

Basic applications. The focus of this chapter is on ensuring

that everyone has a core set of knowledge related to tasks

like creating and debugging applications in Visual Studio

2012. Visual Studio 2012 is used throughout the book for

building solutions. Note while this is the start, don't think of

it as an “intro” chapter. This chapter will intro key elements

of working with Visual Studio, but will also go beyond that.

You may find yourself referencing back to it later for

advanced topics that you glossed over your first time

through. Visual Studio is a powerful and, at times, complex

tool, and you aren't expected to master it on your first read

through this chapter.

This chapter provides an overview of many of the

capabilities of Visual Studio 2012. The goal is to

demonstrate how Visual Studio makes you, as a developer,

more productive and successful.

Visual Studio 2012
For those who aren't familiar with the main elements of .NET

development there is the common language runtime (CLR),

the .NET Framework, the various language compilers and

Visual Studio. Each of these plays a role; for example, the

CLR—covered in Chapter 2—manages the execution of code

on the .NET platform. Thus code can be targeted to run on a

specific version of this runtime environment.

The .NET Framework provides a series of classes that

developers leverage across implementation languages. This

framework or Class Library is versioned and targeted to run

on a specific minimum version of the CLR. It is this library

along with the language compilers that are referenced by

Visual Studio. Visual Studio allows you to build applications

that target one or more of the versions of what is

generically called .NET.

In some cases the CLR and the .NET Framework will be the

same; for example, .NET Framework version 1.0 ran on CLR

version 1.0. In other cases just as Visual Basic's compiler is

on version 10, the .NET Framework might have a newer

version targeting an older version of the CLR.

The same concepts carry into Visual Studio. Visual Studio

2003 was focused on .NET 1.1, while the earlier Visual

Studio .NET (2002) was focused on .NET 1.0. Originally, each

version of Visual Studio was optimized for a particular

version of .NET. Similarly, Visual Studio 2005 was optimized

for .NET 2.0, but then along came the exception of the .NET

Framework version 3.0. This introduced a new Framework,

which was supported by the same version 2.0 of the CLR,

but which didn't ship with a new version of Visual Studio.

Fortunately, Microsoft chose to keep Visual Basic and

ASP.NET unchanged for the .NET 3.0 Framework release.

However, when you looked at the .NET 3.0 Framework

elements, such as Windows Presentation Foundation,

Windows Communication Foundation, and Windows

Workflow Foundation, you found that those items needed to

be addressed outside of Visual Studio. Thus, while Visual

Studio is separate from Visual Basic, the CLR, and .NET

development, in practical terms Visual Studio was tightly

coupled to each of these items.

When Visual Studio 2005 was released, Microsoft

expanded on the different versions of Visual Studio available

for use. Earlier editions of this book actually went into some

of the differences between these versions. This edition

focuses on using Visual Studio's core features. While some

of the project types require Visual Studio Professional, the

core features are available in all versions of Visual Studio.

In Visual Studio 2008, Microsoft loosened the framework

coupling by providing robust support that allowed the

developer to target any of three different versions of the

.NET Framework. Visual Studio 2010 continued this,

enabling you to target an application to run on .NET 2.0,

.NET 3.0,.NET 3.5, or .NET 4.

However, that support didn't mean that Visual Studio 2010

wasn't still tightly coupled to a specific version of each

compiler. In fact, the new support for targeting frameworks

is designed to support a runtime environment, not a

compile-time environment. This is important, because when

projects from previous versions of Visual Studio are

converted to the Visual Studio 2010 format, they cannot be

reopened by a previous version.

The reason for this was that the underlying build engine

used by Visual Studio 2010 accepts syntax changes and

even language feature changes, but previous versions of

Visual Studio do not recognize these new elements of the

language. Thus, if you move source code written in Visual

Studio 2010 to a previous version of Visual Studio, you face

a strong possibility that it would fail to compile. However,

Visual Studio 2012 changed this, and it is now possible to

open projects associated with older versions of Visual Studio

in Visual Studio 2012, work on them, and have someone

else continue to work in an older version of Visual Studio.

Multitargeting support continues to ensure that your

application will run on a specific version of the framework.

Thus, if your organization is not supporting .NET 3.0, .NET

3.5, or .NET 4, you can still use Visual Studio 2012. The

compiler generates byte code based on the language

syntax, and at its core that byte code is version agnostic.

Where you can get in trouble is if you reference one or more

classes that aren't part of a given version of the CLR. Visual

Studio therefore manages your references when targeting

an older version of .NET, allowing you to be reasonably

certain that your application will not reference files from one

of those other framework versions. Multitargeting is what

enables you to safely deploy without requiring your

customers to download additional framework components

they don't need.

Complete coverage of all of Visual Studio's features

warrants a book of its own, especially when you take into

account all of the collaborative and Application Lifecycle

Management features introduced by Team Foundation

Server and its tight integration with both Team Build and

SharePoint Server.

Visual Basic Keywords and

Syntax
Those with previous experience with Visual Basic are

already familiar with many of the language keywords and

syntax. However, not all readers will fall into this category,

so this introductory section is for those new to Visual Basic.

A glossary of keywords is provided, after which this section

will use many of these keywords in context.

Although they're not the focus of the chapter, with so

many keywords, a glossary follows. Table 1.1 briefly

summarizes most of the keywords discussed in the

preceding section, and provides a short description of their

meaning in Visual Basic. Keep in mind there are two

commonly used terms that aren't Visual Basic keywords that

you will read repeatedly, including in the glossary:

1. Method—A generic name for a named set of

commands. In Visual Basic, both subs and functions are

types of methods.

2. Instance—When a class is created, the resulting

object is an instance of the class's definition.

Table 1.1 Commonly Used Keywords in Visual Basic

Keyword Description

Namespace A collection of classes that provide related capabilities. For example,

the System.Drawing namespace contains classes associated with

graphics.

Class A definition of an object. Includes properties (variables) and methods,

which can be Subs or Functions.

Sub A method that contains a set of commands, allows data to be

transferred as parameters, and provides scope around local variables

and commands, but does not return a value.

Function A method that contains a set of commands, returns a value, allows

data to be transferred as parameters, and provides scope around local

variables and commands.

Return Ends the currently executing Sub or Function. Combined with a return

value for functions.

Dim Declares and defines a new variable.

New Creates an instance of an object.

Nothing Used to indicate that a variable has no value. Equivalent to null in

other languages and databases.

Me A reference to the instance of the object within which a method is

executing.

Console A type of application that relies on a command-line interface. Console

applications are commonly used for simple test frames. Also refers to

a .NET Framework Class that manages access of the command

window to and from which applications can read and write text data.

Module A code block that isn't a class but which can contain Sub and Function

methods. Used when only a single copy of code or data is needed in

memory.

Even though the focus of this chapter is on Visual Studio,

during this introduction a few basic elements of Visual Basic

will be referenced and need to be spelled out. This way, as

you read, you can understand the examples. Chapter 2, for

instance, covers working with namespaces, but some

examples and other code are introduced in this chapter that

will mention the term, so it is defined here.

Let's begin with namespace. When .NET was being created,

the developers realized that attempting to organize all of

these classes required a system. A namespace is an

arbitrary system that the .NET developers used to group

classes containing common functionality. A namespace can

have multiple levels of grouping, each separated by a period

(.). Thus, the System namespace is the basis for classes that

are used throughout .NET, while the Microsoft.VisualBasic

namespace is used for classes in the underlying .NET

Framework but specific to Visual Basic. At its most basic

level, a namespace does not imply or indicate anything

regarding the relationships between the class

implementations in that namespace; it is just a way of

managing the complexity of both your custom application's

classes, whether it be a small or large collection, and that of

the .NET Framework's thousands of classes. As noted

earlier, namespaces are covered in detail in Chapter 2.

Next is the keyword Class. Chapters 3 and 4 provide details

on object-oriented syntax and the related keywords for

objects and types, but a basic definition of this keyword is

needed here. The Class keyword designates a common set

of data and behavior within your application. The class is

the definition of an object, in the same way that your source

code, when compiled, is the definition of an application.

When someone runs your code, it is considered to be an

instance of your application. Similarly, when your code

creates or instantiates an object from your class definition,

it is considered to be an instance of that class, or an

instance of that object.

Creating an instance of an object has two parts. The first

part is the New command, which tells the compiler to create

an instance of that class. This command instructs code to

call your object definition and instantiate it. In some cases

you might need to run a method and get a return value, but

in most cases you use the New command to assign that

instance of an object to a variable. A variable is quite

literally something which can hold a reference to that class's

instance.

To declare a variable in Visual Basic, you use the Dim

statement. Dim is short for “dimension” and comes from the

ancient past of Basic, which preceded Visual Basic as a

language. The idea is that you are telling the system to

allocate or dimension a section of memory to hold data. As

discussed in subsequent chapters on objects, the Dim

statement may be replaced by another keyword such as

Public or Private that not only dimensions the new value, but

also limits the accessibility of that value. Each variable

declaration uses a Dim statement similar to the example that

follows, which declares a new variable, winForm:

Dim winForm As System.Windows.Forms.Form = New

System.Windows.Forms.Form()

In the preceding example, the code declares a new

variable (winForm) of the type Form. This variable is then set to

an instance of a Form object. It might also be assigned to an

existing instance of a Form object or alternatively to Nothing.

The Nothing keyword is a way of telling the system that the

variable does not currently have any value, and as such is

not actually using any memory on the heap. Later in this

chapter, in the discussion of value and reference types,

keep in mind that only reference types can be set to Nothing.

A class consists of both state and behavior. State is a

fancy way of referring to the fact that the class has one or

more values also known as properties associated with it.

Embedded in the class definition are zero or more Dim

statements that create variables used to store the

properties of the class. When you create an instance of this

class, you create these variables; and in most cases the

class contains logic to populate them. The logic used for

this, and to carry out other actions, is the behavior. This

behavior is encapsulated in what, in the object-oriented

world, are known as methods.

However, Visual Basic doesn't have a “method” keyword.

Instead, it has two other keywords that are brought forward

from Visual Basic's days as a procedural language. The first

is Sub. Sub, short for “subroutine,” and it defines a block of

code that carries out some action. When this block of code

completes, it returns control to the code that called it

without returning a value. The following snippet shows the

declaration of a Sub:

Private Sub Load(ByVal object As System.Object)

End Sub

The preceding example shows the start of a Sub called Load.

For now you can ignore the word Private at the start of this

declaration; this is related to the object and is further

explained in the next chapter. This method is implemented

as a Sub because it doesn't return a value and accepts one

parameter when it is called. Thus, in other languages this

might be considered and written explicitly as a function that

returns Nothing.

The preceding method declaration for Sub Load also

includes a single parameter, object, which is declared as

being of type System.Object. The meaning of the ByVal

qualifier is explained in chapter 2, but is related to how that

value is passed to this method. The code that actually loads

the object would be written between the line declaring this

method and the End Sub line.

Alternatively, a method can return a value; Visual Basic

uses the keyword Function to describe this behavior. In Visual

Basic, the only difference between a Sub and the method

type Function is the return type.

The Function declaration shown in the following sample

code specifies the return type of the function as a Long

value. A Function works just like a Sub with the exception that

a Function returns a value, which can be Nothing. This is an

important distinction, because when you declare a function

the compiler expects it to include a Return statement. The

Return statement is used to indicate that even though

additional lines of code may remain within a Function or Sub,

those lines of code should not be executed. Instead, the

Function or Sub should end processing at the current line, and

if it is in a function, the return value should be returned. To

declare a Function, you write code similar to the following:

Public Function Add(ByVal ParamArray values() As Integer) As

Long

 Dim result As Long = 0

 'TODO: Implement this function

 Return result

 'What if there is more code

 Return result

End Function

In the preceding example, note that after the function

initializes the second line of code, there is a Return

statement. There are two Return statements in the code.

However, as soon as the first Return statement is reached,

none of the remaining code in this function is executed. The

Return statement immediately halts execution of a method,

even from within a loop.

As shown in the preceding example, the function's return

value is assigned to a local variable until returned as part of

the Return statement. For a Sub, there would be no value on

the line with the Return statement, as a Sub does not return a

value when it completes. When returned, the return value is

usually assigned to something else. This is shown in the

next example line of code, which calls a function:

Dim ctrl = Me.Add(1, 2)

The preceding example demonstrates a call to a function.

The value returned by the function Add is a Long, and the

code assigns this to the variable ctrl. It also demonstrates

another keyword that you should be aware of: Me. The Me

keyword is how, within an object, you can reference the

current instance of that object.

You may have noticed that in all the sample code

presented thus far, each line is a complete command. If

you're familiar with another programming language, then

you may be used to seeing a specific character that

indicates the end of a complete set of commands. Several

popular languages use a semicolon to indicate the end of a

command line.

Visual Basic doesn't use visible punctuation to end each

line. Traditionally, the BASIC family of languages viewed

source files more like a list, whereby each item on the list is

placed on its own line. At one point the term was source

listing. By default, Visual Basic ends each source list item

with the carriage-return line feed, and treats it as a

command line. In some languages, a command such as X =

Y can span several lines in the source file until a semicolon

or other terminating character is reached. Thus previously,

in Visual Basic, that entire statement would be found on a

single line unless the user explicitly indicates that it is to

continue onto another line.

To explicitly indicate that a command line spans more than

one physical line, you'll see the use of the underscore at the

end of the line to be continued. However, one of the

features of Visual Basic, originally introduced in version 10

with Visual Studio 2010, is support for an implicit

underscore when extending a line past the carriage-return

line feed. However, this feature is limited, as there are still

places where underscores are needed.

When a line ends with the underscore character, this

explicitly tells Visual Basic that the code on that line does

not constitute a completed set of commands. The compiler

will then continue to the next line to find the continuation of

the command, and will end when a carriage-return line feed

is found without an accompanying underscore.

In other words, Visual Basic enables you to use

exceptionally long lines and indicate that the code has been

spread across multiple lines to improve readability. The

following line demonstrates the use of the underscore to

extend a line of code:

MessageBox.Show("Hello World", "A Message Box Title", _

 MessageBoxButtons.OK, MessageBoxIcon.Information)

Prior to Visual Basic 10 the preceding example illustrated

the only way to extend a single command line beyond one

physical line in your source code. The preceding line of code

can now be written as follows:

MessageBox.Show("Hello World", "A Message Box Title",

 MessageBoxButtons.OK, MessageBoxIcon.Information)

The compiler now recognizes certain key characters like

the “,” or the “=” as the type of statement where a line isn't

going to end. The compiler doesn't account for every

situation and won't just look for a line extension anytime a

line doesn't compile. That would be a performance

nightmare; however, there are several logical places where

you, as a developer, can choose to break a command across

lines and do so without needing to insert an underscore to

give the compiler a hint about the extended line.

Finally, note that in Visual Basic it is also possible to place

multiple different statements on a single line, by separating

the statements with colons. However, this is generally

considered a poor coding practice because it reduces

readability.

Console Applications

The simplest type of application is a console application.

This application doesn't have much of a user interface; in

fact, for those old enough to remember the MS-DOS

operating system, a console application looks just like an

MS-DOS application. It works in a command window without

support for graphics or input devices such as a mouse. A

console application is a text-based user interface that

displays text characters and reads input from the keyboard.

The easiest way to create a console application is to use

Visual Studio. For the current discussion let's just look at a

sample source file for a Console application, as shown in the

following example. Notice that the console application

contains a single method, a Sub called Main. By default, if you

create a console application in Visual Studio, the code

located in the Sub Main is the code which is by default

started. However, the Sub Main isn't contained in a class;

instead, the Sub Main that follows is contained in a Module:

Module Module1

 Sub Main()

 Console.WriteLine("Hello World")

 Dim line = Console.ReadLine()

 End Sub

End Module

A Module isn't truly a class, but rather a block of code that

can contain methods, which are then referenced by code in

classes or other modules—or, as in this case, it can

represent the execution start for a program. A Module is

similar to having a Shared class. The Shared keyword indicates

that only a single instance of a given item exists.

For example, in C# the Static keyword is used for this

purpose, and can be used to indicate that only a single

instance of a given class exists. Visual Basic doesn't support

the use of the Shared keyword with a Class declaration;

instead, Visual Basic developers create modules that

provide the same capability. The Module represents a valid

construct to group methods that don't have state-related or

instance-specific data.

Note a console application focuses on the Console Class.

The Console Class encapsulates Visual Basic's interface with

the text-based window that hosts a command prompt from

which a command-line program is run. The console window

is best thought of as a window encapsulating the older

nongraphical style user interface, whereby literally

everything was driven from the command prompt. A Shared

instance of the Console class is automatically created when

you start your application, and it supports a variety of Read

and Write methods. In the preceding example, if you were to

run the code from within Visual Studio's debugger, then the

console window would open and close immediately. To

prevent that, you include a final line in the Main Sub, which

executes a Read statement so that the program continues to

run while waiting for user input.

Creating a Project from a

Project Template

While it is possible to create a Visual Basic application

working entirely outside of Visual Studio, it is much easier to

start from Visual Studio. After you install Visual Studio, you

are presented with a screen similar to the one shown in

Figure 1.1. Different versions of Visual Studio may have a

different overall look, but typically the start page lists your

most recent projects on the left, some tips for getting

started, and a headline section for topics on MSDN that

might be of interest. You may or may not immediately

recognize that this content is HTML text; more important,

the content is based on an RSS feed that retrieves and

caches articles appropriate for your version of Visual Studio.

Figure 1.1 Visual Studio 2012 Start screen

The start page provides a generic starting point either to

select the application you intend to work on, to quickly

receive vital news related to offers, as shown in the figure,

or to connect with external resources via the community

links.

Once here, the next step is to create your first project.

Selecting File ⇒ New ⇒ Project opens the New Project dialog,

shown in Figure 1.2. This dialog provides a selection of

templates customized by application type. One option is to

create a Class Library project. Such a project doesn't include

a user interface; and instead of creating an assembly with

an .exe file, it creates an assembly with a .dll file. The

difference, of course, is that an .exe file indicates an

executable that can be started by the operating system,

whereas a .dll file represents a library referenced by an

application.

Figure 1.2 New Project dialogue

Figure 1.2 includes the capability to target a specific .NET

version in the drop-down box located above the list of

project types. If you change this to .NET 2.0, you'll see the

dialog change to show only six project types below the

selection listed. For the purposes of this chapter, however,

you'll want .NET 4.5 selected, and the template list should

resemble what is shown in Figure 1.2. Note this chapter is

going to create a Windows .NET application, not a Windows

Store application. Targeting keeps you from attempting to

create a project for WPF without recognizing that you also

need at least .NET 3.0 available on the client. Although you

can change your target after you create your project, be

very careful when trying to reduce the version number, as

the controls to prevent you from selecting dependencies

don't check your existing code base for violations. Changing

your targeted framework version for an existing project is

covered in more detail later in this chapter.

Not only can you choose to target a specific version of the

framework when creating a new project, but this window

has a new feature that you'll find all over the place in Visual

Studio. In the upper-right corner, there is a control that

enables you to search for a specific template. As you work

through more of the windows associated with Visual Studio,

you'll find that a context-specific search capability has often

been added to the new user interface.

Reviewing the top level of the Visual Basic tree in Figure

1.2 shows that a project type can be further separated into

a series of categories:

Windows—These are projects used to create

applications that run on the local computer within the

CLR. Because such projects can run on any operating

system (OS) hosting the framework, the category

“Windows” is something of a misnomer when compared

to, for example, “Desktop.”

Web—You can create these projects, including Web

services, from this section of the New Project dialog.

Office—Visual Studio Tools for Office (VSTO). These are

.NET applications that are hosted under Office. Visual

Studio 2010 includes a set of templates you can use to

target Office 2010, as well as a separate section for

templates that target Office 2007.

Cloud Services—These are projects that target the

Azure online environment model. These projects are

deployed to the cloud and as such have special

implementation and deployment considerations.

Reporting—This project type enables you to create a

Reports application.

SharePoint—This category provides a selection of

SharePoint projects, including Web Part projects,

SharePoint Workflow projects, and Business Data Catalog

projects, as well as things like site definitions and

content type projects. Visual Studio 2010 includes

significant new support for SharePoint.

Silverlight—With Visual Studio 2010, Microsoft has

finally provided full support for working with Silverlight

projects. Whereas in the past you've had to add the

Silverlight SDK and tools to your existing development

environment, with Visual Studio 2010 you get support

for both Silverlight projects and user interface design

within Visual Studio.

Test—This section is available only to those using Visual

Studio Team Suite. It contains the template for a Visual

Basic Unit Test project.

WCF—This is the section where you can create Windows

Communication Foundation projects.

Workflow—This is the section where you can create

Windows Workflow Foundation (WF) projects. The

templates in this section also include templates for

connecting with the SharePoint workflow engine.

Not shown in that list is a Windows Store project group.

That option is available only if you are running Visual Studio

2012 on Windows 8. The project group has five different

project types under Visual Basic, but they are available only

if you aren't just targeting Windows 8, but are actually using

a Windows 8 computer.

This chapter assumes you are working on a Windows 7

computer. The reason for this is that it is expected the

majority of developers will continue to work outside of

Windows RT. If you are working in a Windows 8 or Windows

RT environment, then what you'll look for in the list of Visual

Basic templates is a Windows Store application. Keep in

mind, however, that those projects will only run on Windows

8 computers. Details of working with Windows Store

applications are the focus of Chapters 14 and 15.

Visual Studio has other categories for projects, and you

have access to other development languages and far more

project types than this chapter has room for. When looking

to create an application you will choose from one or more of

the available project templates. To use more than a single

project to create an application you'll leverage what is

known as a solution. A solution is created by default

whenever you create a new project and contains one or

more projects.

When you save your project you will typically create a

folder for the solution, then later if you add another project

to the same solution, it will be contained in the solution

folder. A project is always part of a solution, and a solution

can contain multiple projects, each of which creates a

different assembly. Typically, for example, you will have one

or more Class Libraries that are part of the same solution as

your Windows Form or ASP.NET project. For now, you can

select a WPF Application project template to use as an

example project for this chapter.

For this example, use ProVB_VS2012 as the project name

to match the name of the project in the sample code

download and then click OK. Visual Studio takes over and

uses the Windows Application template to create a new WPF

Application project. The project contains a blank form that

can be customized, and a variety of other elements that you

can explore. Before customizing any code, let's first look at

the elements of this new project.

The Solution Explorer

The Solution Explorer is a window that is by default located

on the right-hand side of your display when you create a

project. It is there to display the contents of your solution

and includes the actual source file(s) for each of the projects

in your solution. While the Solution Explorer window is

available and applicable for Express Edition users, it will

never contain more than a single project. Visual Studio

provides the ability to leverage multiple projects in a single

solution. A .NET solution can contain projects of any .NET

language and can include the database, testing, and

installation projects as part of the overall solution. The

advantage of combining these projects is that it is easier to

debug projects that reside in a common solution.

Before discussing these files in depth, let's take a look at

the next step, which is to reveal a few additional details

about your project. Hover over the small icons at the top of

the Solution Explorer until you find the one with the hint

“Show All Files.” Click that button in the Solution Explorer to

display all of the project files, as shown in Figure 1.3. As this

image shows, many other files make up your project. Some

of these, such as those under the My Project grouping, don't

require you to edit them directly. Instead, you can double-

click the My Project entry in the Solution Explorer and open

the pages to edit your project settings. You do not need to

change any of the default settings for this project, but the

next section of this chapter walks you through the various

property screens.

Figure 1.3 Visual Studio Solution Explorer

