BUILD WINDOWS STORE APPS WITH VB

Join the discussion @ p2p.wrox.com

Professional

Visual Basic 2012 and
NET 4.5 Programming

Bill Sheldon, Billy Hollis, Rob Windsor, David McCarter, Gaston C. Hillar, Todd Herman

Table of Contents

Part I: Language Constructs and
Environment

Chapter 1: Visual Studio 2012

Visual Studio 2012

Visual Basic Keywords and Syntax
Project ProVB VS2012

Enhancing_a Sample Application
Useful Features of Visual Studio 2012
Summary

Chapter 2: The Common Language
Runtime

Framework Profiles and Platforms
Elements of a .NET Application
Cross-Language Integration

IL Disassembler

Memory Management
Namespaces

Creating Your Own Namespaces
The My Keyword

Extending the My Namespace
Summary

Chapter 3: Objects and Visual Basic
Object-Oriented Terminology

Working With Visual Basic Types
Commands: Conditional

Value Types (Structures)
Reference Types (Classes)
Parameter Passing
Working_with Objects
Creating_Classes
Object-Oriented Concepts
Summary

Chapter 4: Custom Objects

Inheritance
Multiple Interfaces
Abstraction
Encapsulation
Polymorphism
Summary

Chapter 5: Advanced Language Constructs

Preparing_the Sample Application
Lambda Expressions

Using Lambda Expressions
Async and Await

lterators

Summary

Chapter 6: Exception Handling_and

Debugqging

System.Exception

Handling Exceptions
Logging_Errors
Summary

Part |I: Business Objects and Data
Access

Chapter 7: Arrays, Collections,_and
Generics

Arrays

Collections
Generics
Creating_Generics
Summary

Chapter 8: Using XML with Visual Basic

An Introduction to XML

XML Serialization

System.Xml Document Support
LINQ to XML

XSL Transformations

XML in ASP.NET

Summary

Chapter 9: ADO.NET and LINQ

ADO.NET Architecture
Basic ADO.NET Features
.NET Data Providers

The DataSet Component
Working_with the Common Provider Model
Connection Pooling_in ADO.NET

Transactions and System.Transactions
Summary

Chapter 10: Data Access with the Entity
Framework

Object-Relational Mapping
Entity Framework Architecture

Mapping Objects to Entities
Summary

Chapter 11: Services (XML/WCF)

Web Services

The Larger Move to SOA
Building_a WCF Service
Building_a WCF Consumer
Working_with Data Contracts
Namespaces

Summary

Part lll: Specialized Topics and
Libraries

Chapter 12: XAML Essentials

Features Shared by All XAML Platforms
The XAML Markup Language

The Layout System

Controls and Content

Resources in XAML

Data Binding

Data Templates and ItemControls
Styles

Control Templates

Summary

Chapter 13: Creating XAML Applications
for Windows 8

How XAML Differs in Windows 8
Windows 8 Ul Conventions

UlI/UX Guidelines

New Visual Elements in Windows 8

Changes to the Visual Designer in Visual Studio
2012

Application Templates in Visual Studio 2012
Implementing_a Live Tile
Implementing_Contracts

Summary

Chapter 14: Applications with ASP.NET,
MVC, JavaScript and HTML

Visual Studio Support for ASP.NET
Server-Side Development
Client-Side Web Development

Building_ Windows 8 Style Apps with HTML and
JavaScript

Summary

Chapter 15: Localization

Cultures and Regions

Translating Values and Behaviors
ASP.NET Resource Files
Summary

Chapter 16: Application Services

Using_lIS for Application Services
Windows Services

Characteristics of a Windows Service
Interacting_with Windows Services
Creating_a Windows Service
Creating_a Windows Service in Visual Basic
Creating_a File Watcher Service
Communicating_with the Service
Custom Commands

Passing_Strings to a Service
Debugging_the Service

Summary

Chapter 17: Assemblies and Reflection

Assemblies

The Manifest

Assemblies and Deployment
Versioning_Issues

Basics of Reflection

Dynamic Loading_of Assemblies

Summary

Chapter 18: Security in the .NET
Framework

Security Concepts and Definitions

Windows Store Projects

The System.Security.Permissions Namespace
Managing_Code Access Permission Sets

User Access Control

Defining_Your Application UAC Settings
Encryption Basics

Summary

Chapter 19: Parallel Programming_Using
Tasks and Threads

Launching_Parallel Tasks
Transforming_Sequential Code to Parallel Code
Parallelizing_Loops

Specifying_the Desired Degree of Parallelism
Creating_and Managing _Tasks

Summary

Chapter 20: Deploying XAML Applications
via the Window 8 Windows Store

A New Deployment Option for Windows 8 Apps
Getting_an Account at the Windows Store
Requirements for Apps in the Windows Store

Working_with the Windows Store in Visual Studio
2012

Side-loading_for LOB Apps_ in an Organization
Summary

Introduction

Part |

Language Constructs and

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:

Environment

Visual Studio 2012

The Common Language Runtime
Objects and Visual Basic

Custom Objects

Advanced Language Constructs
Exception Handling and Debugging

Chapter 1

Visual Studio 2012

What's in this chapter?

Versions of Visual Studio

An introduction to key Visual Basic terms

Targeting a runtime environment

Creating a baseline Visual Basic Windows Form
Project templates

Project properties—application, compilation, debug
Setting properties

IntelliSense, code expansion, and code snippets
Debugging

The Class Designer

Wrox.com Code
Downloads for this
Chapter

The wrox.com code downloads for this chapter are found at
www.wrox.com/remtitle.cqi?isbn=9781118314456 on the
Download Code tab. The code is in the chapter 1 download
and individually named according to the code filenames
listed in the chapter.

You can work with Visual Basic without Visual Studio. In
practice, however, most Visual Basic developers treat the
two as almost inseparable; without a version of Visual

http://www.wrox.com/remtitle.cgi?isbn=9781118314456

Studio, you're forced to work from the command line to
create project files by hand, to make calls to the associated
compilers, and to manually address the tools necessary to
build your application. While Visual Basic supports this at
the same level as C#, F#, C++, and other .NET languages,
this isn't the typical focus of a Visual Basic professional.

Visual Basic's success rose from its increased productivity
in comparison to other languages when building business
applications. Visual Studio 2012 increases your productivity
and provides assistance in debugging your applications and
is the natural tool for Visual Basic developers.

Accordingly this book starts off by introducing you to
Visual Studio 2012 and how to build and manage Visual
Basic applications. The focus of this chapter is on ensuring
that everyone has a core set of knowledge related to tasks
like creating and debugging applications in Visual Studio
2012. Visual Studio 2012 is used throughout the book for
building solutions. Note while this is the start, don't think of
it as an “intro” chapter. This chapter will intro key elements
of working with Visual Studio, but will also go beyond that.
You may find yourself referencing back to it later for
advanced topics that you glossed over your first time
through. Visual Studio is a powerful and, at times, complex
tool, and you aren't expected to master it on your first read
through this chapter.

This chapter provides an overview of many of the
capabilities of Visual Studio 2012. The goal is to
demonstrate how Visual Studio makes you, as a developer,
more productive and successful.

Visual Studio 2012

For those who aren't familiar with the main elements of .NET
development there is the common language runtime (CLR),
the .NET Framework, the various language compilers and

Visual Studio. Each of these plays a role; for example, the
CLR—covered in Chapter 2—manages the execution of code
on the .NET platform. Thus code can be targeted to run on a
specific version of this runtime environment.

The .NET Framework provides a series of classes that
developers leverage across implementation languages. This
framework or Class Library is versioned and targeted to run
on a specific minimum version of the CLR. It is this library
along with the language compilers that are referenced by
Visual Studio. Visual Studio allows you to build applications
that target one or more of the versions of what is
generically called .NET.

In some cases the CLR and the .NET Framework will be the
same; for example, .NET Framework version 1.0 ran on CLR
version 1.0. In other cases just as Visual Basic's compiler is
on version 10, the .NET Framework might have a newer
version targeting an older version of the CLR.

The same concepts carry into Visual Studio. Visual Studio
2003 was focused on .NET 1.1, while the earlier Visual
Studio .NET (2002) was focused on .NET 1.0. Originally, each
version of Visual Studio was optimized for a particular
version of .NET. Similarly, Visual Studio 2005 was optimized
for .NET 2.0, but then along came the exception of the .NET
Framework version 3.0. This introduced a new Framework,
which was supported by the same version 2.0 of the CLR,
but which didn't ship with a new version of Visual Studio.

Fortunately, Microsoft chose to keep Visual Basic and
ASP.NET unchanged for the .NET 3.0 Framework release.
However, when you looked at the .NET 3.0 Framework
elements, such as Windows Presentation Foundation,
Windows Communication Foundation, and Windows
Workflow Foundation, you found that those items needed to
be addressed outside of Visual Studio. Thus, while Visual
Studio is separate from Visual Basic, the CLR, and .NET

development, in practical terms Visual Studio was tightly
coupled to each of these items.

When Visual Studio 2005 was released, Microsoft
expanded on the different versions of Visual Studio available
for use. Earlier editions of this book actually went into some
of the differences between these versions. This edition
focuses on using Visual Studio's core features. While some
of the project types require Visual Studio Professional, the
core features are available in all versions of Visual Studio.

In Visual Studio 2008, Microsoft loosened the framework
coupling by providing robust support that allowed the
developer to target any of three different versions of the
.NET Framework. Visual Studio 2010 continued this,
enabling you to target an application to run on .NET 2.0,
.NET 3.0,.NET 3.5, or .NET 4.

However, that support didn't mean that Visual Studio 2010
wasn't still tightly coupled to a specific version of each
compiler. In fact, the new support for targeting frameworks
is designed to support a runtime environment, not a
compile-time environment. This is important, because when
projects from previous versions of Visual Studio are
converted to the Visual Studio 2010 format, they cannot be
reopened by a previous version.

The reason for this was that the underlying build engine
used by Visual Studio 2010 accepts syntax changes and
even language feature changes, but previous versions of
Visual Studio do not recognize these new elements of the
language. Thus, if you move source code written in Visual
Studio 2010 to a previous version of Visual Studio, you face
a strong possibility that it would fail to compile. However,
Visual Studio 2012 changed this, and it is now possible to
open projects associated with older versions of Visual Studio
in Visual Studio 2012, work on them, and have someone
else continue to work in an older version of Visual Studio.

Multitargeting support continues to ensure that your
application will run on a specific version of the framework.
Thus, if your organization is not supporting .NET 3.0, .NET
3.5, or .NET 4, you can still use Visual Studio 2012. The
compiler generates byte code based on the language
syntax, and at its core that byte code is version agnostic.
Where you can get in trouble is if you reference one or more
classes that aren't part of a given version of the CLR. Visual
Studio therefore manages your references when targeting
an older version of .NET, allowing you to be reasonably
certain that your application will not reference files from one
of those other framework versions. Multitargeting is what
enables you to safely deploy without requiring your
customers to download additional framework components
they don't need.

Complete coverage of all of Visual Studio's features
warrants a book of its own, especially when you take into
account all of the collaborative and Application Lifecycle
Management features introduced by Team Foundation
Server and its tight integration with both Team Build and
SharePoint Server.

Visual Basic Keywords and
Syntax

Those with previous experience with Visual Basic are
already familiar with many of the language keywords and
syntax. However, not all readers will fall into this category,
so this introductory section is for those new to Visual Basic.
A glossary of keywords is provided, after which this section
will use many of these keywords in context.

Although they're not the focus of the chapter, with so
many keywords, a glossary follows. Table 1.1 briefly
summarizes most of the keywords discussed in the

preceding section, and provides a short description of their
meaning in Visual Basic. Keep in mind there are two
commonly used terms that aren't Visual Basic keywords that

you will read repeatedly, including in the glossary:
1. Method—A generic name for a named set of
commands. In Visual Basic, both subs and functions are
types of methods.
2. Instance—When a class is created, the resulting
object is an instance of the class's definition.

Table 1.1 Commonly Used Keywords in Visual Basic

Keyword |Description

Namespace |A collection of classes that provide related capabilities. For example,
the system.Drawing namespace contains classes associated with
graphics.

Class A definition of an object. Includes properties (variables) and methods,
which can be Subs or Functions.

Sub A method that contains a set of commands, allows data to be
transferred as parameters, and provides scope around local variables
and commands, but does not return a value.

Function |A method that contains a set of commands, returns a value, allows
data to be transferred as parameters, and provides scope around local
variables and commands.

Return Ends the currently executing sub or Function. Combined with a return
value for functions.

Dim Declares and defines a new variable.

New Creates an instance of an object.

Nothing |Used to indicate that a variable has no value. Equivalent to null in
other languages and databases.

Me A reference to the instance of the object within which a method is
executing.

Console |A type of application that relies on a command-line interface. Console
applications are commonly used for simple test frames. Also refers to
a .NET Framework Class that manages access of the command
window to and from which applications can read and write text data.

Module A code block that isn't a class but which can contain sub and Function
methods. Used when only a single copy of code or data is needed in
memory.

Even though the focus of this chapter is on Visual Studio,

during this introduction a few basic elements of Visual Basic

will be referenced and need to be spelled out. This way, as
you read, you can understand the examples. Chapter 2, for
instance, covers working with namespaces, but some
examples and other code are introduced in this chapter that
will mention the term, so it is defined here.

Let's begin with namespace. When .NET was being created,
the developers realized that attempting to organize all of
these classes required a system. A namespace is an
arbitrary system that the .NET developers used to group
classes containing common functionality. A nhamespace can
have multiple levels of grouping, each separated by a period
(.). Thus, the system namespace is the basis for classes that
are used throughout .NET, while the Microsoft.VisualBasic
namespace is used for classes in the underlying .NET
Framework but specific to Visual Basic. At its most basic
level, a namespace does not imply or indicate anything
regarding the relationships between the class
implementations in that namespace; it is just a way of
managing the complexity of both your custom application's
classes, whether it be a small or large collection, and that of
the .NET Framework's thousands of classes. As noted
earlier, namespaces are covered in detail in Chapter 2.

Next is the keyword class. Chapters 3 and 4 provide details
on object-oriented syntax and the related keywords for
objects and types, but a basic definition of this keyword is
needed here. The Class keyword designates a common set
of data and behavior within your application. The class is
the definition of an object, in the same way that your source
code, when compiled, is the definition of an application.
When someone runs your code, it is considered to be an
instance of your application. Similarly, when your code
creates or instantiates an object from your class definition,
it is considered to be an instance of that class, or an
instance of that object.

Creating an instance of an object has two parts. The first
part is the New command, which tells the compiler to create
an instance of that class. This command instructs code to
call your object definition and instantiate it. In some cases
you might need to run a method and get a return value, but
in most cases you use the New command to assign that
instance of an object to a variable. A variable is quite
literally something which can hold a reference to that class's
instance.

To declare a variable in Visual Basic, you use the Dim
statement. Dim is short for “dimension” and comes from the
ancient past of Basic, which preceded Visual Basic as a
language. The idea is that you are telling the system to
allocate or dimension a section of memory to hold data. As
discussed in subsequent chapters on objects, the bDim
statement may be replaced by another keyword such as
Public or Private that not only dimensions the new value, but
also limits the accessibility of that value. Each variable
declaration uses a bim statement similar to the example that

follows, which declares a new variable, winForm:
Dim winForm As System.Windows.Forms.Form = New

System.Windows.Forms.Form()

In the preceding example, the code declares a new
variable (winForm) of the type Form. This variable is then set to
an instance of a Form object. It might also be assigned to an
existing instance of a Form object or alternatively to Nothing.
The Nothing keyword is a way of telling the system that the
variable does not currently have any value, and as such is
not actually using any memory on the heap. Later in this
chapter, in the discussion of value and reference types,
keep in mind that only reference types can be set to Nothing.

A class consists of both state and behavior. State is a
fancy way of referring to the fact that the class has one or
more values also known as properties associated with it.
Embedded in the class definition are zero or more Dim

statements that create variables used to store the
properties of the class. When you create an instance of this
class, you create these variables; and in most cases the
class contains logic to populate them. The logic used for
this, and to carry out other actions, is the behavior. This
behavior is encapsulated in what, in the object-oriented
world, are known as methods.

However, Visual Basic doesn't have a “method” keyword.
Instead, it has two other keywords that are brought forward
from Visual Basic's days as a procedural language. The first
IS Sub. Sub, short for “subroutine,” and it defines a block of
code that carries out some action. When this block of code
completes, it returns control to the code that called it
without returning a value. The following snippet shows the

declaration of a Sub:
Private Sub Load(ByVal object As System.Object)

End Sub

The preceding example shows the start of a sub called Load.
For now you can ignore the word Private at the start of this
declaration; this is related to the object and is further
explained in the next chapter. This method is implemented
as a sub because it doesn't return a value and accepts one
parameter when it is called. Thus, in other languages this
might be considered and written explicitly as a function that
returns Nothing.

The preceding method declaration for sub Load also
includes a single parameter, object, which is declared as
being of type System.Object. The meaning of the Byval
qualifier is explained in chapter 2, but is related to how that
value is passed to this method. The code that actually loads
the object would be written between the line declaring this
method and the End Sub line.

Alternatively, a method can return a value; Visual Basic
uses the keyword Function to describe this behavior. In Visual

Basic, the only difference between a sub and the method
type Function is the return type.

The Function declaration shown in the following sample
code specifies the return type of the function as a Long
value. A Function works just like a sub with the exception that
a Function returns a value, which can be Nothing. This is an
important distinction, because when you declare a function
the compiler expects it to include a Return statement. The
Return statement is used to indicate that even though
additional lines of code may remain within a Function or Sub,
those lines of code should not be executed. Instead, the
Function Or Sub should end processing at the current line, and
if it is in a function, the return value should be returned. To

declare a Function, you write code similar to the following:

Public Function Add(ByVal ParamArray values() As Integer) As
Long

Dim result As Long = 0

'TODO: Implement this function

Return result

‘What if there is more code

Return result

End Function

In the preceding example, note that after the function
initializes the second line of code, there is a Return
statement. There are two Return statements in the code.
However, as soon as the first Return statement is reached,
none of the remaining code in this function is executed. The
Return statement immediately halts execution of a method,
even from within a loop.

As shown in the preceding example, the function's return
value is assigned to a local variable until returned as part of
the Return statement. For a sub, there would be no value on
the line with the Return statement, as a sub does not return a
value when it completes. When returned, the return value is
usually assigned to something else. This is shown in the
next example line of code, which calls a function:

Dim ctrl = Me.Add(1, 2)

The preceding example demonstrates a call to a function.
The value returned by the function Add is a Long, and the
code assigns this to the variable ctrl. It also demonstrates
another keyword that you should be aware of: Me. The Me
keyword is how, within an object, you can reference the
current instance of that object.

You may have noticed that in all the sample code
presented thus far, each line is a complete command. If
you're familiar with another programming language, then
you may be used to seeing a specific character that
indicates the end of a complete set of commands. Several
popular languages use a semicolon to indicate the end of a
command line.

Visual Basic doesn't use visible punctuation to end each
line. Traditionally, the BASIC family of languages viewed
source files more like a list, whereby each item on the list is
placed on its own line. At one point the term was source
listing. By default, Visual Basic ends each source list item
with the carriage-return line feed, and treats it as a
command line. In some languages, a command such as X =
Y can span several lines in the source file until a semicolon
or other terminating character is reached. Thus previously,
in Visual Basic, that entire statement would be found on a
single line unless the user explicitly indicates that it is to
continue onto another line.

To explicitly indicate that a command line spans more than
one physical line, you'll see the use of the underscore at the
end of the line to be continued. However, one of the
features of Visual Basic, originally introduced in version 10
with Visual Studio 2010, is support for an implicit
underscore when extending a line past the carriage-return
line feed. However, this feature is limited, as there are still
places where underscores are needed.

When a line ends with the underscore character, this
explicitly tells Visual Basic that the code on that line does

not constitute a completed set of commands. The compiler
will then continue to the next line to find the continuation of
the command, and will end when a carriage-return line feed
is found without an accompanying underscore.

In other words, Visual Basic enables you to wuse
exceptionally long lines and indicate that the code has been
spread across multiple lines to improve readability. The
following line demonstrates the use of the underscore to

extend a line of code:
MessageBox.Show("Hello World", "A Message Box Title",

MessageBoxButtons.0K, MessageBoxIcon.Information)
Prior to Visual Basic 10 the preceding example illustrated
the only way to extend a single command line beyond one
physical line in your source code. The preceding line of code

can now be written as follows:
MessageBox.Show("Hello World", "A Message Box Title",

MessageBoxButtons.OK, MessageBoxIcon.Information)

The compiler now recognizes certain key characters like
the “,” or the “=" as the type of statement where a line isn't
going to end. The compiler doesn't account for every
situation and won't just look for a line extension anytime a
line doesn't compile. That would be a performance
nightmare; however, there are several logical places where
you, as a developer, can choose to break a command across
lines and do so without needing to insert an underscore to
give the compiler a hint about the extended line.

Finally, note that in Visual Basic it is also possible to place
multiple different statements on a single line, by separating
the statements with colons. However, this is generally
considered a poor coding practice because it reduces
readability.

Console Applications

The simplest type of application is a console application.
This application doesn't have much of a user interface; in

fact, for those old enough to remember the MS-DOS
operating system, a console application looks just like an
MS-DOS application. It works in a command window without
support for graphics or input devices such as a mouse. A
console application is a text-based user interface that
displays text characters and reads input from the keyboard.

The easiest way to create a console application is to use
Visual Studio. For the current discussion let's just look at a
sample source file for a Console application, as shown in the
following example. Notice that the console application
contains a single method, a sub called Main. By default, if you
create a console application in Visual Studio, the code
located in the sub Main is the code which is by default
started. However, the sub Main isn't contained in a class;

instead, the sub Main that follows is contained in a Module:
Module Modulel
Sub Main()
Console.WriteLine("Hello World")
Dim line = Console.ReadlLine()
End Sub

End Module

A Module isn't truly a class, but rather a block of code that
can contain methods, which are then referenced by code in
classes or other modules—or, as in this case, it can
represent the execution start for a program. A Module is
similar to having a shared class. The shared keyword indicates
that only a single instance of a given item exists.

For example, in C# the static keyword is used for this
purpose, and can be used to indicate that only a single
instance of a given class exists. Visual Basic doesn't support
the use of the shared keyword with a Class declaration;
instead, Visual Basic developers create modules that
provide the same capability. The Module represents a valid
construct to group methods that don't have state-related or
instance-specific data.

Note a console application focuses on the Console Class.
The console Class encapsulates Visual Basic's interface with
the text-based window that hosts a command prompt from
which a command-line program is run. The console window
is best thought of as a window encapsulating the older
nongraphical style user interface, whereby literally
everything was driven from the command prompt. A Shared
instance of the Console class is automatically created when
you start your application, and it supports a variety of Read
and write methods. In the preceding example, if you were to
run the code from within Visual Studio's debugger, then the
console window would open and close immediately. To
prevent that, you include a final line in the Main Sub, which
executes a Read statement so that the program continues to
run while waiting for user input.

Creating a Project from a
Project Template

While it is possible to create a Visual Basic application
working entirely outside of Visual Studio, it is much easier to
start from Visual Studio. After you install Visual Studio, you
are presented with a screen similar to the one shown in
Figure 1.1. Different versions of Visual Studio may have a
different overall look, but typically the start page lists your
most recent projects on the left, some tips for getting
started, and a headline section for topics on MSDN that
might be of interest. You may or may not immediately
recognize that this content is HTML text; more important,
the content is based on an RSS feed that retrieves and
caches articles appropriate for your version of Visual Studio.

Figure 1.1 Visual Studio 2012 Start screen

M Start Page - Microsoft Visual Studio Quick Launch (Ctrl+ QY P = =} x
ALE EDIT VEW DEBUG TEAM 5SQL TOOLS TEST ARCHITECTURE AMALYZE WINDOW HELP

B - & o » Attach... ~ A

Start Page & X -

HOW-TO VIDEQS (STREAMING)

PRV Ve XN

Ultimate 2012

Learn more with these short streaming videos:

X0 g|50

:_1'_ Improving quality & How to mult-task E Usin
unit tests and with My Werk to im

se|y sauojdxj wea) sauojdxg uognjos

MIIN &

-‘E Visualize the impact
of a change

Recent

E Managing lab
r with agile enviranments for
ect management testing

Error List Task List Output Find Symbol Results

Ready

The start page provides a generic starting point either to
select the application you intend to work on, to quickly
receive vital news related to offers, as shown in the figure,
or to connect with external resources via the community
links.

Once here, the next step is to create your first project.
Selecting File = New = Project opens the New Project dialog,
shown in Figure 1.2. This dialog provides a selection of
templates customized by application type. One option is to
create a Class Library project. Such a project doesn't include
a user interface; and instead of creating an assembly with
an .exe file, it creates an assembly with a .dl1 file. The
difference, of course, is that an .exe file indicates an
executable that can be started by the operating system,

whereas a .d11 file represents a library referenced by an
application.

Figure 1.2 New Project dialogue

MNew Project w £3
P Recent MET Framework 4.5 - Sorthy: Default - |3 = Search Installed Templates (Ctrl+E D -
4 . A : .
Installed [Windows Forms Application Type: Visual Basic
4 Templates = 71 WPF Application ‘.‘."m;{tv.:ﬂ Presentation Foundation client
4 Visual Basic m application
sole Applica
Windows Console Application
Web B Class Library
¢ Offi
o Bi Portable Class Library
Cloud
Reporting B WPF Browser Application
b SharePoint 51 Empty Project
Silverlight
Foct [Windows Service
WCF FIE 'WPF Custom Control Library
Workflow - .
S &1 WPF User Control Library
b Online f Windows Forms Control Library
Name: ProVB_V52012
Location: chusers\wsheldon\documents'visual studio 2012\Projects\ProVB - Browse...
Solution name: ProVB V52012 [¥] Create directory for solution
"] Add to source control
QK Cancel

Figure 1.2 includes the capability to target a specific .NET
version in the drop-down box located above the list of
project types. If you change this to .NET 2.0, you'll see the
dialog change to show only six project types below the
selection listed. For the purposes of this chapter, however,
you'll want .NET 4.5 selected, and the template list should
resemble what is shown in Figure 1.2. Note this chapter is
going to create a Windows .NET application, not a Windows
Store application. Targeting keeps you from attempting to
create a project for WPF without recognizing that you also
need at least .NET 3.0 available on the client. Although you
can change your target after you create your project, be
very careful when trying to reduce the version number, as
the controls to prevent you from selecting dependencies
don't check your existing code base for violations. Changing
your targeted framework version for an existing project is
covered in more detail later in this chapter.

Not only can you choose to target a specific version of the
framework when creating a new project, but this window
has a new feature that you'll find all over the place in Visual
Studio. In the upper-right corner, there is a control that
enables you to search for a specific template. As you work
through more of the windows associated with Visual Studio,
you'll find that a context-specific search capability has often
been added to the new user interface.

Reviewing the top level of the Visual Basic tree in Figure
1.2 shows that a project type can be further separated into
a series of categories:

Windows—These are projects used to create
applications that run on the local computer within the
CLR. Because such projects can run on any operating
system (OS) hosting the framework, the category
“Windows” is something of a misnomer when compared
to, for example, “Desktop.”

Web—You can create these projects, including Web
services, from this section of the New Project dialog.
Office—Visual Studio Tools for Office (VSTO). These are
.NET applications that are hosted under Office. Visual
Studio 2010 includes a set of templates you can use to
target Office 2010, as well as a separate section for
templates that target Office 2007.

Cloud Services—These are projects that target the
Azure online environment model. These projects are
deployed to the cloud and as such have special
implementation and deployment considerations.
Reporting—This project type enables you to create a
Reports application.

SharePoint—This category provides a selection of
SharePoint projects, including Web Part projects,
SharePoint Workflow projects, and Business Data Catalog
projects, as well as things like site definitions and

content type projects. Visual Studio 2010 includes
significant new support for SharePoint.

o Silverlight—With Visual Studio 2010, Microsoft has
finally provided full support for working with Silverlight
projects. Whereas in the past you've had to add the
Silverlight SDK and tools to your existing development
environment, with Visual Studio 2010 you get support
for both Silverlight projects and user interface design
within Visual Studio.

 Test—This section is available only to those using Visual
Studio Team Suite. It contains the template for a Visual
Basic Unit Test project.

e WCF—This is the section where you can create Windows
Communication Foundation projects.

« Workflow—This is the section where you can create
Windows Workflow Foundation (WF) projects. The
templates in this section also include templates for
connecting with the SharePoint workflow engine.

Not shown in that list is a Windows Store project group.
That option is available only if you are running Visual Studio
2012 on Windows 8. The project group has five different
project types under Visual Basic, but they are available only
if you aren't just targeting Windows 8, but are actually using
a Windows 8 computer.

This chapter assumes you are working on a Windows 7
computer. The reason for this is that it is expected the
majority of developers will continue to work outside of
Windows RT. If you are working in a Windows 8 or Windows
RT environment, then what you'll look for in the list of Visual
Basic templates is a Windows Store application. Keep in
mind, however, that those projects will only run on Windows
8 computers. Details of working with Windows Store
applications are the focus of Chapters 14 and 15.

Visual Studio has other categories for projects, and you
have access to other development languages and far more

project types than this chapter has room for. When looking
to create an application you will choose from one or more of
the available project templates. To use more than a single
project to create an application you'll leverage what is
known as a solution. A solution is created by default
whenever you create a new project and contains one or
more projects.

When you save your project you will typically create a
folder for the solution, then later if you add another project
to the same solution, it will be contained in the solution
folder. A project is always part of a solution, and a solution
can contain multiple projects, each of which creates a
different assembly. Typically, for example, you will have one
or more Class Libraries that are part of the same solution as
your Windows Form or ASP.NET project. For now, you can
select a WPF Application project template to use as an
example project for this chapter.

For this example, use ProVB VS2012 as the project name
to match the name of the project in the sample code
download and then click OK. Visual Studio takes over and
uses the Windows Application template to create a new WPF
Application project. The project contains a blank form that
can be customized, and a variety of other elements that you
can explore. Before customizing any code, let's first look at
the elements of this new project.

The Solution Explorer

The Solution Explorer is a window that is by default located
on the right-hand side of your display when you create a
project. It is there to display the contents of your solution
and includes the actual source file(s) for each of the projects
in your solution. While the Solution Explorer window is
available and applicable for Express Edition users, it will
never contain more than a single project. Visual Studio
provides the ability to leverage multiple projects in a single

solution. A .NET solution can contain projects of any .NET
language and can include the database, testing, and
installation projects as part of the overall solution. The
advantage of combining these projects is that it is easier to
debug projects that reside in a common solution.

Before discussing these files in depth, let's take a look at
the next step, which is to reveal a few additional details
about your project. Hover over the small icons at the top of
the Solution Explorer until you find the one with the hint
“Show All Files.” Click that button in the Solution Explorer to
display all of the project files, as shown in Figure 1.3. As this
image shows, many other files make up your project. Some
of these, such as those under the My Project grouping, don't
require you to edit them directly. Instead, you can double-
click the My Project entry in the Solution Explorer and open
the pages to edit your project settings. You do not need to
change any of the default settings for this project, but the
next section of this chapter walks you through the various
property screens.

Figure 1.3 Visual Studio Solution Explorer

